用户名: 密码: 验证码:
污泥屏障氧化缓冲容量与重金属再溶出关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿堆暴露在自然条件下,其中的硫化矿物不断氧化,产生酸性极强且含有大量重金属的酸性矿山废水(acid mine drainage, AMD),对尾矿堆场周围的土壤和地下水环境造成严重污染。从废弃物包封处置的原理出发,提出了尾矿堆场污泥还原屏障新构想。污泥还原屏障不仅利用污泥的低渗透性阻隔重金属污染,还利用污泥中厌氧微生物导致的还原反应固定重金属污染物,丰富和完善了现有的包封屏障理论与技术。
     在风化淋滤条件下形成的AMD溶液,由于自由氧的溶入,表现出比污泥更高的氧化性质。渗入污泥屏障的AMD溶液与污泥发生氧化还原反应,必然会引起污泥屏障向氧化的状态发展。在硫酸盐还原作用下已经固定在污泥中的重金属,可能会由于污泥的氧化而二次释放。本研究的目标是通过实测污泥的氧化缓冲容量,分析污泥氧化缓冲容量的来源,研究氧化缓冲容量消耗过程与重金属溶出之间的关系,模拟计算不同厚度的污泥屏障可以固定重金属的时间,为污泥屏障的实际应用提供理论依据。
     本研究首先将污水处理厂污泥与蒸馏水混合,加入营养物质,强化重金属Zn、Cu、Pb的浓度,调节pH值,制备成不同性质的污泥悬液,置于阴暗处水浴恒温厌氧培养。经过一定时间培养后,取一定量的污泥悬液进行氧化滴定实验。在滴定过程中,当悬液Eh值到达一定值时,抽取部分悬液进行化学分析,测定悬液中的重金属含量和主要阴阳离子浓度。通过理论分析法研究污泥氧化缓冲容量的来源以及污泥氧化过程中重金属的释放问题。
     实验结果表明,污泥悬液的氧化缓冲容量随着悬液固液比的增大略有减小,随着悬液厌氧培养时间的延长而增加。当污泥进入强烈还原状态后,氧化缓冲容量主要来自Eh≤-150mV的强烈还原区间,可达氧化缓冲容量的50%以上。氧化滴定过程中,当污泥悬液的pH=6.0±0.5,Eh≥-150mV时,Zn首先明显溶出,Eh≥150mV时,Cu和Pb明显溶出;当污泥悬液的pH=5.0±0.5时,目标重金属的溶出量明显要大于pH=6.0±0.5的污泥悬液;当污泥悬液的pH=7.5±0.5时,目标重金属基本不溶出。基于以上实验结果,建立了污泥屏障在AMD渗流条件下氧化缓冲容量消耗的数学模型。模拟计算结果表明,当AMD水头高度为10m时,厚度2m的污泥屏障经历AMD溶液38787a的渗透氧化,仍可保持原有的强烈还原状态,具备对重金属的固定效果。因此,污泥屏障应用于尾矿堆场,具有较强的氧化缓冲容量,可以确保对AMD渗滤液中重金属的长期拦截效果。
Tailings from mining industry can generate acid mine drainage (AMD) containing high-concentration heavy metals. When the sulfide minerals are exposed in an oxidized condition, and result in the contamination of soils and groundwater around the tailings. Benefit from the microbial activities especially the anaerobic sulfate reduction processes, sewage sludge could be used as a barrier to immobilize the heavy metals leached from tailings. Sewage sludge barrier is an enrichment and improvement of the available barriers.
     AMD solution, generated from weathering and leaching process, shows a stronger oxidizing capability than the sludge, because of the dissolved of free oxygen in it. Redox reactions between AMD solution and sludge barrier inevitably lead the sludge barrier to an oxidation state. Heavy metals originally immobilized by sulfate reduction in sludge barrier may be released out secondarily because of the oxidation of sludge. The objectives of this research are to analyse the source of the oxidation buffering capacity of sludge, to discuss the relationship between the consumption of oxidation buffer capacity and dissolution of heavy metals, and to calculate the immobilization time of heavy metals in sewage sludge barriers in a simulated thicknesses conditions. This research try to establish a theoretical basis for the practical application of sludge barrier.
     At first, specially designed titrations experiments were conducted in this research. Sludge suspensions were prepared by mixing sludge with distilled water, detailed treatment including addition of nutrients, strengthening of the target heavy metals Zn, Cu, Pb, pH adjusting. Followed by an anaerobic cultivation of the sludge suspensions by placing them in water bath with a constant temperature. After anaerobic cultivation for a definite time, a certain quantity of sludge suspension was used for oxidation titration experiment. During the oxidation titration tests, some suspension was taken for chemical analysis at the moment that the Eh of suspension reached a designated Eh value, to determine the concentrations of target heavy metals and inorganic ions in suspension. The source of oxidation buffering capacity (OBC) of sludge and the release characteristics of heavy metals caused by oxidation were discussed based on the test results.
     Test results showed that OBC of sludge suspensions was decreased slightly with the solid-liquid ratio of the suspensions, but increased with the anaerobic incubation time. More than 50% of OBC was attributed by the sludge existing in strongly-reduction conditions (Eh≤-150mV). During the oxidation titration tests, it was found that when the pH of sludge was decrease around 6.0±0.5 and Eh≥-150mV, Zn was released obviously, while Cu and Pb released obviously when Eh≥150mV. When the pH of sludge was decrease to 5.0±0.5, the release of target heavy metals were significantly greater than those of pH=6.0±0.5. Especially when the pH of sludge was 7.5±0.5, almost no of heavy metals were found to be released. According to the test results, a mathematical model was established to predict the OBC consumption of the sludge barrier under AMD penetrating conditions. The simulation results showed that a sludge barrier with 2m thickness, even undergone 38787-years oxidation by AMD under 10m water head, keep in a strongly-reduced condition and, therefore, promote an immobilization of heavy metals from AMD in the barrier. As a final conclusions, the sludge barrier can be applied to mine tailings, which has a strong oxidation buffer capacity and ensure a long-term immobilization of heavy metals from AMD solution.
引文
[1]毛麒瑞.矿山尾矿的综合回收与利用[J].中国资源综合利用.2000,5:36-37.
    [2]Johnson D B, Hallberg K B. Acid mine drainage remediation options:a review [J]. Science of the Total Environment.2005,338(1-2):3-14.
    [3]Shackelford C D, Jefferis S A. Geoenvironmental engineering for in situ remediation [A]. In: International Conference on Geotechnical and Geoenvironmental Engineering [C]. Melbourne, Australia:Technomic Publ. Co., Inc., Lancaster, PA,2000.121-185.
    [4]Morrison S J, Tripathi V S and Spangler R R. Coupled reaction/transport modeling of chemical barrier for controlling Uranium(VI) contamination in groundwater [J]. Journal of Contaminant Hydrology. 1995,17(4),347-363.
    [5]Bouazza A, Richards S, Chan I. Soil-biopolymer barriers and soil-biofilm barriers [A].14th ICSMGE, Istanbul, Balkema Publ., Rotterdam.2001.
    [6]Palmer B G, Edil T B, Benson C H. Liners for waste containment constructed with class F and class C fly ashes [J]. Journal of Hazardous Materials.2000,76(2-3),193-216.
    [7]Darwish M I, Rowe R K, van der Maarel J R C, et al. Contaminant containment using polymer gel barriers [J]. Canadian Geotechnical Journal.2004,41(1),106-117.
    [8]Neculita C M, Zagury G J, Bussiere B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria:critical review and research needs [J]. Journal of Environmental Quality, 2007,36(1):1-16.
    [9]Pardue J H, Patrick W H. Changes in metal speciation following alteration of sediment redox status [M]. Metal Contaminated Aquatic Sediments, Allen H E, Michigan:Ann arbor press, inc,1995, 169-185.
    [10]Kamon M, Zhang H, Katsumi T, et al. Biochemical effects on the long-term mobility of heavy metals in marine clay at coastal landfill sites [J]. Journal of ASTM International,2006.13(7):176-188.
    [11]Wang B, Zhang H, Fan Z, et al. Compacted Sewage Sludge as Barrier for Tailing Impoundment [J]. Science of the Total Environment.2010 (in press).
    [12]Quiroz J D, Zimmie T F, Rosenth B D. Field hydraulic conductivity of a paper mill sludge hydraulic barrier using two stage borehole tests. In:Salminen R. International conference on practical applications in environmental geotechnology ecogeo 2000 [C]. Helsinki, Finland:Geological Survey of Finland, Special Paper 32,2001.39-45.
    [13]董兴玲.还原屏障控制重金属活动的的生物地球化学机理[D].兰州市:兰州大学,2008.
    [14]高全全.还原屏障的渗透性及其生物化学变化[D].兰州市:兰州大学,2008.
    [15]延吉生.矿山生态环境综合整治是矿业面临的重要任务[J].金属矿山.2002,12:5-7.
    [16]杨清伟,束文圣,林周等.铅锌矿废水重金属对土壤—水稻的复合污染及生态影响评价[J].农业环境科学学报.2003,22(4):385-390.
    [17]Luther G W. Pyrite oxidation and reduction:molecular orbital theory considerations [J]. Geochim
    Cosmochim Acta.1987,51:3193-3199.
    [18]Rimstidt J D, Vaughan D J. Pyrite oxidation:a state-of-the-art assessment of the reaction mechanism [J]. Geochim Cosmochim Acta.2003,67:873-880.
    [19]Evangelou V P, Zhang Y L. A review:pyrite oxidation mechanisms and acid mine drainage prevention [J]. Crit Rev Environ Sci Technol.1995,25:141-199.
    [20]Banks D, Younger P L, Arnesen R-T, et al. Mine-water chemistry:the good, the bad and the ugly [J]. Environ Geol.1997,32:157-174.
    [21]Nichplson R V, Gillham R W, Reardon E J. Pyrite oxidation in carbonate-buffered solution:Rate control by oxide coatings [J]. Geochim Cosmochim Acta.1990,54(3):395-402.
    [22]Shum M, Lavkulich L. Speciation and solubility relationships of Al, Cu and Fe in solutions associated sulfuric acid leached mine masre rock [J]. Environ Geol.1999,38(1):59-68.
    [23]Holmstorm H, Lungberg J, Ohlander B. Role of carbonates in mitigation metal release from mining waste:Evidence from humidity cells tests [J]. Environmental Geology,1999,37:267-280.
    [24]Matagi SV, Swai D, Mugabe R. A review of heavy metal removal mechanisms in wetlands [J]. African Journal for Tropical Hydrobiology and Fisheries.1998,8:23-35.
    [25]Woulds C, Ngwenya B T. Geochemical processes governing the performance of a constructed wetland treating acid mine drainage, Central Scotland [J]. Applied Geochemistry.2004,19(11):1773-1783.
    [26]Hallberg K B, Johnson D B. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors [J]. Sci Total Environ.2004,338:115-24.
    [27]Acemioglu B, Alma M H. Sorption of copper (II) ions by pine sawdust [J]. Holz als Roh-und Werkstoff.2004,62,268-272.
    [28]Tshabalala M A, Karthikeyan K G, et al. Cationized milled pine bark as an adsorbent for orthophosphate anions [J]. Appl Polym Sci.2004,93:1577-1583.
    [29]Murphy V, Hughes H, McLoughlin P. Comparative study of chromium biosorption by red, green and brown seaweed biomass [J]. Chemosphere.2008,70(6):1128-1134.
    [30]Shukla S R, Pai R S. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres [J]. Biores Technol, 2004,96:1430-1438.
    [31]李亚新,苏冰琴.利用硫酸盐还原菌处理酸性矿山废水研究[J].中国给水排水.2000,16(2):13-16.
    [32]Benning L G, Wilkin R T, Konhauser K O. Iron monosulphide stability:experiments with sulphate reducing bacteria. Proceedings of the 5th International Symposium on Geochemistry of the Earth's Surface, Reykjavik, Iceland, August 16-20,1999. A.A. Balkema, Rotterdam, Armannsson, H. (Ed.). pp. 429-432.
    [33]Tuttle J H, Dugan P R, Randles C I. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure[J]. Applied Microbiology.1969,17(2):297-302.
    [34]Environment Australia (1997) Managing sulphidic mine wastes and acid drainage. Best practice environmental management in mining. Environment Australia, Canberra.
    [35]Miller J R, Lechler P J, Desilets M. The role of geomorphic processes in the transport and fate of
    mercury in the Carson River basin, west-central Nevada [J]. Environ Geol.1998,33:249-262.
    [36]Evangelou VP. Pyrite oxidation and its control [M] 1995. CRC Press, Boca Raton.
    [37]SMME (Society for Mining, Metallurgy, and Exploration) (1998) Remediation of historical mine sites: technical summary and bibliography. Society for Mining, Metallurgy, and Exploration, Littleton.
    [38]Parker G A critical review of acid generation resulting from sulfide oxidation:processes, treatment and control. In:Acid drainage. Australian Minerals& Energy Environment Foundation, Melbourne, 1999.1-182.
    [39]Brown M, Barley B, Wood H. Minewater treatment:technology, application and policy. International Water Association Publishing.2002.
    [40]Yanful E K, Shikatani K S, Quirt D H. Hydraulic conductivity of natural soils permeated with acid mine drainage [J]. Can. Geotech.1995.32(4):624-646.
    [41]Kashir M, Yanful E. Hydraulic conductivity of bentonite permeated with acid mine drainage [J]. Canadian Geotechnical Journal,2001,38,1034-1048.
    [42]Shang J, Wang H. Coal Fly Ash as Contaminant Barrier for Reactive Mine Tailings. Proceedings of World of Coal Ash Symposium, Lexington, Kentucky, USA,2005,18pp.
    [43]Hsin Yu Shan.土工织物粘土垫层[J].水利科技译文.2002(3):5-13.
    [44]Stumm W, Morgan J J. Aquatic Chemistry-Chemical Equilibria and Rate in Natural Wasters (3rd ed)[M]. Wiley, New York.1996.
    [45]Christensen T H, Kjeldsen P, Albrechtsen H J, et al. Attenuation of landfill leachate pollutants in aquifers [J]. Crit. Rev. Environ. Sci. Tech,1994,24(2):119-202.
    [46]Catallo W J. Hourly and daily variations of sediment redox potential in tidal wetland soils. Biological Science Report. USFS/BRD/BSR-1999-0001,1999.
    [47]Patric W H, Wyatt R. Soil nitrogen loss as a result of alternate submergence and drying [J]. Soil Sci Soc.1964,36:573-576.
    [48]Lovely D R, Chapelle F H. Deep subsurface microbial processes [J]. Rev Geophys.1995, 33(3):365-382.
    [49]Schmidt J P. Understanding phytotoxicity thresholds for trace elements in landapplied sewage sludge [J]. Environ Qual.1997,26:4-10.
    [50]Alloway B J. Heavy metal in soils,2nd ed [M]. Blackie Academic Professional, London,U.K.,1995, 368.
    [51]Kabata-Pendias A, Pendias H. Trace Elements in Soils and plants [M]. CRC Press, Boca Raton, Florida, U.S.A.1992,365.
    [52]Shuman L M. Chemical forms of micronutrients in soils. In R. Luxmoore (ed.) micronutrients in agriculture,2nd ed [M]. SSSA Book Ser.4. SSSA, Madison WI.1991,113-144.
    [53]Jensen D L, Ledin A, Christensen T H. Speciation of heavy metals in landfill-leachate polluted groundwater. Water Research.1999.33(11):2642-2650.
    [54]Bolt G H, De Boodt M F, Hayes M H B, et al. Interaction at the Soil Colloid-Soil Solution Interface, NATO ASI series, Kluwer Academic Publishers, Dordrecht, The Netherlands,1991,543-582.
    [55]Gourg A C M, Loch J P G. Mobilization of heavy metals as affected by pH and redox conditions[M]. Biogeiodynamics of Pollutants in Soils and Sediments, Stigliani S, Heidelberg:Springer,1995,87-102.
    [56]Calmano W, Hong J, Forstner U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential [J]. Water Sci Techno.1993,28(8-9):223-235.
    [57]Sposito G. The chemical forms of trace metals in soils. In.Applied Environmental Geochemistry. Thornton, I (Ed). Academic Press Inc. London.1983,123-170.
    [58]Gambell R P. Trace and toxic metals in wetlands-a review. J Environ Qual.1994,23:883-891.
    [59]Chuan M C, Shu G Y, Liu J C. Solubility of heavy metals in a contaminated soil:effects of redox potential and pH [J]. Water, Air, and Soil Pollution.1996,90(3-4):543-556.
    [60]Gourg A C M, Loch J P G Mobilization of heavy metals as affected by pH and redox conditions [M]. Biogeiodynamics of Pollutants in Soils and Sediments, Stigliani S, Heidelberg:Springer,1995,87-102.
    [61]Caetano, M., Madurera, M. J.,& Vale, C. (2003). Metal remobilization during re-suspension of anoxic contaminated sediment:Short term laboratory experiment. Water, Air and Soil Pollution,143,23-40.
    [62]Caille N, Tiffreau C, Leyval C, Morel J L. Solubility of metals in an anoxic sediment during prolonged aeration[J]. Science of the Total Environment.2003,301:239-250.
    [63]Calmano W, Hong J, Forstner U.1994. Mobilization and scavenging of heavy metals following resuspension of anoxic sediments from the Elbe River. In:Alpers CN, Blowes DW(eds) Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington DC, ACS Symp Ser 550:298-321.
    [64]Von der Kammer F, Thoming J, Forstner U. Redox buffer capacity concept as a tool for the assessment of long-term effects in natural attenuation/intrinsic remediation. In:J. Schuring et al. Redox: Fundamentals Processes and Applications, Springer-Verlag, Berlin,2000:189-202.
    [65]Scott M J, Morgan J J. Energetics and conservative properties of redox systems[J]. ACS symp. Ser. 1990,416:779-781.
    [66]Nightingale E. Poised Oxidation Reduction Systems [J]. Anal Chem.1958,30:267-272.
    [67]Grundl T. A review of the current understanding of redox capacity in natural, disequilibrium system [J]. Chemosphere.1994,28:613-626.
    [68]Griffioen J, Grift B van der, Buijs A, et al. Oxygen Consumption of Natural Reductants in Aquifer Sediment Related to in Situ Bioremediation. In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds,1999:463-468.
    [69]Jakobsen R, Postma D. In situ rates of sulfate reduction in an aquifer (R(?)m(?), Denmark) and implications for the reactivity of organic matter [J]. Geology,1994,22:1103-1106.
    [70]Heron G, Christensen T H. Impact of Sediment-Bound Iron on the Redox Buffering in a Landfill Leachate Polluted Aquifer (Vejen, Denmark) [J]. Envirn. Sci. Technol.1995,29:187-192.
    [71]Xu X, Thomson N R. Estimation of the maximum consumption of permanganate by aquifer solids using a modified chemical oxygen demand test [J]. Journal of Environmental Engineering.2008, 353-361.
    [72]Barcelona M J, Holm T R. Oxidation-reduction capacities of aquifer solids[J]. Environ Sci Technol,
    1991,25(9),1565-1572.
    [73]Heron G, Christensen T H, Tjell J C. Oxidation capacity of aquifer sediments [J]. Environ. Sci. Technol.1994a,28:153-158.
    [74]Heron G, Crouzet C, Bourg A C M., et al. Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques [J]. Environ. Sci. Technol.1994b,28,1698-1705.
    [75]Bjerg P L, Rugge K, Pedersen J K, et al. Distribution of redox sensitive groundwater quality parameters downgradient of a landfill_Grindsted, Denmark [J]. Environ. Sci. Technol.1995,29, 1387-1394.
    [76]Christensen T H, Bjerg P L, Banwart S A, et al. Characterization of redox conditions in groundwater contaminant plumes [J]. Contam. Hydrol.,2000,45:165-241
    [77]Allen H E. (Eds.).1995. Metal contaminated aquatic sediments, Ann Arbor Press,150-167.
    [78]Barcelona M J, Holm T R.1991. Oxidation-reduction capacities of aquifer solids. Environ. Sci. Technol.25:1565-1572.v.d. Kammer, F.; Thoming, J.; Forstner, U. Redox Capacity Concept as a Tool for the Assessment of Long Term Effects in Natural Attenuation/Intrinsic Remediation. In:Schuring J; Schulz H D; Fischer W R; Bottcher J& Duijnisveld W H M (Eds.):Redox-Fundamentals, Processes and Measuring Techniques. Springer-Verlag Berlin Heidelberg.1999.
    [79]Madari B, Micheli E, Johnston C T, et al. Long term effects of tillage on the composition of soil organic matter:spectroscopic characterization. Agrokemia es Talajtan 46.1997:127-134.
    [80]Crawford J, Neretnieks I. Simulation of the redox buffer depletion rate in landfills of combustion residue waste materials [J]. Water, Air, and Soil Pollution.2001,128:223-242.
    [81]Bozkurt S, Neretnieks I, Moreno L. Long-term fate of organics in waste deposits and its effect on metal release [J].The Science of the Total Environment.1999,228:135-152.
    [82]US EPA. Evaluation of Subsurface Engineered Barriers at Waste Sites. EPA 542-R-98-005,1998.
    [83]Patrick W H, Connell W E. Sulfate reduction in soil:effects of redox potential and pH [J]. Science. 1968,159(3810):86-87.
    [84]Meyer-Reil L A. Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight. II Analysis of benthic bacterial populations. Mar. Biol.1983,77: 247-256.
    [85]Lazzaretti-Ulmer M A, Hanselnann K W. Seasonal variation of the microbially regulated buffering capacity at sediment-water interfaces in a freshwater lake [J]. Aquat. Sci.1999,61:59-74.
    [86]Sarmientoa A M, Oliasb M, Nietoa M J, et al. Natural attenuation processes in two water reservoirs receiving acid mine drainage [J]. Science of the Total Environment.2009,407:2051-2062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700