用户名: 密码: 验证码:
基于神经网络与灰色理论的水质参数预测建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济的快速发展给水环境带来巨大压力,准确预测水质变化情况是保障水环境安全的关键和基础。本文以三峡库区常态水质参数时序数据为研究对象,进行水质参数预测建模研究。
     由于三峡库区成库时间短、监测指标少、监测频率低、水质参数时序数据少且成库前后呈现跳变,传统的统计学预测方法不适用于本文的研究对象。本文结合灰色系统理论针对“贫信息”问题、BP神经网络较强的非线性拟合特性、最小二乘支持向量机(Least Squares Support Vector Machines, LS-SVM)专门解决小样本预测的特点,对三峡库区水质参数时序数据进行预测研究,形成如下研究成果:
     ①针对传统时间序列相空间重构嵌入维数计算复杂的问题,本文借鉴残差序列相关熵定阶法的基本思想,通过改进的相关熵算法确定时间序列相空间重构嵌入维数,并以2005年至2008年每月的水质参数平均浓度(非“贫信息”)为预测对象,分别采用BP神经网络和模拟退火算法(Simulated Annealing, SA)优选参数的LS-SVM模型进行预测。仿真结果表明,改进的相关熵算法确定时间序列的嵌入维数是有效的,BP神经网络的非线性拟合优势明显,对于波动范围较大的水质时序数据表现出更优的性能;LS-SVM模型在波动范围较小的水质时序数据短期预测中更有优势。
     ②针对1997年至2008年丰水期水质参数时序数据存在小样本和跳变现象,结合专门针对“贫信息”的灰色模型预测精度不高但计算速度快、BP神经网络强大的非线性拟合能力但需要大样本的特点,以及LS-SVM模型解决小样本预测问题的优势,本文提出灰色新陈代谢BP神经网络预测模型和ELS-SVM预测模型。灰色新代谢BP神经网络预测模型将灰色新陈代谢模型集群的输出作为BP神经网络的输入,从而解决了BP神经网络需要大量样本才能较好地逼近非线性函数的问题。ELS-SVM模型通过对原始数据预处理改善其平滑特性,将预处理后的数据作为LS-SVM的输入,并用SA算法优选LS-SVM参数。仿真结果表明,灰色新陈代谢BP神经网络的预测精度较BP神经网络和灰色新陈代谢模型明显提高;ELS-SVM模型的预测精度比LS-SVM模型高,与灰色新陈代谢BP神经网络相当,是对小样本跳变时序数据预测方法的补充。
     根据三峡库区水质参数时序数据的特点建立预测模型,不仅客观地反应了水质发展趋势,为科学决策提供依据,更拓宽了时序预测技术的理论研究和应用领域。
Rapid economic development has brought enormous pressure on water environment, predicting changes of water quality exactly is critical and basal to protect the safety of water environment. This thesis studies on the prediction modeling method of water quality parameters based on normal time-series data in the background of the Three Gorges Reservoir.
     As the Three Gorges Reservoir started water storage for a short time, monitoring parameters are simple, monitoring frequency is low, the time series data of water quality parameters are characterized by small samples and sudden change of some sections in Three Gorges, traditional statistical forecasting methods are not fit for the application. According to the gray system theory for the“poor information”problem, BP neural network with strong nonlinear fitting capability, and Least Squares Support Vector Machines (LS-SVM) specifically for small samples of forecasting, the following main research findings and conclusions, which studied on the time series data of water quality parameters of Three Gorges Reservoir, are brought forward:
     ①As the computational complexity of traditional time series embedding dimension of phase space reconstruction, using related entropy to determine model order of residual sequence for reference, the improved related entropy algorithm was brought forward to determine Phase Space Reconstruction embedding dimension, and the monthly average concentration of water quality parameters from 2005 to 2008 are used as time series data. Comparison between the predicting results of BP neural network and LS-SVM model using simulated annealing (SA) for optimization parameters indicates the feasibility of the improved related entropy algorithm, BP shows obvious advantages of nonlinear fitting for time series data of larger scope, and LS-SVM shows better performance in short time predicting for time series data of smaller fluctuation range.
     ②According to the characteristics of small samples and sudden change of water quality parameters in flood season from 1997 to 2008, combined with grey predicting model for“poor information”is characterized by low forecast accuracy but calculation speed, BP neural network with strong nonlinear fitting capability but requiring large number of samples, and the advantage of LS-SVM for small samples, the gray metabolism BP neural network prediction model and EL-SVM prediction model were proposed. The outputs of gray metabolism predicting model sets are used for the inputs of BP neural network, which solves the huge learning samples on nonlinear fitting. The pretreatment model is put forward to improve the smoothness of time series data for the inputs of LS-SVM, which uses SA for optimization parameters. Simulation results show that the grey metabolism BP prediction model improves the prediction accuracy significantly compared with BP and grey metabolism model; ELS-SVM is better than LS-SVM, shows the considerable prediction accuracy of grey metabolism BP model, and renews the prediction methods of time series data with small sudden change samples.
     According to the characteristics of time series data of water quality parameters in Three Gorges Reservoir, the forecasting models are established, which not only objectively reflect the trends of water quality, and provide the basis for the scientific decision-making, but also widen the theoretical research and applications of time series prediction technology.
引文
[1]黄秀山.三峡库区水污染及治理对策[J].重庆大学学报自然科学版, 2002,25(6):155-158.
    [2]田晓刚.水环境评价与规划综合模型的开发及应用研究—以长江流域宜宾段为例[D].雅安:四川农业大学. 2009.
    [3]马萍,灰色系统GM(1, 1)模型的改进及灰色统计模型研究[D].吉林:吉林大学. 2007.
    [4]曹艳平.灰色时间序列理论及应用的研究[D].西安:西安建筑科技大学. 2005.
    [5]张树京,齐立心.时间序列分析简明教程[M].北京:清华大学出版社,北方交通大学出版社, 2003.
    [6]梁军,赵勇.系统工程导论[M].北京:化学工业出版社, 2005:151.
    [7]蒋佰权.人工神经网络在水环境质量评价与预测上的应用[D].北京:首都师范大学. 2007:12.
    [8]李如忠.河流水环境系统不确定性问题研究[D].南京:河海大学. 2004:10-12.
    [9]马小兵,傅惠民.非等间距相关系数AR(p)序列预测方法[J].航空动力学报,2003,18(6):713-716.
    [10]王治华,傅惠民.广义时变ARMA序列预测方法[J].航空动力学报, 2005, 2(5):713-717.
    [11] Liu, S. F. Lin, Y. Grey Information: Theory and Practical Applications[M], London: Springer-Verlag London Ltd, 2006.
    [12] Luo, D. Liu, S.F. Dang, Y.G. Study on Optimization of Grey Model GM(1,1)[J]. Engineering Science, 2003,5(8):50-53.
    [13]刘玉敬,阎晨光,索秀云等. GM(1,1)模型在长江水质预测中的应用[J].河北科技大学学报, 2006,27(2):129-132.
    [14]潘俊,张瑞棉,柴超.基于改进误差修正方法的灰色动态模型群水质预测[J].辽宁化工, 2007,36(3):190-192,211.
    [15]宋月君.基于改进型GM(1, 1)模型的城市供水水源水质指标预测[J].供水技术, 2008,2(1):37-40.
    [16]王弘宇,马放,杨开等.灰色新陈代谢GM(1,1)模型在中长期城市需水量预测中的应用研究[J].武汉大学学报(工学版), 2004,37(6):32-35.
    [17]陈霞,邱桃荣,魏玲玲等. GM(1, 1)模型和新陈代谢模型的应用比较[J].微计算机信息, 2008,12:157-159.
    [18]李如忠,王超.灰色动态模型群法在河流水质预测中的应用初探[J].中国农村水利水电, 2003,1:76-78.
    [19] Maier H R, Dandy G C. The use of Artificial Neural Networks for the prediction of water quality parameters[J].Water Resources Research,1996,32(4):1013-1022.
    [20] Nagy,H.M., Watanabe M., Hirano M.. Prediction of sediment load concentration in rivers using artifical neural network model[J].Journal of Hydraaulic Engineering,2002,128 (6):588-595.
    [21] M P Rajurkar, U C Kothyari, U C Chaube. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydronautics, 2004, 285:96-113.
    [22] Seree Supharatid. Application of a neural network model in establishing a stage-discharge relationship for a tidal river[J]. Hydrological Processes, 2003, 17:3085-3099.
    [23]牛志广,张宏伟,刘洪波.神经网络用于近海水质预测的研究[J].天津工业大学学报,2006,25(2):89-92.
    [24]邵东国,王忠静,李元红等.干旱内陆河流水质预测人工神经网络模型研究[J].灌溉排水. 1999,18(4):7-9,14.
    [25]高学民,陈静生,王立新. BP网络应用于长江水质研究[J].环境科学研究, 2001,14 (1):49-52.
    [26]李莹,邹经湘,张新政等.河流水质的预测模型研究[J].系统仿真学报, 2001,13 (2):139-142.
    [27]李莹,邹经湘,张宇羽等.自适应神经网络在水质预测建模中的应用[J].系统工程, 2001,19(1):89-93.
    [28]杨宇川,唐婉莹,黄刚.人工神经网络预测地表水中有机物浓度的研究[J].计算机与应用化学, 2002,19 (4): 434-437.
    [29]邱靖,杨毅,张业静等.基于改进BP网络模型的水质预测模型的研究[[J].云南农业大学学报, 2007,22(3):417-422.
    [30]陈丽华,常沁春,陈兴国等. BP网络应用于黄河水质的预测研究[[J].兰州大学学报(自然科学版), 2003,39(2):53-56.
    [31]莫慧芳,谷爱显,张新政等.基于BP神经网络的水质预测方法的研究[[J].控制工程, 2004,4:504-506.
    [32]宓云軿,王晓萍,金鑫.基于机器学习的水质COD预测方法[J].浙江大学学报(工学版), 2008,42(5):790-793.
    [33]陈永灿,陈燕,郑敬云等.概率神经网络水质评价模型及其对三峡近坝水域的评价与水质分析[J].水利发电学报, 2004,3:7-15.
    [34]杨继臣,张新政. BP神经网络在水质参数预测中的应用[J].计算机与数字工程, 2006,34(11):24-26.
    [35]袁健,树锦.神经网络模型在黄河水质预报中的应用分析[J].生态与农村环境学报,2008,24(2):49-51,60.
    [36] U. Natarajan, V.M. Periasamy, R. Saravanan. Application of particle swarm optimization in artificial neural network for the prediction of tool life[J]. Journal of Advanced Manufuture Technology, 2007, 31: 871-876.
    [37]马建伟,张国立,谢宏等.利用人工鱼群算法优化前向神经网络[J].计算机应用, 2004,24(10):21-23.
    [38]吴春明,秦建,谢德体.一种解决BP网络过拟合的学习算法[J].西南大学学报, 2008,30(1):139-142.
    [39] Alaa H. Aly, Richard C. Peral ta. Optimal design of aquifer systems under uncertainty using a neural network and a genetic algorithm[J]. water resources research, 1999, 35(8):2523-2531.
    [40]刘媛媛,练继建,朱云.遗传算法改进的BP神经网络在混沌径流时间序列中的应用[J].水文, 2007, 27(2): 45-48.
    [41] J. G Yang, S. Y Wen, H. Zhou.“An Optimized BP Network Model Using Genetic Algorithm for Predicting the Ignition-Stability Index of Pulverized Coal”[J]. Dynamic Engineering, 2006,26(1):81-83.
    [42]胡浩民.基于RBF神经网络并行学习模型的数据分类及预测研究[D].上海:上海师范大学, 2003.
    [43] VAPNIK V N. The nature of statistical learning [M]. New York: Springer, 2000.
    [44] A.J.Smola, B.Scholkopf. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222.
    [45] V Cherkassky, YMa. Selection of multi-parameters for support vector regression[J]. Proceedings of the International Conference on Artificial Neural Networks, Madrid Spain, 2002:1207-1245.
    [46] J.Gao, S.Gunn, C.Harris, etc. A probabilistic framework for SVM regression and error bar estimation[J]. Machine Learning, 2002, 46(1-3):71-89.
    [47] KIM K.J. Financial time series forecasting using support vector machines[J]. Neuro Computing, 2003, 55(2):307-319.
    [48] Lijuan Cao, E.H.Francis. Financial forecasting using support vector machines. Neural Computing&Applications, 2001, 10:184-192.
    [49] U.Thissena, R.van Brakela, A.P.de Weijerb, etc. Using support vector machines for time series prediction[J]. Chemometrics and Intelligent Laboratory Systems, 2003, 69 (1-2):35-49.
    [50]郑一华.基于支持向量机的水质评价和预测研究[D].南京:河海大学, 2006.
    [51]尉询楷,李应红,王硕等.基于支持向量机的航空发动机滑油监控分析[J].航空动力学报, 2004, 19(3):392-397.
    [52]徐红敏.基于支持向量机理论的水环境质量预测与评价方法研究[D].吉林:吉林大学, 2007.
    [53] Vanajakshi, L.; Rilett, L.R.. A Comparison of the Performance of Artificial Neural Networks and Support Vector Machines for the Prediction of Traffic Speed[J]. 2004 IEEE Intelligent Vehicles Symposium, 2004, 194-199.
    [54]李庆国,陈守煌.基于模糊模式识别的支持向量机的回归预测方法[J].水科学进展, 2005,16(9):741-746.
    [55]韩崇昭,朱洪艳,段战胜等.多源信息融合[M].北京:清华大学出版, 2006, 4: 108-109.
    [56]辛治运,顾明.基于最小二乘支持向量机的复杂金融时间序列预测[J].清华大学学报(自然科学版), 2008, 48(7),1147-1149.
    [57]魏文秋,孙春鹏.灰色神经网络水质预测模型[J].武汉水利电力大学学报, 1998, 31 (4):26-28, 42.
    [58]陆琦,郭宗楼,姚杰.灰色神经网络模型在湖泊水质预测中的应用[J].农机化研究, 2004, 5(3):159-161.
    [59]宋国浩.人工神经网络在水质模拟与水质评价中的应用研究[D].重庆:重庆大学, 2008.
    [60]郭小荟,马小平.基于最小二乘支持向量机的选煤厂日用水量短期预测[J].煤炭学报, 2007,32(10):1093-1097.
    [61]石为人,王燕霞,唐云建等.基于灰色神经网络建模的水质参数预测[J].计算机应用,2009,29(6):1529-1531,1535
    [62]李程.三峡库区水质时间序列分析与发布[D].武汉:武汉大学, 2005.
    [63]吴涛,颜辉武,唐桂刚.三峡库区水质数据时间序列分析预测研究[J].武汉大学学报(信息科学版), 2006,31(6):500-502,507.
    [64]马萍.灰色系统GM(1, 1)模型的改进及灰色统计模型研究[D].吉林:吉林大学, 2007.
    [65]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社, 2002.
    [66]刘思峰,党耀国,方志耕.灰色系统理论及其应用(第三版)[M].北京:科学出版社, 2004.
    [67]袁景凌,钟路,江琼等.新陈代谢GM(1, 1)建模与应用[J].武汉理工大学学报(信息与管理工程版), 2005,27(2):168-170.
    [68]马乐.灰色理论建模方法研究[D].辽宁:东北财经大学, 2005.
    [69]罗党,刘思峰,党耀国.灰色模型GM(1, 1)优化[J].中国工程科学. 2003,5(8): 50-53.
    [70]王钟羡,吴春笃. GM(1, 1)改进模型及其应用[J].数学实践与认识, 2003,33(9): 20-25.
    [71]阎晨光,刘玉敬.长江水质预测的建模[J].计算机与数字工程, 2006,34:7.
    [72]何海,陈绵云. GM(1, 1)模型预测公式的缺陷及改进[J].武汉理工大学学报, 2004,26(7):81-83.
    [73]张铃,基于核函数的支持向量机与三层前向神经网络的关系[J].计算机学报, 2002,25:7.
    [74]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社, 2007.
    [75] Wen Jin, Wei Zhao, Jia Li, etc. The Improvements of BP Neural Network Learning Algorithm[J]. Signal Processing Proceedings, 2000:1647-1649.
    [76]叶巧文.河流水质管理决策支持系统应用研究[D].广东:广东工业大学, 2004:23-24.
    [77] J. Guo, W. J. Sun. Theory of Neural Network and its Implementation with MatLab[M]. Electronic Industry Press, Beijing, 2005.
    [78] Drucker, H., Burges, C.J.C., Kaufman, L., etc. Support vector regression machines [J]. Advances in Neural Information Processing Systems, 1997, 9:155-161.
    [79] De Brabanter J. LS-SVM Regression Modelling and Its Applications [D]. PhD Thesis, Faculty of Engineering, K. U. Leuven (Belgium), 2004.
    [80] Burges, C.J.C, Scholkopf, B. Improving the accuracy and speed of support vector learning machines [J]. Advances in Neural Information Processing Systems, 1997, 9:375-381.
    [81] Osuna, E., Freund, R., Girosi, F. An improved training algorithm for support vector machines [J]. In Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, 1997:276-285.
    [82] IvorW. Tsang, James T. Kwok, Pak-Ming Cheung. Core vetor machines: Fast SVM Lraining on very large data sets [J]. Journal of Machine Learning Research, 2005, 6:363-392.
    [83] D.X. Niu,D. Liu, G.J. Chen, Y. Feng. Support vector machine models optimized by genetic algorithm for hourly load rolling forecasting [J]. Transactions of China Electrotechnical Society, 2007, 22(6):148-152.
    [84]许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策, 2004, 19(5): 481-493.
    [85]张学工.关于统计学习理论与支持向量机[J].自动化学报. 2001, 26(1):32-42.
    [86]杨铁建.基于支持向量机的数据挖掘技术研究[D].西安:西安电子科技大学, 2005.
    [87] Suykens J A K, Gestel T V, Brahanter J D, etc. Least Squares Support Vector Machines [M]. River Edge: World Scientific, 2002:70-148.
    [88]孙德山.基于支持向量机的时间序列预测研究[D].湖南:中南大学, 2004.
    [89] T.V Gestel, J.A.Suykens, B.Baesens, etc. Benchmarking least squares support vector machine classifiers [J]. Machine Learning, 2004, 54(1):5-32.
    [90]阎威武,邵惠鹤.支持向量机和最小二乘支持向量机的比较及应用研究[J].控制与决策, 2003,18(3):358-360.
    [91] Bates J M, Granger C W J. Combination of forecasts[J]. Operations Research Quarterly. 1969, 20(4):314-318.
    [92]唐小我,曹长修.组合预测方法研究[J].控制与决策, 1993,8(1):35-38.
    [93]李斌,郗涛,史明华.基于支持向量机的交通流组合预测模型[J].天津工业大学学报2008,27(2):73-76.
    [94]张大海,江世芳,史开泉.灰色预测公式的理论缺陷及改进[J].系统工程理论与实践, 2002,8:140-142.
    [95]张大海,毕研秋.基于串联灰色神经网络的电力负荷预测方法[J].系统工程理论与实践, 2004, 12:128-132.
    [96]唐万梅.基于灰色支持向量机的新型预测模型[J].系统工程学报, 2006,21(4):410-413.
    [97]廖建朝,谢正文.灰色支持向量机在瓦斯流量预测中的应用[J].工业安全与环保. 2008,34(8):27-29.
    [98]叶东毅,何萧玲.基于嵌入维数预估的神经网络输入节点的确定[J].电路与系统学报, 2000,5(2):71-73.
    [99]岳毅宏,韩文秀,王健.基于相点距离集的相空间重构嵌入维数确定法[J].机械工程学报, 2005,41(10):35-38.
    [100]孟庆芳,周卫东,陈月辉等.基于非线性预测效果的癫痫脑电信号的特征提取方法[J].物理学报, 2010,59(1):123-129.
    [101]张雨,任成龙.确定重构相空间维数的方法[J ]. 2005,27(6):101-105.
    [102]肖方红,阎桂荣,韩宇航.混沌时序相空间重构参数确定的信息论方法[J].物理学报, 2005,54(2):550-556.
    [103]江田汉,束炯.基于LS-SVM的混沌时间序列的多步预测[J].控制与决策, 2006,21(1):77-80.
    [104]石为人,王燕霞,唐云建等.小样本跳变水质时序数据预测方法[J].计算机应用, 2010, 30(2): 486-489, 505.
    [105] Davide Anguita, Sandro Ridella, Fabio Rivieccio, etc. Hyperparameter design criteria for support vector classifiers [J]. Neurocomputing (S0925-2312), 2003, 55: 109-134.
    [106] CHAPPELLE O, VAPNIK V, BOUSQUET O, etc. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1): 131-160.
    [107] SHAO XIN GUANG, YANG HUI ZHONG, CHEN GANG. Parameters selection and application of support vector machines based on particle swarm optimization algorithm [J]. Control Theory and Applications, 2006, 23(5): 740-743, 748.
    [108] ZHENG CHUN HONG, JIAO LI CHENG. Automatic parameters selection for SVM based on GA[C]. Proceedings of the 5th World Congress on Intelligent Control and Automation.Piscataway. NJ: IEEE Press, 2004: 1869-1872.
    [109] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, etc. Choosing multiple parameters for support vector machines [J]. Machine Learning (S0885-6125), 2002, 46(1):131-159.
    [110] K Duan, S keerthii, A Poo. Evaluation of simple performance measures for tuning SVM hyperparameters[R]//Technical Report CD-01011. Singapore: Department of Mechanical Engineering, National University of Singapore, 2001.
    [111]肇莹,刘红星,高敦堂.导数平方和准则与SVM参数优化[J].系统仿真学报, 2008,20(12):3150-3158.
    [112]郭辉,刘贺平,王玲.最小二乘支持向量机参数选择方法及其应用研究[J].系统仿真学报, 2006,18(7):2033-2036.
    [113]林庆,白振兴.基于微粒群算法的LS-SVM时间序列预测[J].现代电子技术, 2008, 14: 147-150.
    [114]于国荣,夏自强.混沌时间序列支持向量机模型及其在径流预测中应用[J].水科学进展, 2008,19(1):116-121.
    [115]曲强,陈雪波.基于MATLAB的模拟退火算法的实现[J].鞍山科技大学学报,2003,26(3):196-199.
    [116]赵春秀,周辉仁,刘春霞.基于SA和Bootstrap的LS-SVM参数优选及应用[J].统计与决策, 2008, 15: 25-28.
    [117]朱家元,杨云,张恒喜等.基于优化最小二乘支持向量机的小样本预测研究[J].航空学报, 2004, 25(6): 565-568.
    [118] SUYKENS J.A.K. LS-SVM lab Toolbox User’s Guide[EB/01]. http://www.esat kulenven ac be/sista/, 2005-12-10.
    [119]李方方,赵英凯,颜昕.基于Matlab的最小二乘支持向量机的工具箱及其应用[J].计算机应用, 2006,26:358-360.
    [120]张文林.巢湖流域水文时间序列的变点分析[D].安徽:合肥工业大学, 2006.
    [121] LUNDY M, MESS A. Convergence of an annealing algorithm. Mathematical Programming[J], 1986, 34: 111-124.
    [122]衷克定.数据统计分析与实践――SPSS for Windows[M].北京:高等教育出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700