用户名: 密码: 验证码:
原油在土壤中入渗的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国原油污染土壤问题日益严重,污染面积约占国土面积的0.52%。为确定原油在土壤中的迁移机制,本试验利用5种土壤(黄绵土、黑垆土、褐土、黄棕壤、红壤)进行试验研究,包括:土壤原油特征曲线研究;土壤物理性质(土壤容重、土壤初始含水量、土壤质地)对原油在土壤中入渗的影响的研究;开展原油在原状土柱中入渗的试验研究,得出主要结论如下:
     (1)相同土壤的水分特征曲线和原油特征曲线存在差别,对于黄绵土、黑垆土、褐土,在高吸力段,相同水吸力下,土壤体积含油量大于土壤体积含水量;其中褐土的体积含水量与体积含油量间差别较黄绵土和黑垆土小;而对于黄棕壤相同水吸力下,土壤体积含水量远大于土壤体积含油量;对于红壤,土壤体积含水量与土壤体积含油量相差不明显。
     (2)水分特征曲线和原油特征曲线均可用Mualem-Van Genuchten(variable)导水率模式、Burdine-Van Genuchten(variable)导水率模式、Mualem-Van Genuchten(m=1-1/n)导水率模式、Burdine-Van Genuchten(m=1-2/n)导水率模式、Mualem-Brooks & Corey导水率模式拟合,结果均达到极显著水平。对于安塞黄绵土、洛川黑垆土和杨凌褐土的水分特征曲线拟合α值大于原油特征曲线α值,而安康黄棕壤和桃源红壤恰好相反。
     (3)原油在不同容重、不同初始含水量、不同质地扰动土壤中入渗的湿润距离随时间的变化可用对数函数拟合,拟合结果达到极显著水平;湿润推进速率随时间变化可用Kostiakov公式和Horton入渗公式拟合,拟合结果均达到极显著水平,Kostiakov公式结果相对较好。
     (4)原油在不同填装容重土壤中的入渗,对同一种土壤,湿润距离随着填装容重的增大而减小,湿润距离初期增加较快,随后逐渐减慢;对同一种土壤,对应某一时刻,湿润推进速率随着容重的增大而减小。对于同一质地土壤,随着初始含水量的增加,原油在土壤中入渗的湿润距离和湿润推进速率均增加。随土壤深度增加,土壤中原油残留物的含量呈波动递减趋势。
     (5)土壤质地对于原油在土壤中的入渗有较大影响。对于黄绵土、黑垆土、黄棕壤3种土壤其湿润距离随粉粒含量增高而降低,红壤粉粒、粘粒含量均较高,较高的粘粒含量使原油在红壤中开始时湿润推进速率最慢,其后由于其土壤颗粒表面形成油膜,湿润推进速率反而略高于黄棕壤。
     (6)原油在原状土中入渗,湿润距离初期增加较快,随后逐渐减慢;湿润距离随时间的变化可以用对数函数拟合,拟合结果达到极显著水平;在不存在优先流的情况下,湿润推进速率随时间变化可用Kostiakov公式和Horton入渗公式拟合,拟合结果均达到极显著水平。
Soil polluted by crude oil, covering about 0.52% terrestrial land area of China, has become a serious environmental problem. To investigate the crude oil migration mechanism into soils, five types of soils were used in the experiment, which are Cultivated Loessial Soil, Dark Loessial Soil, Cinnamon Soil, Yellow-brown Soil and Red Soil. The experiments about soil oil characteristic curve, the effect of soil physical properties (soil bulk density, initial soil water content, soil texture) on crude oil infiltration as well as the oil infiltration process in undisturbed soil columns were conducted. The main conclusions are as follow:
     (1) There was difference between the soil water characteristic curve and oil characteristic curve for the same soil. For Cultivated Loessial Soil, Dark Loessial Soil and Cinnamon Soil, in the high soil suction part, soil volumetric water content is higher than soil volumetric oil content under the same soil suction. The difference between soil volumetric water content and soil volumetric oil content of Cinnamon Soil is lower than that of Cultivated Loessial Soil and Dark Loessial Soil. There was no significant difference between soil volumetric water content and soil volumetric oil content of Red Soil.
     (2) Soil water characteristic curve and oil characteristic curve could be fitted significantly by Mualem-Van Genuchten(variable)hydraulic conductivity model, Burdine -Van Genuchten(variable)hydraulic conductivity model, Mualem-Van Genuchten(m=1-1/n)model, Burdine-Van Genuchten(m=1-2/n)hydraulic conductivity model, Mualem-Brooks & Corey hydraulic conductivity model. For Cultivated Loessial Soil, Dark Loessial Soil and Cinnamon Soil, the fitting parameterαof soil water characteristic curve was larger than that in the oil characteristic curve. While the result in Yellow-brown Soil and Red Soil showed oppositely.
     (3) Advance distance in the soils with different bulk density, different initial soil moisture or different soil texture could be described by logarithmic function with time. The variation of advance rate of crude oil with time can be described by Kostiakov function and Horton infiltration function. And Kostiakov function showed better fitting results.
     (4) Crude oil infiltrated into soils with different bulk density. For the same soil, as bulk density increased, advance distance decreased. During the infiltration process, at the beginning, the advance distance increased rapidly, and then increased slowly. For the same soil, advance rate decreased as the bulk density increased at a certain time. The crude oil advance distance and the rate of advance increased with increasing of initial soil water content for a given soil type. The amount of residues left in the soils decreased with fluctuation while the soil depth increased.
     (5) Soil texture had a significant influence on crude oil infiltration into soils. For Cultivated Loessial Soil, Dark Loessial Soil and Yellow-brown Soil, the advance distance decreased as silt content increased. The silt content and clay content is relatively high in Red Soil. At the beginning the advance rate was slow due to high clay content, and oil slick was formed on the surface of soil particle over time. The advance rate of Red Soil was fast comparing with Yellow-brown Soil finally.
     (6) During the infiltration process of crude oil into undisturbed soil columns, the advance distance increased rapidly at the beginning and then increased slowly. The variation of advance distance of crude oil with time can be described by logarithmic function. Without considering preferential flow, the variation of advance rate of crude oil with time can be described by Kostiakov function and Horton infiltration function.
引文
白冰,陈效民,秦淑平.黄河三角洲滨海盐渍土饱和导水率的研究.土壤通报, 36(3): 321~323
    白玉,张玉龙. 2008 .半干旱地区风沙土水分特征曲线V.G.模型参数的空间变异性.沈阳农业大学学报, 39(3): 318~323
    陈静,王学军,陶澎. 2005.天津地区土壤有机碳和粘粒对PAHs纵向分布的影响.环境科学研究, 4: 79~83
    陈效民,潘根兴,王德建,李宝山. 2000.太湖地区农田生态环境中土壤饱和导水率研究.水保持通报, 20(5): 11~12
    邓建才,陈效民,张佳宝,朱安宁. 2002.黄淮海平原主要土壤水力参数的研究.灌溉排水, 21(3): 1~3
    董玉云,费良军,任建民. 2009.土壤质地对单膜孔肥液入渗水分及氮素运移的影响.农业工程学报, 25(4): 30~34
    方堃,陈效民,沃飞. 2007.典型水稻土中硝态氮垂直穿透状况及模拟.安全与环境学报, 7(5): 16~20
    方堃,陈效民,张佳宝,王伯仁,黄晶,甘再福. 2008.红壤地区典型农田土壤饱和导水率及其影响因素研究.灌溉排水学报, 27(4): 67~69
    国家环保总局. 1998.水和废水检测分析方法(第三版).北京:中国环境科学出版社
    郭印亮. 2008.原状土取样质量对试验成果的影响.水科学与工程技术, 3: 63~65
    黄廷林,史红星,任磊. 2001.石油类污染物在黄土地区土壤中竖向迁移特性试验研究.西安建筑科技大学学报(自然科学版), 33(2): 108~111
    纪学雁,刘晓艳,李兴伟,戴春雷,楚伟华. 2005.分层土柱法研究石油类污染物在土壤中的迁移.能源环境保护, 19(1): 43~45
    李久生,杨风艳,栗岩峰. 2009.层状土壤质地对地下滴灌水氮分布.农业工程学报, 25(7): 25~31
    李志洪,陈丹,吴培祥,刘兆荣,鞠玉章. 1990.土壤容重对床土水分特性和人参生长的影响.吉林农业大学学报, 3(10): 39~44
    李小刚. 1994.影响土壤水分特征曲线的因素.甘肃农业大学学报, 29(3): 273~278
    李志明,周清,王辉,卢霞. 2009.土壤容重对红壤水分溶质运移特征影响的试验研究.水土保持学报, 23(5): 101~103
    李志清,李涛,胡瑞林. 2007.非饱和土水分特征曲线特性.中国公路学报, 20(3): 23~28
    李卓,吴普特,冯浩,赵西宁,黄俊,庄文化. 2009.容重对土壤水分入渗能力影响模拟试验.农业工程学报, 25(6): 40~45
    刘超,汪有科,张立强. 2007.土壤水分特征曲线在作物非充分灌溉适宜水分下限确定中的应用.灌溉排水学报, 26(6): 76~78
    刘登铁. 2009年4月13日.国外企业看好土壤修复市场.中国科学报,第五版
    刘卉芳,曹文洪,王向东. 2008.黄土区不同地类土壤水分入渗与模拟研究.水土保持研究, 15(5): 42~45
    刘建立,徐绍辉,刘慧. 2004.估计土壤水分特征曲线的间接方法研究进展.水利学报, (2): 68~78
    刘晓艳,史鹏飞,孙德智,戴春雷,楚伟华. 2006.大庆土壤中石油类污染物迁移模拟.中国石油大学学报(自然科学版), 30(2): 120~124
    刘玉春,李久生. 2009.毛管埋深和土壤层状质地对地下滴灌番茄根区水氮动态和根系分布的影响. 水利学报, 40(7): 782~790
    骆永明. 2008.关于土壤环境与土壤修复研究的若干问题探讨.陕西杨凌:中国科学院水土保持研究所, 1
    骆永明,章海波,吴春发. 2008.我国土壤环境污染问题与对策.见:骆永明(主编).中国主要土壤环境问题与对策.南京:河海大学出版社: 3~9
    吕殿青,邵眀安. 2004.非饱和土壤水力参数的模型及确定方法.应用生态学报, 15(1): 163~166
    吕殿青,邵眀安,刘春平. 2006.容重对土壤饱和水分运动参数的影响.水土保持学报, 20(3): 154~157
    马兵,周克厚,宋汉华. 2005.二氧化氯在油田污水处理中的应用.内蒙古石油化工. 3: 78~80.
    马爱生,刘思春,吕家珑,权定国,郭文龙,赵懿. 2005.黄土高原地区几种土壤的水分状况与能量平衡.西北农林科技大学学报(自然科学版), 33(11): 117~119
    穆从如,王景华. 1989.油田开发区废油排泄量及其对土壤的污染.见:王景华(主编).油田开发环境影响评价文集.北京:中国环境科学出版社: 12~17
    倪世伟,姚来根,赵英杰,韩新生,李伟娟,山本忠利,古官友和. 2000. 60Co、85Sr和137Cs在黄土包气带中迁移的模拟实验.辐射防护, 20 (1~2): 36~42
    倪余文,区自清,应佩峰. 2001.土壤优先水流及溶质优先迁移的研究.应用生态学报, 12(1): 103~107
    聂良佐. 2008.原状土结构损伤重塑后强度、变形和渗透性变化机理研究.岩土工程界, 11(7): 23~25
    潘云,吕殿青. 2009.土壤容重对土壤水分入渗特性影响研究.灌溉排水学报, 28(2): 59~61
    邵明安,王全九,黄明斌. 2006.土壤物理学.北京:高等教育出版社: 6.
    邵眀安,吕殿青. 2003.土壤收缩特征曲线的实验研究.土壤学报, 40(3): 471~474
    邵眀安,吕殿青,付晓莉,王全九,刘春平. 2007.土壤持水特征测定中质量含水量、吸力和容重三者间定量关系I.土壤学报, 44(6): 1003~1008
    邵明安,张博闻. 2009.原油在扰动土壤中入渗的试验研究.土壤学报, 46(5): 781~787
    时新玲,张富仓. 2005.非水相污染物在黄土性土壤中的入渗试验研究.干旱地区农业研究, 23(4): 49~52
    束善治, Soga K. 2000.有机污染物包气带迁移的离心模型研究.岩土工程学报, 22(5): 594~598
    孙艳,王益权,冯嘉玥,王益,杨梅,徐雷. 2006.土壤紧实胁迫对黄瓜生长、产量及养分吸收的影响. 植物营养与肥料学报, 12(4): 559~564
    谭鉴益. 2001.广西覆盖型岩溶区土层崩解机理研究.工程地质学报, 9(3): 272~276
    王翠莲,史三元. 2003.取样扰动对饱和粉土动力特性的影响.河北建筑科技学院学报, 20(1): 53~55
    王国栋,张一平,张军常. 1996.土壤水势温度滞后效应的研究.水土保持研究, 3(3): 125~130
    王辉,王全九,邵眀安. 2007.表层土壤容重对黄土坡面养分随径流迁移的影响.水土保持学报, 21(3): 10~18
    王连生. 1994环境健康化学.北京:科学出版社:1~2
    王梅,江丽华,刘兆辉,郑福丽,张文君,林海涛,宋效宗,董健. 2010.石油污染物对山东省三种类型土壤微生物种群及土壤酶活性的影响.土壤学报, 47(2): 341~345
    王卫华,王全九,樊军. 2008.原状土与扰动土导气率、导水率与含水率的关系.农业工程学报, 24(8): 25~29
    王小丹,王文科,段磊,田华,王丽娟. 2008.土壤中LNAPL的自然衰减实验研究.工程勘察. 12:17~20
    温以华. 2002.不同质地和容重对Cl-在土壤中运移规律的影响.水土保持研究, 9(1): 73~75
    魏树和,周启星. 2008.东北地区土壤环境问题及生态对策.见:骆永明(主编).中国主要土壤环境问题及对策.南京:河海大学出版社: 43~48
    沃飞,陈效民,方堃,吴华山,蒋金当. 2007.太湖地区两种典型水稻土中氮、磷迁移转化的研究.土壤通报, 38(6): 1058~1063
    吴发启,赵西宁,佘雕. 2003.坡耕地土壤水分入渗影响因素分析.水土保持通报, 23(1): 16~18
    吴华山,陈效民,叶民标,吴华强. 2006.太湖地区主要水稻土的饱和导水率及其影响因素研究.灌溉排水学报, 25(2): 46~49
    肖建英,李永涛,王丽. 2007.利用Van Genuchten模型拟合土壤水分特征曲线.地下水, 29(5): 46~47
    徐明岗,张一平,孙本华. 1995.水分和容重对土壤Cl-扩散的影响.西北农业大学学报, 23(5): 47~52
    晏露超,李建中,唐喜青. 2009.洞庭湖地区典型网纹红土的单轴固结实验研究.岩土工程技术, 23(6): 276~283
    于勇,谢天强,蔺延项,鲍万民. 2001.受石油污染地下水的臭氧处理技术研究.工业用水与废水, 32(2): 14~15
    岳战林,蒋平安,贾宏涛,判峰,王莹. 2006.石油类在环境非敏感区土壤中的迁移规律研究.新疆农业大学学报, 29(2): 62~64
    张春辉,朱琨,裴元生,赵保卫. 2001.臭氧与二氧化氯去除水中石油类污染物研究.兰州铁道学院学报(自然科学版), 20(6): 72~75
    张光辉,刘宝元,何小武. 2005.黄土区原状土壤分离过程的水动力学机理研究.水土保持学报, 19(4): 48~52
    张建红,胡黎明. 2006.重金属离子和LNAPLs在非饱和土中的运移规律研究.岩土工程学报, 28(2): 277~280
    张亚丽,李怀恩,张兴昌,史淑娟,王明. 2007.土壤初始含水率对黄土坡地水分运动与转化特征的影响.西安理工大学学报, 23(2): 144~148
    张玉珍. 2006.沙壤土入渗性能和水分特征曲线的测定.福建工程学院学报, 4(6): 759~762
    张振华,杨润亚,蔡焕杰,李庆志. 2004.土壤质地、密度及供水方式对点源入渗特性的影响.农业系统科学与综合研究, 20(2): 81~84
    赵东风,赵朝成,王联社,李新华. 2000.石油类污染物在土壤中的迁移渗透规律.石油大学学报(自然科学版), 24(3): 64~66
    郑纪勇,邵眀安,李世清,张兴昌,温以华. 2005.水蚀风蚀交错带土壤剖面水力学性质变异.农业工程学报, 21(11): 64~66
    邹焱,陈洪松,苏以荣,邵眀安. 2005.红壤积水入渗及土壤水分再分布规律室内模拟实验研究.水土保持学报, 19(3): 174~177
    Adams J A, Reddy K R. 1999. Laboratory study of air sparging of TCE-contaminated saturated soils and ground water. Ground Water Monitoring and Remediation, 19(3): 182~190
    Adam G, Gamoh K G, Morris D G, Duncan H. 2002. Effect of alcohol addition on the movement of petroleum hydrocarbon fuels in soil. The Science of the Total Environment, 286: 923~929
    Al-Suwaiyan M S. 1998. Estimation of dense nonaqueous phase liquid (DNAPL) volume from monitoring wells fluid levels. Arabian Journal for Science and Engineering, 23(1B): 57~66
    Bear J, Ryzhnik V, Braester C, Entov V. 1996. On the movement of an LNAPL lens on the water table. Transport in Porous Media, 25(3): 283~311
    Bergstrom L. 1987. Nitrate leaching and drainage from annual and perennial crops in tile-drained plots and lysimeters. J Environ Qual, 16:11~18
    Brooks R H, Corey A T. 1964. Hydraulic properties of porous media. In: Brooks R H, Corey A T eds. Hydrology. Colorado: Colorado State University Press. 3~27
    Burdine N T. 1953. Relative permeability calculations from size distribution data. Trans Am Inst Min Metal Pet Eng, 198:71~78
    Cook F J, Orchard V A. 2008. Relationships between soil respiration and soil moisture. Soil Biol Biochem, 40(5): 1013~1018.
    Dube J S, Galvez-Cloutier R, Winiarski T. 2002. Heavy metal transport in soil contaminated by residual light non-aqueous phase liquids (LNAPLs). Canadian Geotechnical Journal, 39(2): 279~292
    Ekwue E I, Harrilal A. 2010. Effect of soil type, peat, slope, compaction effort and their interactions on infiltration, runoff and raindrop erosion of some Trinidadian soils. Biosystems Engineering, 105(1): 112~118
    Fingas M F. 1997. Studies on the evaporation of crude oil and petroleum products: I. The relationship between evaporation rate and time. Journal of hazardous materials, 56: 227~236
    Hardisty P E, Wheater H S, Johnston P M, Bracken R A. 1998. Behavior of light immiscible liquid contaminants in fractured aquifers. Geotechnique, 48(6): 747~760
    Hatzinger P B, Alexander M. 1995. Effect of ageing of chemicals in soil on their biodegradability and extractability. Environmental Science and Technology, 29: 537~545
    Huling S G, Pivetz B, Stransky R. 2002. Terminal electron acceptor mass balance: Light nonaqueous phase liquids and natural attenuation. Journal of Environmental Engineering-ASCE, 128(3): 246~252
    Huntley D, Beckett G D. 2002. Persistence of LNAPL source: relationship between risk reduction and LNAPL recovery. Journal of Contaminant Hydrology, 59(1~2): 3~26
    Jendele L. 2002. An improved numerical solution of multiphase flow analysis in soil. Advance in Engineering Software, 33: 659~668
    Johnson J R, Lucey P G, Horton K A, Winter E M. 1998. Infrared measurements of pristine and disturbed soils 1: spectral contrast differences between field and laboratory data. Remote Sensing of Environment, 64(1): 34~46
    Kechavarzi C, Soga K, Illangasekare T H. 2005. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone. Journal of Contaminant Hydrology, 76: 211~233
    Kibbey T C G, Ramsburg C A, Pennell K D. 2002. Implications of alcohol partitioning behavior for in situ density modification of entrapped dense nonaqueous phase liquids. Environmental Science & Technology, 36(1): 104~111
    Kim J, Corapcioglu M Y. 2001. Sharp interface modeling of LNAPLs spreading and migration on the water table. Environmental Engineering Science, 18(6): 359~367
    Leverett M C. 1941. Capillary behavior in porous soils. Trans AIME Pet Div, 142: 152~169.
    Luo Y M. 2008. Soil contamination and prevention strategies in China.见Luo Y M(主编). Proceeding 3rd international conference soil pollution remediation. Nanjing: Soil and Environment Bioremediation Research Center: 6
    Matmon D, Hayden N J. 2003. Pore space analysis of NAPL distribution in sand–clay media. Advances in Water Resources, 26: 773~785
    Mercer J W, Cohen R M. 1990. A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. Journal of Contaminant Hydrology, 6(2): 107~163
    Mualem Y. 1976. A new model for predicating the hydraulic conductivity of unsaturated porous media. Water Resour Res,12: 512~533
    Nelson L, Barker J, Li T, Thomson N, Ioannidis M, Chatzis J. 2009. A field trial to assess to the performance of CO2-supersaturated water injection for residual volatile LNAPL recovery. Journal of Contaminant Hydrology, 109(1~4): 82~90
    Oostrom M, Lenhard R J, White M D. 1995. Infiltration and redistribution of dense and light nonaqueous phase liquids in partly saturated sand columns. Fort Collins: Proc 15th annual American Geophysical Union Hydrology Days
    Oostrom M, Hofstee C, Lenhard R J, Wietsma T W. 2003. Flow behavior and residual saturation formationof liquid carbon tetrachloride in unsaturated heterogeneous porous media. Journal of Contaminant Hydrology, 64(1~2): 93~112
    Oostrom M, Dane J H, Wietsma T W. 2006. A review of multidimensional, multifluid intermediate-scale experiments: nonaqueous phase liquid dissolution and enhanced remediation. Vadose Zone Journal, 5: 570~598.
    Panday S, Wu Y S, Huyakorn P S, Wade S C, Saleem S A. 1997. A composite numerical model for assessing subsurface transport of oily wastes and chemical constituents. Journal of Contaminant Hydrology, 25: 39~62
    Parker J C, Kuppusamy T A. 1987. Parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23: 618~624
    Qin X S, Huang G H, Yu H. 2009. Enhancing Remediation of LNAPL recovery through a Response-Surface-Based Optimization Approach. Journal of Environmental Engineering-ASCE, 135(10): 999~1008
    Reddi L N, Han W, Banks M K. 1998. Mass loss from LNAPL pools under fluctuating water table conditions. Journal of Environmental Engineering-ASCE, 124(12):1171~1177
    Schroth M H, Istok J D, Selker J S. 1998. Three-phase immiscible fluid movement in the vicinity of textural interface. Journal of Contaminant Hydrology, 32(1~2): 1~23
    Schirmer M, Butler B J. 2004. Transport behaviour and natural attenuation of organic contaminants at spill sites. Toxicology, 205: 173~179
    Selker J S, Keller S K, Mc Cord J T. 1991. Vadose Zone Process. USA: CRC Press: 57
    Semple K T, Morriss A W J, Paton G I. 2003. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. European Journal of Soil Science, 54: 809~818
    Sleep B E, Sykes J F. 1993. Compositional simulation of groundwater contamination by organic compounds: 1. Model development and verification; 2. Model application, Water resour Res, 29(6):1697~1708; 1709~1718
    Udell K S, Grubb D G, Sitar N. 1995. Technologies for in situ cleanup of contaminated sites. Cent Eur J Public Health, 3(2): 67~76
    van Dam J C. 1967. The migration of hydrocarbons in a water-bearing stratum.见: Peter(主编). The Joint Problem of the Oil and Water Industries. New York: Elsevier, 55~96
    Van Genuchten M T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J, 44(5):892~898
    Verstraete W, Vanloocke R, DeBorger R, Verlinde A. 1976. Modeling of the breakdown and the mobilization of hydrocarbons in unsaturated soil layers. Proceedings, 99~112.
    Voudrias E A, Nzengung V, Li C Y. 1994. Removal of light nonaqueous phase liquids (LNAPLs) by aquifer flushing. Waste Management, 14(2):115~126
    Waddill D W, Parker J C. 1997. Simulated recovery of light, nonaqueous phase liquid from unconfined heterogeneous aquifers. Ground Water, 35(6): 938~947
    Wang Yunqiang, Shao Ming’an. 2009. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores. Journal of Environmental Sciences, 21(10): 1424~1431.
    Zhou D G, Blunt M. 1997. Effect of spreading coefficient on the distribution of light non-aqueous phase liquid in the subsurface. Journal of Contaminant Hydrology, 25 (1~2):1~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700