用户名: 密码: 验证码:
新型早强磷酸镁水泥的试验研究和工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸镁水泥(MPC)是一种早强快硬的新型胶凝材料,属于化学键结合的类陶瓷范畴。由于其特有的性能,如凝结硬化快、强度和体积稳定性高、粘结性强、耐久性好、抗盐冻性能高等,引起了工程界的广泛关注。目前,关于MPC的研究正在不断深入,应用也在扩展,尤其是近年来,随着建设可持续、节约型社会的提出,MPC在废弃物循环利用方面的优势开始被重视,其应用前景将越来越广阔。
     本文从磷酸镁水泥的物相组成、凝结硬化和水泥石的强度发展规律出发,探讨其常温下快硬早强的理论;以此为基础,研究了超早强磷酸镁水泥原材料的选择,提出了利用重烧镁砂(MgO)与KH_2PO_4,加缓凝剂(硼砂)来配制磷酸镁水泥的技术途径。采用正交试验方法,分析讨论了MgO与KH_2PO_4的摩尔比值、水胶比和硼砂掺量等因素对磷酸镁水泥强度的影响规律,并配制出了3h抗压强度达40MPa以上的磷酸镁水泥。试验研究了高钙粉煤灰掺量对磷酸镁水泥性能的影响并探讨了其最佳掺量。
     采用X-射线衍射和扫描电镜等试验手段,分析探讨了磷酸镁水泥凝结硬化作用机理。通过X-射线衍射分析发现,磷酸镁水泥的主要水化产物为MKP和大量未参加反应的MgO。SEM照片显示棒状晶体的水化产物MKP,互相搭结交连成网状结构,使其微观结构致密。此外,通过化学反应和热力学原理,对这类材料的反应机理进行了理论分析。
     最后,本文对MPC材料的主要性能,包括pH值,强度,收缩、耐腐蚀和工程应用进行了探讨。研究表明:MPC材料具有许多优异性能:①偏中性;②强度高,发展快;③干缩小(体积稳定性好);④与旧混凝土之间的性能匹配好,粘结强度高;⑤耐酸碱盐腐蚀能力强。在工程应用方面,探讨了硅粉和聚丙烯纤维对MPC材料性能的改善;并且利用MPC来固化粘土生产非烧结粘土砖。
Magnesium phosphate cement (MPC) is a new rapid setting material with high early strength, which belongs to the chemically bonded phosphate ceramics. Owning to its excellent performance, such as fast setting time, high early stength, high volume-stability, strong bonding strenth, excellent durability, high deicer-frost resistance, the MPC materials have been attracting more attention in recent years. Now, study of MPC has been becoming the hot research topic because of its superiority properties in recycling wastes, as the constructing a sustainable and economical society becomes more important.
     In this paper, through analyzing the mineral phases, setting time and the discipline of strength development, the influence factor on the properties of MPC was studied. Based on the experimental results, the raw materials to make MPC were discussed and the calcined MgO, KH_2PO_4 and admixture (borax) were selected. Through orthogonal design method, the influence of molar ratio of MgO and KH_2PO_4, water-cement ratio and borax content on the performance of MPC were analysised and the MPC with compressive strength of more than 40MPa at the age of 3h was made. In addition, the content of high calclium fly ash on compressive strength of MPC has been studied, and the optimum content of high calclium fly ash was got.
     Based on the micro-testing, such as X-ray diffraction and SEM, the hydration mechanism of MPC was studied. The testing results of X-ray diffraction indicated that major hydration products of MPC were MKP and some unreacted MgO. The pictures of SEM showed that the hydrates MKP was in the form of needles, and they crossed each other and connected into a network structure, which makes the microstructure fully dense. Furthermore, the reaction mechanism of these magnesium phosphate ceramics is also theoretical analyzed by the chemical reaction and thermodynamic principles.
     In addition, the main properties of MPC composites, such as pH, strength, drying shrinkage, corrosion resisitance, etc., were investigated. Experimental results indicate that, compared with Portland cement, some performances of MPC composites are excellent, including: (1) neutral pH, (2) high strength with rapid development, (3) low drying shrinkage (volume stability), (4) good compatibility and high bond strength with old concrete, (5) resistance to acid alkali and salt. Furthermore, the applications of MPC composites were discussed. The addition of silica fumes and polypropylene fiber in MPC composites to improve its performances were studied by experiment, respectilly. Also, MPC was used to consolidate clay to make block for building.
引文
[1] W.H.Rollins. A contribution to the knowledge of cement[J]. Dent. Cosmos., 1879, 21: 574-576
    [2] Roy D M. New Strong Cement Materials-Chemically Bonded Ceramics[J]. Science, 1987, 23(3): 651-658
    [3]龙安厚,赵黎安,周大千,等.磷酸盐水泥的组成与性能[J].大庆石油学院学报,1996, 20(1): 111-114
    [4] Wagh A S. Chemically bonded phosphate ceramics[M]. Oxford: Elsevier Science Ltd, 2004
    [5] Wilson A D and Nicholson J W. Acid-base cements[M]. Cambridge: Cambridge Univ, 1993
    [6] Roy R, Agarwal D K, and Srikanth V. Acoustic wave stimulation of low temperature ceramic reactions: the system Al2O3-P2O5-H2O[J]. Journal of Materials Research, 1991, 6(11): 2412-2416
    [7] Li Z, Ding Z, Zhang Y. Development of sustainable cementitious materials[J]. International Workshop on Sustainable Development and Concrete Technology, 2003, 55-76
    [8] Prosen E M. Refractory materials for use in making dental casting[P]. US Patent: 2,152,152, 1939
    [9] Prosen E M. Refractory material suitable for use in casting dental investments[P]. US Patent: 2,209,404, 1941
    [10] Earnshaw R. Investments for casting cobalt-chromium alloys, part I[J]. Br. Dent. J., 1960, (108): 389-396
    [11] Earnshaw R. Investments for casting cobalt-chromium alloys, part II[J]. Br. Dent. J., 1960 , (108): 429-440
    [12] Westman A E R. Phosphate ceramics (Topics in Phosphorus Chemistry, Vol.9 ) [M]. New York: Wiley, 1977
    [13] Sugama T, Kukacka L E. Characteristics of magnesium polyphosphate cement derived from ammonium polyphosphate solutions[J]. Cement and Concrete Research, 1983, 13: 499-506
    [14] Abdelrazig B E I, Sharp J H, El-Jazairi B. The microstructure and mechanical properties of mortar s made from magnesia-phosphate cement[J]. Cement and Concrete Research, 1989, 19: 247-258
    [15] Abdelrazig B E I, Sharp J H, El-Jazairi B. The chemical reactions in magnesia-phosphate cement[J]. Cement and Concrete Research, 1988, 18: 415-425
    [16] Popovics S, Rajendran N, Penko M. Rapid hardening cements for repair of concrete[J]. ACI Mater J, 1987, 84: 64-73
    [17] Sarkar A K. phosphate cement-based fast-setting binders[J]. Ceram. Bull., 1990, 69(2): 234-238
    [18] Wagh A S, Singh D, Jeong S. Method of waste stabilization via chemically bonded phasphate ceramics[P]. US Patent: 5,830,815, 1998.
    [19] Wagh A S, Jeong S, Singh D. High strength phosphate cement using industrial byproduct ashes [M]. Reston VA. : Amer Soc Civil Eng., 1997
    [20] Wagh A S. Chemically bonded phosphate ceramic borehole sealants. Final Report to Global Petroleum Research Institute, Argonne National Laboratory, Unpublished, 2002 [21 ] Singh D, Wagh A S, Cunnane J, et al. Chemically Bonded Phosphate Ceramics for Low-Level Mixed-Waste Stabilization[J]. J Environ Sci Health, 1997, 2: 527 -532
    [22] Yang Q, Wu X. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete[J]. Cement and Concrete Research, 1999, 29: 389-396
    [23] Yang Q, Zhu B, Zhang S, et al. Properties and applications of magnesia-phosphate cement mortar for raped repair of concrete[J]. Cement and Concrete Research, 2000, 30: 1807-1813
    [24]姜洪义,张联盟.磷酸镁水泥的研究[J].武汉理工大学学报, 2001, 23(1): 32-34
    [25]杜磊,严云,胡志华.化学结合磷酸镁胶凝材料的研究及应用现状[J].水泥, 2007, (5): 23-25
    [26]丁铸,李宗津.早强磷硅酸盐水泥的制备和性能[J].建筑材料学报, 2006, 20(2): 141-147
    [27]汪宏涛,曹巨辉.磷酸盐水泥凝结时间研究[J].后勤工程学院学报, 2007, 23(2): 84-87
    [28]汪宏涛,钱觉时,王建国.磷酸镁水泥的研究进展[J].材料导报, 2005, 19(12): 46-47
    [29]龙安厚,赵黎安,周大千,等.磷酸盐水泥的组成与性能[J].大庆石油学院学报, 1996, 20(1): 111-114
    [30]姜洪义,张联盟.超快硬磷酸盐混凝土路面修补材料性能的研究[J].公路, 2003, (2): 87-89
    [31]杨全兵,杨学广,张树青,等.新型超快硬磷酸盐修补材料抗盐冻剥蚀性能[J].低温建筑技术, 2000 (3): 9-11
    [32]姜洪义,梁波,张联盟. MPB超早强混凝土修补材料的研究[J].建筑材料学报, 2001, 4(2): 196-198
    [33]汪宏涛,钱觉时,曹巨辉,等.粉煤灰对磷酸盐水泥基修补材料性能的影响[J].新型建筑材料, 2005, (12): 41-4.
    [34]杨全兵,吴学礼.新型超快硬磷酸盐修补材料的研究[J].混凝土与水泥制品, 1995, (6): 13-15
    [35]李晓鹏,杜亮波,李东旭.新型早强磷酸镁水泥的制备和性能研究[J].硅酸盐通报, 2008, 27(1): 20-25
    [36] Weill P et al. U S Pat 4756762, 1986-12-07
    [37] Tomic E H. U S Pat 4174227, 1979-11-13
    [38] Eubank W R. Calcination studies of Mg oxide[J]. J Am Ceram Soc, 1951, 34: 225-229
    [39] Wagh A S, Jeong S Y. Chemically bonded phosphate ceramics: I. A dissolution model of formation[J]. J Am Ceram Soc, 2003, 86(11): 1838-1844
    [40]杜磊,严云,胡志华.化学结和磷酸镁胶凝材料的研究及应用现状[J].水泥, 2007, (5): 23-25
    [41]雒亚莉,陈兵.磷酸镁水泥的研究和工程应用[J].水泥, 2009, (9): 16-18
    [42]袁大伟.利用硼泥制备磷酸镁水泥[D].大连理工大学, 2008
    [43] Sugama T, Kukacka L F. Magnesium monophosphate cement derived from diammonium phosphate solutions[J]. CCR, 1983, 13: 407-416
    [44] Jeong S Y, Wagh A S. Chemicall bonded phosphate ceramics: cementing the gap between ceramic and cement, Energy technology division, Argonne National Laboratory.
    [45]朱斌,俞今. EPS保温砂浆的配比分析及性能测试[J].基建优化, 2007, 28(1): 114-116
    [46]梁至柔,王培铭,张国防.聚合物干粉改性EPS保温砂浆及实用性研究[J].新型建筑材料, 2004, (10): 48-51
    [47]施惠生.高钙粉煤灰用作水泥混合材若干问题的探讨[J].水泥, 1997, (5): 3-5
    [48]王富耻.材料现代分析测试方法[M].北京:北京理工大学出版社. 2006
    [49]郭素枝.扫描电镜技术及其应用[M].厦门:厦门大学出版社. 2006
    [50] Wescott J, Nelson R, Wagh A S, and Singh D. Low level and mixed radioactive waste in-drum solidification, Practice Periodical of Hazardous Toxic, andRadioactive Waste Management[J]. Am. Soc. Civil Eng. 1998, 2(1): 4-7
    [51]刘健,赵国藩.新老混凝土粘结收缩性能研究[J].大连理工大学学报, 2001, 4(3) : 339-342
    [52]杨全兵,张树青,杨钱荣,等.新型快硬磷酸盐修补材料性能[J].混凝土与水泥制品, 2000, (6): 8-11
    [53]崔燕.化工厂建筑防腐蚀结构设计[J].科技情报开发与经济, 2008, 18(25): 215-215
    [54]工业建筑防腐设计规范(GB50046-95) [S].北京:中国计划出版社. 1995
    [55] Sarkar A K. Phosphate cement-based fast-setting binders[J]. Ceramic Bulletion, 1990, 69(2): 234-238
    [56]姜仁豪,戚诚华,于桓飞.硅粉混凝土性能试验与应用现状[J].浙江水利科技, 1994, (2): 53-58
    [57]杨全兵,孙莉莎,朱蓓蓉.聚丙烯纤维对磷酸盐混凝土性能的影响[J].低温建筑技术, 2004, (4): 1-3
    [58]代新祥,文梓芸.水泥混凝土路面损坏原因分析及修补材料的选择[J].公路, 2000, (11): 71-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700