用户名: 密码: 验证码:
竹子主要组分的分离及结构鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹子作为重要的生物质资源之一,具有分布广、生长快和用途多等特点,在生物质基能源和材料方面拥有较高的利用价值。竹子的化学成分主要为纤维素、半纤维素、木质素和类脂物,研究这些化学成分将对于替代化石资源、节能减排、发展低碳经济和促进农民增收都具有重要意义。本研究(1)采用中等长度高温毛细管柱气相色谱技术对四种竹子(慈竹、硬头黄竹、寿竹和红壳雷竹)甲醇-氯仿(1:1,v/v)抽提物中的脂肪酸、甾醇、蜡、甾醇酯和甘油酸酯等五大组分一步分离出54种化合物,并对其结构进行了表征,同时测定了类脂物中的酚类化合物。(2)采用水、0.5%、1%、1%含60%乙醇、3%、5%和8%NaOH在料液比1:20 g/ml温度60 oC下连续提取脱蜡后红壳雷竹的木质素,对其化学组成进行了研究并表征了结构特征。(3)对研究内容(2)同时提取出来的半纤维素的化学组成和结构进行了研究。该系列研究结果如下:
     1.类脂物:四种竹子类脂物的主要化学成分为游离脂肪酸(6.49-29.15%)、甘油一酯(0.83-10.50%)、蜡(0.25-4.72%)和甾醇(1.03-3.92%),此外,还含有一些非酯类化合物:酚类化合物(0.86-4.77%)、杜鹃花酸(0.90-5.95%)和马来酸(0.67-3.12%)以及少量多糖。硬头黄竹的抽提物得率最高(5.98%),慈竹的得率最低(4.22%),而寿竹抽提物中类脂物的含量却最高(54.79%)。
     2.木质素:连续抽提出的木质素总和占原木质素的62.26%,七种木质素组分含有非常低的中性糖(0.01-1.11%)和少量的酯化对香豆酸(0.08-2.37%)和阿魏酸(0-1.69%)以及醚化的对香豆酸(0.02-0.65%)和阿魏酸(0.01-0.27%),分子量范围在970-3430 g/mol之间。其次,竹子木质素中主要是紫丁香单元,并伴随一定量的愈疮木基单元和少量的对羟基苯基丙烷,单元之间主要以β-O-4键连接,少量的以β-β和β-5连接。
     3.半纤维素:连续抽提所得半纤维素的总和占原半纤维素的80.1%,分子量在3760-36000 g/mol之间。糖分析研究表明水溶性半纤维素主要成分是葡萄糖而碱溶性半纤维素主要成分是木糖、阿拉伯糖和葡萄糖醛酸。~1H、~(13)C NMR和2D-HSQC技术研究表明3%和8%NaOH溶液提取的半纤维素为聚O-乙酰基-4-O-甲基葡萄糖醛酸-阿拉伯糖木糖,并首次鉴定出红壳雷竹碱溶性半纤维素的结构为:→4)[4-O-甲基-α-D-葡萄糖醛酸-(1→2)][2-O-乙酰基][2,3-二-O-乙酰基][α-L-阿拉伯糖-(1→2)] [α-L-阿拉伯糖- (1→3)]-β-D-木糖-(1→。
Bamboo as one of the most important biomass resources has the characteristics of wide distribution, fast growth and many applications. It can be used to make materials and energy based on biomass for higher utilization value. The chemical composition of bamboo consists mainly of celluloses, hemicelluloses, lignin and lipophilic. So it is significant to study on the chemical composition for replacement of fossil resources, energy-saving and emission reduction, developing a low-carbon economy, and increaseing the peasants’income. In this paper, (1) The five classes of free fatty, sterols, waxes, steryl esters, and glycerates in lipophilic extractives from the four species of bamboo culms (Sinocalmus affinis (Rendle) Mcclure, B.rihida Keng et Keng f., Phyllostachys bambusoides Sieb. et Zucc. f. shouzhu Yi, and Phyllostachys incarnata Wen) were separated to fifty four individual compounds by GC with a medium-length and high-temperature capillary column. Meanwhile, the structure of lipophilic were further characterized and the content of phenols in lipophilic were determined. (2) The bamboo lignins were obtained by sequential extractions with distilled water, 0.5% and 1% NaOH, 60% ethanol containing 1% NaOH, and 3%, 5% and 8% NaOH with a solid to liquid ratio of 1:20 g/ml at 60 oC for 3 h. Moreover, the chemical composition and structure of lignins were investigated. (3) At the same time, the chemical composition and structure of hemicelluloses from bamboo in process (II) were carried out. All results are reported as follows.
     1. Lipophilic: free fatty acids (6.49-29.15%), monoglycerides (0.83-10.50%), waxes (0.25-4.72%), and sterols (1.03-3.92%) were the dominant compositions identified in the four species of bamboo culms. In addition, non-lipids determined from the extractives were composed of small amounts of phenolic compounds (0.86-4.77%), azelaic acid (0.90-5.95%), maleic acid (0.67-3.12%), and some quantities of co-extracted polysaccharides. The yield of extractives from B.rihida Keng et Keng f. was the highest and the yield of extractives from Sinocalmus affinis (Rendle) Mcclure was the lowest, while Phyllostachys bambusoides Sieb. et Zucc. f. shouzhu Yi contributed the highest lipophilic content (54.79%).
     2. Lignin: the successive extractions together resulted in dissolution of 62.26% original lignins. Seven lignin fractions contained rather low amounts of neutral sugars (0.01-1.11%), and small amounts of ester-linked p-coumaric (0.08-2.37%) and ferulic acids (0-1.69%) and of ether-linked p-coumaric (0.02-0.65%) and ferulic acids (0.01-0.27%). The weight-average molecular weights ranged between 970 and 3430 g/mol. Furthermore, the bamboo lignins comprised high amounts of syringyl and noticeable guaiacyl together with small amounts of p-hydroxyphenyl units. Moreover, theβ-O-4 linkage is a major linkage type and small amounts ofβ-βandβ-5 linkages are also present in the lignin molecules.
     3. Hemicelluloses: the yields of seven fractions together accounted for 80.1% of total available hemicelluloses. The molecular weights of these polymers varied between 3760 and 36000 g/mol. Sugar composition studies showed that the water-soluble hemicelluloses consisted mainly of glucose, while xylose, arabinose and glucuronic acid were the major sugars in alkali-soluble hemicelluloses. Moreover, the structure of the polysaccharides in the two fractions obtained from 3% and 8% NaOH were determined by ~1H, ~(13)C NMR spectroscopy and 2D 1H-13C heteronuclear single correlation techniques (HSQC). It was found that the bamboo hemicelluloses are O-acetyl-(4-O-methylglucurono)-arabinoxylans, and their structural element could be first identified as below:→4)[4-O-Me-α-D-GlcpA-(1→2)][2-O-Ac][2,3-di-O-Ac][α-L-Araf-(1→2)][α-L-Araf-(1→3)]-β-D-Xylp-(1→.
引文
郭京波,陶宗娅,罗学刚. 2005.不同提纯方法对竹木质素结构特性的影响分析.分析测试学报, 24(3):77~81
    蒋建新,杨中开,朱莉伟,史丽敏,闫立杰. 2008.竹纤维结构及其性能研究.北京林业大学学报,30(1):128~132
    李民栋. 1990.竹材化学组成和半纤维素结构的特性.中国造纸学报, 3:56~59
    李志清,陈中豪,林曙明. 1993.不同年生慈竹木素特性及分布的研究.纤维素科学与技术,1(2):39~45
    廖俊和,罗学刚,邵薇. 2004b.竹材氨法木质素高效分离试验.竹子研究汇刊, 23(2):42~45
    廖俊和,肖洁,罗学刚. 2004a.竹材丙酮法木质素高效分离技术研究.纤维素科学与技术, 12(2):23~27
    刘力. 2006.竹材化学与利用.杭州:浙江大学出版社:127~141
    藤井康代. 1994.竹子节间伸长中维管束内木质素与酯化酚酸的分布.竹类研究,(2): 59~66
    杨革生,魏孟媛,邵惠利,胡学超. 2007.γ射线辐照对竹纤维素分子量及分子量分布的影响.辐射研究与辐射工艺学报,25(3):141~145
    张齐生. 1995.中国竹材的工业化利用.北京:中国林业出版社:2
    朱振华,刘羿君,封云芳,许炯. 2008.竹纤维素在LiCl/DMAc体系中分子量大小和分布的研究.浙江理工大学学报, 2(3):248~251
    Aoyama M, Seki K. 1999. Acid catalysed steaming for solubilization of bamboo grass xylan. Bioresource Technol, 69: 91~94
    Chikako A, Yoshitoshi N, Fumihisa K. 2005. Waste reduction system for production of useful materials from un-utilized bamboo using steam explosion followed by various conversion methods. Biochemical Engineering J, 23: 131~137
    Dervilly G, Saulnier L, Roger P, Thibault J F. 2000. Isolation of homogeneous fractions from wheat water-soluble arabinoxylans. Influence of the structure on their macromolecular characteristics. J Agricultural and Food Chemistry, 48: 270~278
    Dhawan R, Singh M M, Guha S R D. 1977. Thin-layer chromatography of oxidation and nitration products of lignin from Dendrocalamus strictus. IPPTA J 14: 251~255
    EbringerováA, Alf?ldi J, HromádkováZ, Pavlov G M, Harding S E. 2000. Water-soluble p-carboxybenzylated beechwood 4-O-methylglucuronoxylan: structural features and properties. Carbohydrate Polymers, 42: 123~131
    Faix O, Jakab E, Till F, Szekely T. 1988. Study on low mass thermal degradation products of milled wood lignins by thermogravimetry-mass-spectrometry. Wood Sci Technol, 22(4), 323~334
    Faix O. 1991. Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung, 45(s1): 21~28
    Fengel D, Shao X. 1984. A chemical and ultrastructural study of the bamboo species Phyllostachys makinoi Hay. Wood Sci Technol, 18: 103~112
    Fengel D, Shao X. 1985. Studies on the lignin of the bamboo species Phyllostachys makinoi Hay.. WoodSci Technol 19:131-137
    Fergus B J, Goring D A I. 1970. The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung, 24(4): 113~117
    Freire C S R, Silvestre A J D, and Neto C P. 2005. Lipophilic extractives in Eucalyptus globulus kraft pulps. Behaviour during ECF bleaching. J Wood Chem Technol, 25(1-2): 67~80
    Gruppen H, Hamer R J, Voragen A G J. 1992. Water-unextractable cell wall material from wheat flour. 2. Fraction of alkali-extracted polymers and comparison with water-extractable arabinoxylans. Journal of Cereal Science, 16: 53~67
    Guha S R D, Pant P C. 1967. Hemicellulose from bamboo (Banabusa arundinace). Indian Pulp Paper, 21: 439~440
    Gutierrez A, Del Rio J C, Gonzalez-Vila F J, and Martin F. 1999. Chemical composition of lipophilic extractives from Eucalyptus globulus Labill. wood. Holzforschung, 53: 481~486
    Higuchi T. 1969. Bamboo Lignin and Its Biosynthesis. Wood Research, NO, 48 Higuchi T. 1987. Chemistry and biochemistry of bamboo. Bamboo, 4: 132~144 Higuchi T. Physiol Plantarum, 1957. 77
    Hoffmann R A, Geijtenbeek T, Kamerling J P, Vliegenthart J F G. 1992. 1H-N.m.r. study of enzymically generated wheat-endosperm arabinoxylan oligosaccharides: structures of hepta- to tetradeca-saccharides containing two or three branched xylose residues. Carbohydrate Research, 223: 19~44
    Hoffmann R A, Roza M, Maat J, Kamerling J P, Vliegenthart J F G. 1991. Structural characteristics of the cold-water-soluble arabinoxylans from the white flour of the soft wheat variety Kadet. Carbohydrate Polymers, 15: 415~430
    Ingle T R, Bose J L. 1969. Nature of hemicelluloses of bamboo (Dendrocalamus strictus). Indian J Chem, 7: 783~785
    Ishii T. 1991. Acetylation of O-2 of arabinofuranose residues in feruloylated arabinoxylan from bamboo shoot cell walls. Phytochemistry, 30: 2317~2320
    Izydorczyk M S, Biliaderis C G. 1995. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate Polymers, 28: 33~48
    Ka?urákováM, Capek P, SasinkováV, Wellner N, EbringerováA. 2000. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43: 195~203
    Ka?urákováM, EbringerováA, Hirsch J, HromádkováZ. 1994. Infrared study of arabinoxylans. Journal of the Science of Food and Agriculture, 66: 423~427
    Liese W. 1992. Bamboo and Its use: The structure of bamboo in relation to its properties and utilization. International symposium on industrial use of bamboo. http://www.emissionizero.net/W._Liese_-_The_Structure_of_Bamboo.pdf [2009-10-8]
    Lin B P, Wang S F, Liu Y L, Zhan H Y, Wang P. 2008. Study an the chemical structural characteristics of white powdery bamboo lignin. 2nd International Papermaking and Environment Conference(eds. Wang L, Ni Y, Huo Q, Liu Z). Tianjin:China Light Industry Press, 194~198
    Lin J X, He X Q, Hu Y X, Kuang T Y, Ceulemans R. 2002. Lignification and lignin heterogeneity for various age classes of bamboo (Phyllostarchys pubescens) stems. Physiologia Plantarum, 114: 296-302
    Lin S M, Li Z Q, Chen Z H. 1995, Spectroscopic characterization of bamboo lignins. J N&W Ins. Light Ind. 13: 102~106
    Lisboa S A, Evtuguin D V, Neto C P, Goodfellow B J. 2005. Isolation and structural characterization of polysaccharides dissolved in Eucalyptus globules kraft black liquors. Carbohydrate Polymers, 60: 77~85
    Lu F C, Ralph J. 1999. Detection and determination of p-coumaroylated units in lignins. J Agric Food Chem, 47: 1988~1992
    Lundquist K, OHlsson B, Simonson R. 1977. Isolation of lignin by means of liquid-liquid extraction. Svensk Papperstidn, 80: 143
    Maekawa E. 1976. Studies on hemicellulose of bamboo. Wood Res, 59/60: 153~179
    Müller-Hagedorn M, Bockhorn H, Krebs L, Müller U. 2003. A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis, 68-69: 231~249
    Nakamura Y, Higuchi T. 1976. Ester linkage of p-coumaric acid in bamboo lignin. Holzforschung, 30(6): 187~191
    Nakatsubo F, Tanahashi M, Higuchi T. 1972. Acidolysis of bamboo lignin. II. Isolation and identification of acidolysis products. Wood Res, 53: 9~18
    Nimz H H, Robert D, Faix O, Nemr M. 1981. Carbon-13 NMR spectra of lignins, 8*. Structural differences between lignins of hardwoods, softwoods, grasses and compression wood. Holzforschung, 35(1): 16~26
    Peng F, Ren J L, Xu F, Bian J, Peng P, Sun R C. 2010. Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J. Agric. Food Chem., 58: 1768~1776
    Ramiah M V. 1970. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science, 14: 1323~1337
    Robert P, Marquis M, Barron C, Guillon F, Saulnier L. 2005. FT-IR investigation of cell wall polysaccharides from cereal grains. Arabinoxylan infrared assignment. Journal of Agricultural and Food Chemistry, 53: 7014~7018
    Roy A K, Sen S K, Bag S C, Pandey S N. 1991. Infrared spectra of jute stick and alkali-treated jute stick. Journal of Applied Polymer Science, 42: 2943~2950
    Seca A M L, Cavaleiro J A S, Domingues F M J, Silvestre A J D, Evtuguin D, Neto C P. 2000. Structural characterization of the lignin from the nodes and internodes of Arundo donax reed. J Agric Food Chem, 48(3): 817~824
    Shao S L, Wen G F, jin Z F. 2008. Changes in chemical characteristics of bamboo (Phyllostachys pubescens) components during steam explosion. Wood Sci Technol, 42: 439~451
    Shigeki Y, Atsushi K, Naoto S, Masakazu A, Isao K. 1998. Structure of xylan from culms of bamboo grass (Sasa senanensis Rehd.). J Wood Sci, 44: 457~462
    Shimada M, Fukuzuka T, Higuchi T. 1971. Ester linkages of p-coumaric acid in bamboo and grass lignins. Tappi, 54: 72~78
    Sun R C and Sun X F. 2001. Identification and quantization of lipophilic extractives from wheat straw. Ind Crop Prod 14: 51~64
    Sun R C, Fang J M, Goodwin A, Lawther J M, Bolton A J. 1998. Fractionation and characterization ofpolysaccharides from abaca fibre. Carbohydrate Polymers, 37: 351~359
    Sun R C, Fang J M, Tomkinson J. 2000. Delignification of rye straw using hydrogen peroxide. Ind Crop Prod, 12(2): 71~83
    Sun R C, Lawther J M, Banks W B. 1996. Fractional and structural characterization of wheat straw hemicelluloses. Carbohydrate Polymers, 29(4): 325~331
    Sun R C, Sun X F, and Xiao B. 2002. Extraction and characterization of lipophilic extractives from rice straw.Ⅱ. spectroscopic and thermal analysis. J Wood Chem Technol 22: 1~9
    Sun R C, Tomkinson J. 2002. Comparative study of organic solvent-soluble and water-soluble lipophilic extractives from wheat straw 2: spectroscopic and thermal analysis. J Wood Sci 48: 222~226
    Teleman A, Lundqvist J, Tjerneld F, St?lbrand H, Dahlman O. 2000. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydrate Research, 329: 807~815
    Toshimitsu K, Shirou I, Toshihiko Y, Chie N, Toshihiro N, Takeshi H, Ken I. 2006. Antioxidant activity of a novel extract from bamboo grass (AHSS) against ischemia-reperfusion injury in rat small intestine. Biol Pharm Bull, 29: 2301~2303
    Vamvuka D, Kakaras E, Kastanaki E, Grammelis P. 2003. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel, 82: 1949~1960
    Van Hzaendonk J M, Reinerink E J M, Waard P D, van Dam J E G. 1996. Structural analysis of acetylated hemicellulose polysaccharides from fibre flax (Linum usitatissimum L.). Carbohydrate Research, 291: 141~154
    Wang K, Jiang J X, Xu F, Sun R C. 2010. Influence of steaming pressure on steam explosion pretreatment of lespedeza stalks (lespedeza cyrtobotrya). II. Characteristics of degraded lignin. Journal of Applied Polymer Science, 116(3): 1617~1625
    Xu F, Sun J X, Sun R C, Fowler P, Baird M S. 2006. Comparative study of organosolv lignins from wheat straw. Ind Crops Prod, 23: 180~193
    Xu F, Sun R C, Sun J X, Liu C F, He B H, Fan J S. 2005. Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Analytica Chimica Acta, 552(1-2): 207~217
    Yoshida H, M?rck R, Kringstad K P. 1987. Fractionation of kraft lignin by successive extraction with organic solvents. II. Thermal properties of kraft lignin fractions. Holzforschung, 41(3): 171~176
    Yukihiro A, Norio S, Yoshihito N, Hong Y, Kenji M, Yukie I, Kuniyasu I, Masamitu F, Wakako M, Makoto N, Yoshinori N. 2004. A highly bioactive lignophenol derivative from bamboo lignin exhibits a potent activity to suppress apoptosis induced by oxidative stress in human neuroblastoma SH-SY5Y cells. Bioorg Med Chem, 12(18): 4791~4801
    Yusuke E, Tadashi I. 1998. Hemicellulosic polysaccharides from bamboo shoot cell-walls. Phytochemistry, 49: 1675~1682

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700