用户名: 密码: 验证码:
典型内分泌干扰物在土壤中迁移转化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内分泌干扰物(Endocrine disrupting chemicals,EDCs)在极低浓度下即具有危害性,城市污水及再生水是其重要来源。再生水用于农业灌溉、河湖补水和地下水补给,导致EDCs进入土壤和含水层,引发环境生态和人体健康风险。本研究的目的是通过建立快速灵敏的EDCs检测方法,调查EDCs在再生水与地下水回灌区的时空分布特征,筛选典型EDCs,研究土壤吸附、土壤微生物降解和回灌条件对其迁移转化过程的影响,进而模拟和预测其在地下水回灌场地的迁移转化规律,从而为再生水回用的风险评价提供理论指导和技术支撑。
     通过优化固相萃取、超高效液相色谱和质谱条件,建立了同时测定再生水和地下水中雌酮(Estrone,E1)、雌二醇(17β-estradiol,E2)、17α-乙炔基雌二醇(17α-ethinylestradiol,EE2)、雌三醇(Estriol,E3)、双酚A(BisphenolA,BPA)、壬基酚和辛基酚等7种EDCs的检测方法,定量限为0.01-0.06ng/L。
     对北京市潮白河再生水回灌地下水的场地调查表明,64个再生水样品中E1、E2、EE2、E3和BPA检出率为100%。51个地下水样品中(埋深为30-80m)EDCs检出率为80.4%,BPA浓度最高。45.1%的地下水样品中EE2超过其预测无影响浓度,其生态风险最大。BPA和EE2被筛选为再生水回灌场地的典型内分泌干扰物。
     通过分析土壤和土壤有机质对EDCs的吸附特性与其结构特征的相关性发现,土壤有机质含量、比表面积以及吸附质的临界分子直径都能够影响EDCs饱和吸附量,EDCs在微孔中的扩散是产生慢吸附的原因,解吸滞后性与黑碳的含量和位置相关。特异性吸附作用使BPA与EE2强烈竞争土壤中吸附位,从而增强其迁移性。
     EDCs的降解过程可以用伪一级动力学方程描述。双溶质体系EDCs的半衰期比单溶质体系延长1.4-2.9倍。甾体雌激素的转化路径为E2/EE2→E1→E3。长时间吸附与解吸滞后性,对EDCs生物降解过程有抑制作用。
     通过土柱模拟试验发现,连续回灌土柱中土壤添加0.5%黑碳使EE2和BPA的迁移速率降低45%左右。相同回灌量(约1-10倍柱体积)条件下,间歇回灌土柱EDCs出水浓度为连续回灌土柱的0-44.5%。基于潮白河砂柱实验建立的EDCs对流-弥散模型,能够模拟预测潮白河地下水回灌区均质性较好的潜水层中EDCs的变化,EE2和BPA的迁移速率分别为21.4m/年和28.5m/年,半衰期分别为21.7d和20.4d。回灌10年后,EE2和BPA的影响范围分别达到距岸边337m和734m处。
Endocrine disrupting chemicals (EDCs) are harmful to wildlife even atconcentrations as low as1ng/L. The effluent of wastewater treatment plants, as well asthe reclaimed water originated from it, is considered as a major source of EDCs.
     The reclaimed water can transfer EDCs into soil and groundwater when it is usedfor irrigation and groundwater recharge. The purpose of this study was to investigate thespatial and seasonal variation of concentrations of EDCs in aquifers recharged byreclaimed water, meanwhile, select the typical EDCs, and then investigate the influenceof adsorption, biodegradation and recharge conditions on the fate of the typical EDCs,thus simulating and predicting the migration and transformation processes in aquifersrecharged by reclaimed water, so as to provide a technical support for risk assessment ofreusing the reclaimed water.
     An analytical method of separating and determining seven selected EDCs inwastewater and reclaimed water was developed. The method was based on solid-phaseextraction and ultra-performance liquid chromatography tandem mass spectrometry.The limit of detections for selected EDCs, namely, estrone (E1),17β-estradiol (E2),17α-ethinyl estradiol (EE2), estriol (E3), bisphenol A (BPA),4-n-nonylphenol, and4-t-octylphenol, ranged from0.01ng/L to0.06ng/L for reclaimed water andgroundwater.
     The detection rate of E1, E2, EE2, E3and BPA was100%among the64reclaimedwater samples in the Chaobai River, Beijing, where reclaimed water is used to rechargegroundwater through the permeable bed. The detection rate of EDCs was80.4%amongthe51groundwater samples. The highest detection frequency of BPA indicated thatBPA can be used as a sewage tracer in groundwater. The concentrations of EE2in23groundwater samples exceeded its predicted no-effect concentrations which indicatedthat EE2is the major compound causing the estrogenic activity of groundwater. Thus,BPA and EE2are selected as two typical EDCs in the studied aquifers recharged byreclaimed water.
     The saturated sorption capacity of EDCs in soil was influenced by the total organiccarbon and specific surface area of soil and molecular diameters of EDCs. The rate-limiting step of EDCs sorption was the diffusion in micropores. Sorptionnonlinearity was influenced by hard carbon content. The content and locationdifferences of hard carbon could explain various degrees of desorption hysteresis. BPAsignificantly suppressed the sorption of EE2, which could be attributed to the specificsorption on the hard carbon. The strong competitive sorption of BPA can enhance themobility of EE2.
     The aerobic biodegradation rates of EDCs in the soil-water system could bedescribed by a pseudo-first-order kinetic equation. The half-lives of EDCs in allcombinations were1.4-2.9times prolonged in the binary-chemical system than in thesingle chemical system. The following biotransformation pathway of estrogen wasproposed: E2/EE2→E1→E3. The desorption hysteresis suppressed the biodegradationrates of EDCs.
     In soil column under continual recharging, the migration rates of EE2and BPAdecreased45%after mixing0.5%black carbon with the packing soil. Theconcentrations of EE2and BPA in the effluent of soil column under intermittentrecharging were only0-44.5%of that under continual recharging. The parameters ofconvection-dispersion model were calculated by measuring the breakthrough curves ofEE2and BPA in the lab-scale column packed with the river sand obtained from theChaobai River. The convection-dispersion model fitted well with the measuredconcentrations of EE2and BPA in the unconfined aquifer with good uniformity. In thisaquifer, the migration rates of EE2and BPA were21.4m/a and28.5m/a, respectively.The half-lives were21.7d for EE2and20.4d for BPA. After ten years of continualrecharging, EE2and BPA will be detected in the groundwater with the distance of337mand734m to the bank of the Chaobai River.
引文
[1] Kavlock R J, Daston G P, Derosa C, et al. Research needs for the risk assessment of health andenvironmental effects of endocrine disruptors: A report of the US EPA-sponsored workshop.Environ Health Persp,1996,1044:715-740.
    [2] Kavlock R J. Overview of endocrine in the disruptor research activity United States.Chemosphere,1999,39(8):1227-1236.
    [3]沈秋莹,罗利军,王娟,等.仿生吸附剂去除水中环境内分泌干扰物的研究进展.化工进展,2012(02):428-434.
    [4] Waller C L, Oprea T I, Chae K, et al. Ligand-based identification of environmental estrogens.Chem Res Toxicol,1996,9(8):1240-1248.
    [5] Rodgers-Gray T P, Jobling S, Morris S, et al. Long-term temporal changes in the estrogeniccomposition of treated sewage effluent and its biological effects on fish. Environ Sci Technol,2000,34(8):1521-1528.
    [6] Aerni H R, Kobler B, Rutishauser B V, et al. Combined biological and chemical assessment ofestrogenic activities in wastewater treatment plant effluents (vol378, pg688,2004). AnalBioanal Chem,2004,378(7):1873.
    [7] Sumpter J P, Johnson A C.10th Anniversary Perspective: Reflections on endocrine disruptionin the aquatic environment: from known knowns to unknown unknowns (and many things inbetween). J Environ Monitor,2008,10(12):1476-1485.
    [8] Vajda A M, Barber L B, Gray J L, et al. Reproductive Disruption in Fish Downstream from anEstrogenic Wastewater Effluent. Environ Sci Technol,2008,42(9):3407-3414.
    [9] Stumpe B, Marschner B. Factors controlling the biodegradation of17beta-estradiol, estroneand17alpha-ethinylestradiol in different natural soils. Chemosphere,2009,74(4):556-562.
    [10] Wang Y Q, Hu W, Cao Z H, et al. Occurrence of endocrine-disrupting compounds inreclaimed water from Tianjin, China. Anal Bioanal Chem,2005,383(5):857-863.
    [11] Citulski J A, Farahbakhsh K. Fate of Endocrine-Active Compounds during MunicipalBiosolids Treatment: A Review. Environ Sci Technol,2010,44(22):8367-8376.
    [12] Arnon S, Dahan O, Elhanany S, et al. Transport of testosterone and estrogen from dairy-farmwaste lagoons to groundwater. Environ Sci Technol,2008,42(15):5521-5526.
    [13] Stanford B D, Amoozegar A, Weinberg H S. The impact of co-contaminants and septicsystem effluent quality on the transport of estrogens and nonylphenols through soil. WaterRes,2010,44(5):1598-1606.
    [14] Mahjoub O, Escande A, Rosain D, et al. Estrogen-like and dioxin-like organic contaminantsin reclaimed wastewater: transfer to irrigated soil and groundwater. Water Sci Technol,2011,63(8):1657-1662.
    [15] Lagana A, Fago G, Marino A, et al. Liquid chromatography tandem mass spectrometryapplied to the analysis of natural and synthetic steroids in environmental waters. Anal Lett,2001,34(6):913-926.
    [16] Joss A, Keller E, Alder A C, et al. Removal of pharmaceuticals and fragrances in biologicalwastewater treatment. Water Res,2005,39(14):3139-3152.
    [17] Joss A, Zabczynski S, Gobel A, et al. Biological degradation of pharmaceuticals in municipalwastewater treatment: Proposing a classification scheme. Water Res,2006,40(8):1686-1696.
    [18] Kim S D, Cho J, Kim I S, et al. Occurrence and removal of pharmaceuticals and endocrinedisruptors in South Korean surface, drinking, and waste waters. Water Res,2007,41(5):1013-1021.
    [19] Fernandez M P, Buchanan I D, Ikonomou M G. Seasonal variability of the reduction inestrogenic activity at a municipal WWTP. Water Res,2008,42(12):3075-3081.
    [20] Xu K, Harper W F, Zhao D.17alpha-ethninylestradiol sorption to activated sludge biomass:Thermodynamic properties and reaction mechanisms. Water Res,2008,42(12):3146-3152.
    [21] Stalter D, Magdeburg A, Wagner M, et al. Ozonation and activated carbon treatment ofsewage effluents: Removal of endocrine activity and cytotoxicity. Water Res,2011,45(3):1015-1024.
    [22] Yi T, Mackintosh S, Aga D S, et al. Exploring17alpha-ethinylestradiol removal,mineralization, and bioincorporation in engineered bioreactors. Water Res,2011,45(3):1369-1377.
    [23] de Alda M, Barcelo D. Determination of steroid sex hormones and related syntheticcompounds considered as endocrine disrupters in water by fully automated on-linesolid-phase extraction-liquid chromatography-diode array detection. J Chromatogr a,2001,911(2):203-210.
    [24]隋倩,黄俊,余刚.中国城市污水处理厂内分泌干扰物控制优先性分析.环境科学,2009(02):384-390.
    [25]孙艳,黄璜,胡洪营,等.污水处理厂出水中雌激素活性物质浓度与生态风险水平.环境科学研究,2010(12):1488-1493.
    [26] Ying G G, Kookana R S. Sorption and degradation of estrogen-like-endocrine disruptingchemicals in soil. Environ Toxicol Chem,2005,24(10):2640-2645.
    [27] Hanselman T A, Graetz D A, Wilkie A C. Manure-borne estrogens as potentialenvironmental contaminants: A review. Environ Sci Technol,2003,37(24):5471-5478.
    [28] Gross-Sorokin M Y, Roast S D, Brighty G C. Assessment of feminization of male fish inEnglish rivers by the environment agency of England and Wales. Environ Health Persp,2006,1141:147-151.
    [29] Xu Y, Luo F, Pal A, et al. Occurrence of emerging organic contaminants in a tropical urbancatchment in Singapore. Chemosphere,2011,83(7):963-969.
    [30] Staples C A, Dorn P B, Klecka G M, et al. A review of the environmental fate, effects, andexposures of bisphenol A. Chemosphere,1998,36(10):2149-2173.
    [31] Wright-Walters M, Volz C, Talbott E, et al. An updated weight of evidence approach to theaquatic hazard assessment of Bisphenol A and the derivation a new predicted no effectconcentration (Pnec) using a non-parametric methodology. Sci Total Environ,2011,409(4):676-685.
    [32] Yamamoto H, Liljestrand H M, Shimizu Y, et al. Effects of physical-chemical characteristicson the sorption of selected endocrine disrnptors by dissolved organic matter surrogates.Environ Sci Technol,2003,37(12):2646-2657.
    [33]李青松.水中甾体类雌激素内分泌干扰物去除性能及降解机理研究[博士学位论文].上海:同济大学,2007.
    [34]黎娜.双酚A在表层沉积物主要组分上的吸附及其生物降解规律研究[博士学位论文].长春:吉林大学,2008.
    [35]吴乾元.氯消毒对再生水遗传毒性和雌/抗雌激素活性的影响研究[博士学位论文].北京:清华大学,2010.
    [36] Lafleur A D, Schug K A. A review of separation methods for the determination of estrogensand plastics-derived estrogen mimics from aqueous systems. Anal Chim Acta,2011,696(1-2):6-26.
    [37] Vega-Morales T, Sosa-Ferrera Z, Santana-Rodriguez J J. Determination of alkylphenolpolyethoxylates, bisphenol-A,17alpha-ethynylestradiol and17beta-estradiol and itsmetabolites in sewage samples by SPE and LC/MS/MS. J Hazard Mater,2010,183(1-3):701-711.
    [38] Kuch H M, Ballschmiter K. Determination of endocrine-disrupting phenolic compounds andestrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range.Environ Sci Technol,2001,35(15):3201-3206.
    [39] Petrovic M, Eljarrat E, de Alda M, et al. Recent advances in the mass spectrometric analysisrelated to endocrine disrupting compounds in aquatic environmental samples. J Chromatogr a,2002,974:23-51.
    [40] Noppe H, De Wasch K, Poelmans S, et al. Development and validation of an analyticalmethod for detection of estrogens in water. Anal Bioanal Chem,2005,382(1):91-98.
    [41] Zhao J, Ying G, Wang L, et al. Determination of phenolic endocrine disrupting chemicalsand acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gaschromatography-negative chemical ionization-mass spectrometry. Sci Total Environ,2009,407(2):962-974.
    [42] Lagana A, Bacaloni A, De Leva I, et al. Analytical methodologies for determining theoccurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters.Anal Chim Acta,2004,501(1):79-88.
    [43] Beck I C, Bruhn R, Gandrass J, et al. Liquid chromatography-tandem mass spectrometryanalysis of estrogenic compounds in coastal surface water of the Baltic Sea. J Chromatogr a,2005,1090(1-2):98-106.
    [44] Kumar V, Nakada N, Yasojima M, et al. Rapid determination of free and conjugated estrogenin different water matrices by liquid chromatography-tandem mass spectrometry.Chemosphere,2009,77(10):1440-1446.
    [45] Sun L, Yong W, Chu X, et al. Simultaneous determination of15steroidal oral contraceptivesin water using solid-phase disk extraction followed by high performance liquidchromatography-tandem mass spectrometry. J Chromatogr a,2009,1216(28):5416-5423.
    [46] Sui Q, Huang J, Deng S B, et al. Rapid determination of pharmaceuticals from multipletherapeutic classes in wastewater by solid-phase extraction and ultra-performance liquidchromatography tandem mass spectrometry. Chinese Sci Bull,2009,54(24):4633-4643.
    [47] Diaz-Cruz M S, Barcelo D. Trace organic chemicals contamination in ground water recharge.Chemosphere,2008,72(3):333-342.
    [48] Cajthaml T, Kresinova Z, Svobodova K, et al. Microbial transformation of synthetic estrogen17alpha-ethinylestradiol. Environ Pollut,2009,157(12):3325-3335.
    [49] Sulleabhain C O, Gill L W, Misstear B D R, et al. Fate of endocrine-disrupting chemicals inpercolating domestic wastewater effluent. Water Environ J,2009,23(2):110-118.
    [50] Kuch B, Kern F, Metzger J W, et al. Effect-related monitoring: estrogen-like substances ingroundwater. Environ Sci Pollut R,2010,17(2):250-260.
    [51] Musolff A, Leschik S, Reinstorf F, et al. Micropollutant Loads in the Urban Water Cycle.Environ Sci Technol,2010,44(13):4877-4883.
    [52] Zhao S, Zhang P, Melcer M E, et al. Estrogens in streams associated with a concentratedanimal feeding operation in upstate New York, USA. Chemosphere,2010,79(4):420-425.
    [53] Steiner L D, Bidwell V J, Di H J, et al. Transport and Modeling of Estrogenic Hormones in aDairy Farm Effluent through Undisturbed Soil Lysimeters. Environ Sci Technol,2010,44(7):2341-2347.
    [54] Bartelt-Hunt S, Snow D D, Damon-Powell T, et al. Occurrence of steroid hormones andantibiotics in shallow groundwater impacted by livestock waste control facilities. J ContamHydrol,2011,123(3-4):94-103.
    [55] Giudice B D, Young T M. Mobilization of endocrine-disrupting chemicals and estrogenicactivity in simulated rainfall runoff from land-applied biosolids. Environ Toxicol Chem,2011,30(10):2220-2228.
    [56] Mansilha C, Melo A, Ferreira I M P L, et al. Groundwater from Infiltration Galleries Usedfor Small Public Water Supply Systems: Contamination with Pesticides and EndocrineDisruptors. B Environ Contam Tox,2011,87(3):312-318.
    [57] Wolz J, Grosshans K, Streck G, et al. Estrogen receptor mediated activity in banksidegroundwater, with flood suspended particulate matter and floodplain soil-An approachcombining tracer substance, bioassay and target analysis. Chemosphere,2011,85(5):717-723.
    [58] Ternes T A, Bonerz M, Herrmann N, et al. Irrigation of treated wastewater in Braunschweig,Germany: An option to remove pharmaceuticals and musk fragrances. Chemosphere,2007,66(5):894-904.
    [59] Hohenblum P, Gans O, Moche W, et al. Monitoring of selected estrogenic hormones andindustrial chemicals in groundwaters and surface waters in Austria. Sci Total Environ,2004,333(1-3):185-193.
    [60] Fine D D, Breidenbach G P, Price T L, et al. Quantitation of estrogens in ground water andswine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethylsilylderivatizations and gas chromatography-negative ion chemical ionization tandem massspectrometry. J Chromatogr a,2003,1017(1-2):167-185.
    [61] Kolodziej E P, Harter T, Sedlak D L. Dairy wastewater, aquaculture, and spawning fish assources of steroid hormones in the aquatic environment. Environ Sci Technol,2004,38(23):6377-6384.
    [62] Swartz C H, Reddy S, Benotti M J, et al. Steroid estrogens, nonylphenol ethoxylatemetabolites, and other wastewater contaminants in groundwater affected by a residentialseptic system on Cape Cod, MA. Environ Sci Technol,2006,40(16):4894-4902.
    [63] Peterson E W, Davis R K, Orndorff H A.17beta-estradiol as an indicator of animal wastecontamination in mantled karst aquifers. J Environ Qual,2000,29(3):826-834.
    [64] Wicks C, Kelley C, Peterson E. Estrogen in a karstic aquifer. Ground Water,2004,42(3):384-389.
    [65] Rudel R A, Melly S J, Geno P W, et al. Identification of Alkylphenols and Other EstrogenicPhenolic Compounds in Wastewater, Septage, and Groundwater on Cape Cod, Massachusetts.Environ Sci Technol,1998,32(7):861-869.
    [66] Lagana A, Bacaloni A, De Leva I, et al. Analytical methodologies for determining theoccurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters.Anal Chim Acta,2004,501(1):79-88.
    [67] Ahel M, Schaffner C, Giger W. Behaviour of alkylphenol polyethoxylate surfactants in theaquatic environment.3. Occurrence and elimination of their persistent metabolites duringinfiltration of river water to groundwater. Water Res,1996,30(1):37-46.
    [68] Katz B G, Griffin D W. Using chemical and microbiological indicators to track the impactsfrom the land application of treated municipal wastewater and other sources on groundwaterquality in a karstic springs basin. Environ Geol,2008,55(4):801-821.
    [69] Zhou H D, Huang X, Wang X L, et al. Behaviour of selected endocrine-disrupting chemicalsin three sewage treatment plants of Beijing, China. Environ Monit Assess,2010,161(1-4):107-121.
    [70]胡洪营,王超,郭美婷.药品和个人护理用品(PPCPs)对环境的污染现状与研究进展.生态环境,2005(06):947-952.
    [71]刘先利,刘彬,吴峰,等.环境雌激素及其降解途径.环境科学与技术,2003(04):3-5.
    [72] Pignatello J J, Xing B S. Mechanisms of slow sorption of organic chemicals to naturalparticles. Environ Sci Technol,1996,30(1):1-11.
    [73] Yu Z Q, Huang W L. Competitive sorption between17alpha-ethinyl estradiol andnaphthalene/phenanthrene by sediments. Environ Sci Technol,2005,39(13):4878-4885.
    [74] Khanal S K, Xie B, Thompson M L, et al. Fate, transport, and biodegradation of naturalestrogens in the environment and engineered systems. Environ Sci Technol,2006,40(21):6537-6546.
    [75] Bonin J L, Simpson M J. Sorption of steroid estrogens to soil and soil constituents in single-and multi-sorbate systems. Environ Toxicol Chem,2007,26(12):2604-2610.
    [76] Pan B, Ning P, Xing B S. Part V-sorption of pharmaceuticals and personal care products.Environ Sci Pollut R,2009,16(1):106-116.
    [77] Sun K, Gao B, Zhang Z, et al. Sorption of endocrine disrupting chemicals by condensedorganic matter in soils and sediments. Chemosphere,2010,80(7):709-715.
    [78] Mashtare M L, Khan B, Lee L S. Evaluating stereoselective sorption by soils of17α-estradioland17β-estradiol. Chemosphere,2011,82(6):847-852.
    [79] Lima D, Schneider R J, Esteves V I. Sorption behavior of EE2on soils subjected to differentlong-term organic amendments. Sci Total Environ,2012,423:120-124.
    [80] Sun K, Jin J, Gao B, et al. Sorption of17alpha-ethinyl estradiol, bisphenol A andphenanthrene to different size fractions of soil and sediment. Chemosphere,2012,88(5):577-583.
    [81] Li J, Jiang L, Liu X, et al. Adsorption and aerobic biodegradation of four selected endocrinedisrupting chemicals in soil–water system. Int Biodeter Biodegr,2013,76(0):3-7.
    [82] Casey F, Simunek J, Lee J, et al. Sorption, mobility, and transformation of estrogenichormones in natural soil. J Environ Qual,2005,34(4):1372-1379.
    [83] Navarro A, Endo S, Gocht T, et al. Sorption of alkylphenols on Ebro River sediments:Comparing isotherms with field observations in river water and sediments. Environ Pollut,2009,157(2):698-703.
    [84] Caron E, Farenhorst A, Zvomuya F, et al. Sorption of four estrogens by surface soils from41cultivated fields in Alberta, Canada. Geoderma,2010,155(1-2):19-30.
    [85] Karnjanapiboonwong A, Morse A N, Maul J D, et al. Sorption of estrogens, triclosan, andcaffeine in a sandy loam and a silt loam soil. J Soil Sediment,2010,10(7):1300-1307.
    [86] Casey F X M, Larsen G L, Hakk H, et al. Fate and Transport of17β-Estradiol in Soil WaterSystems. Environ Sci Technol,2003,37(11):2400-2409.
    [87] Lee L S, Strock T J, Sarmah A K, et al. Sorption and Dissipation of Testosterone, Estrogens,and Their Primary Transformation Products in Soils and Sediment. Environ Sci Technol,2003,37(18):4098-4105.
    [88] Takigami H, Taniguchi N, Shimizu Y. Sorption and desorption of17beta-estradiol to naturalsediment. Water Sci Technol,2011,64(7):1473-1478.
    [89] Weber W J, Mcginley P M, Katz L E. A distributed reactivity model for sorption by soils andsediments.1. Conceptual basis and equilibrium assessments. Environ Sci Technol,1992,26(10):1955-1962.
    [90] Ran Y, Sun K, Yang Y, et al. Strong sorption of phenanthrene by condensed organic matterin soils and sediments. Environ Sci Technol,2007,41(11):3952-3958.
    [91] Pan B, Ning P, Xing B S. Part IV-sorption of hydrophobic organic contaminants. Environ SciPollut R,2008,15(7):554-564.
    [92] Xing B, Pignatello J J, Gigliotti B. Competitive Sorption between Atrazine and OtherOrganic Compounds in Soils and Model Sorbents. Environ Sci Technol,1996,30(8):2432-2440.
    [93] Sun K, Ro K, Guo M X, et al. Sorption of bisphenol A,17alpha-ethinyl estradiol andphenanthrene on thermally and hydrothermally produced biochars. Bioresource Technol,2011,102(10):5757-5763.
    [94] Hou J A, Pan B, Niu X K, et al. Sulfamethoxazole sorption by sediment fractions incomparison to pyrene and bisphenol A. Environ Pollut,2010,158(9):2826-2832.
    [95]倪柳芳,崔立明,刘心中,等.生物黑碳研究.实验室科学,2011,14(06):265-269.
    [96]周丹丹.生物碳质对有机污染物的吸附作用及机理调控[硕士学位论文].杭州:浙江大学,2008.
    [97] Yu Z Q, Xiao B H, Huang W L, et al. Sorption of steroid estrogens to soils and sediments.Environ Toxicol Chem,2004,23(3):531-539.
    [98] Pan B, Lin D H, Mashayekhi H, et al. Adsorption and hysteresis of bisphenol A and17alpha-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol,2008,42(15):5480-5485.
    [99] Cajthaml T, Kresinova Z, Svobodova K, et al. Microbial transformation of synthetic estrogen17alpha-ethinylestradiol. Environ Pollut,2009,157(12):3325-3335.
    [100] Carr D L, Morse A N, Zak J C, et al. Microbially Mediated Degradation of CommonPharmaceuticals and Personal Care Products in Soil Under Aerobic and Reduced OxygenConditions. Water Air Soil Poll,2011,216(1-4):633-642.
    [101] Langdon K A, Warne M S, Smernik R J, et al. Degradation of4-nonylphenol,4-t-octylphenol, bisphenol A and triclosan following biosolids addition to soil underlaboratory conditions. Chemosphere,2011,84(11):1556-1562.
    [102] Caron E, Farenhorst A, Mcqueen R, et al. Mineralization of17beta-estradiol in36surfacesoils from Alberta, Canada. Agr Ecosyst Environ,2010,139(4):534-545.
    [103] Xu J, Wu L S, Chang A C. Degradation and adsorption of selected pharmaceuticals andpersonal care products (PPCPs) in agricultural soils. Chemosphere,2009,77(10):1299-1305.
    [104] Xuan R C, Blassengale A A, Wang Q Q. Degradation of Estrogenic hormones in a silt loamsoil. J Agr Food Chem,2008,56(19):9152-9158.
    [105] Lucas S D, Jones D L. Biodegradation of estrone and17beta-estradiol in grassland soilsamended with animal wastes. Soil Biol Biochem,2006,38(9):2803-2815.
    [106] Roberts P, Roberts J P, Jones D L. Behaviour of the endocrine disrupting chemicalnonylphenol in soil: Assessing the risk associated with spreading contaminated waste to land.Soil Biol Biochem,2006,38(7):1812-1822.
    [107] Colucci M S, Topp E. Persistence of estrogenic hormones in agricultural soils: II.17alpha-ethynylestradiol. J Environ Qual,2001,30(6):2077-2080.
    [108] Colucci M S, Bork H, Topp E. Persistence of estrogenic hormones in agricultural soils: I.17beta-estradiol and estrone. J Environ Qual,2001,30(6):2070-2076.
    [109] Topp E, Starratt A. Rapid mineralization of the endocrine-disrupting chemical4-nonylphenolin soil. Environ Toxicol Chem,2000,19(2):313-318.
    [110] Fan Z, Casey F X M, Hakk H, et al. Persistence and fate of17beta-estradiol and testosteronein agricultural soils. Chemosphere,2007,67(5):886-895.
    [111] Rozalska S, Szewczyk R, Dlugonski J. Biodegradation of4-n-nonylphenol by thenon-ligninolytic filamentous fungus Gliocephalotrichum simplex: A proposal of a metabolicpathway. J Hazard Mater,2010,180(1-3):323-331.
    [112] Hutchins S R, White M V, Hudson F M, et al. Analysis of Lagoon Samples from DifferentConcentrated Animal Feeding Operations for Estrogens and Estrogen Conjugates. EnvironSci Technol,2007,41(3):738-744.
    [113]任海燕,纪淑兰,崔成武,等.鞘氨醇杆菌(Sphingobacterium sp.)JCR5降解17α-乙炔基雌二醇的代谢途径.环境科学,2006(09):1835-1840.
    [114] Chun S, Lee J, Geyer R, et al. Effect of agricultural antibiotics on the persistence andtransformation of17beta-estradiol in a Sequatchie loam. J Environ Sci Heal B,2005,40(5):741-751.
    [115] Czajka C P, Londry K L. Anaerobic biotransformation of estrogens. Sci Total Environ,2006,367(2-3):932-941.
    [116] Zheng W, Yates S R, Bradford S A. Analysis of steroid hormones in a typical airy wastedisposal system. Environ Sci Technol,2008,42(2):530-535.
    [117] Raman D R, Layton A C, Moody L B, et al. Degradation of estrogens in dairy waste solids:Effects of acidification and temperature. T Asae,2001,44(6):1881-1888.
    [118] Das B S, Lee L S, Rao P, et al. Sorption and degradation of steroid hormones in soils duringtransport: Column studies and model evaluation. Environ Sci Technol,2004,38(5):1460-1470.
    [119]赵颖.农药类化学物质在土壤中迁移转化的规律及数值模拟[硕士学位论文].辽宁工程技术大学,2005.
    [120]胡俊栋,陈静,王学军,等.多环芳烃室内土柱淋溶行为的CDE模型模拟.环境科学学报,2005(06):821-828.
    [121]魏建辉,管仪庆,夏冬梅,等.模拟农药莠去津在原状土柱中的运移研究.安徽农业科学,2010(08):4118-4120.
    [122]唐薇.紫色土中毒死蜱迁移的土柱实验研究[硕士学位论文].重庆:西南大学,2012.
    [123]任理,毛萌.阿特拉津在饱和砂质壤土中非平衡运移的模拟.土壤学报,2003(06):829-837.
    [124] Mansell J, Drewes J E, Rauch T. Removal mechanisms of endocrine disrupting compounds(steroids) during soil aquifer treatment. Water Sci Technol,2004,50(2):229-237.
    [125] Mansell B L, Drewes J E. Fate of steroidal hormones during soil-aquifer treatment. GroundWater Monit R,2004,24(2):94-101.
    [126] Fan Z S, Casey F, Hakk H, et al. Modeling coupled degradation, sorption, and transport of17beta-estradiol in undisturbed soil A-2135-2010. Water Resour Res,2008,44(W084248).
    [127] Laegdsmand M, Andersen H, Jacobsen O H, et al. Transport and Fate of EstrogenicHormones in Slurry-treated Soil Monoliths. J Environ Qual,2009,38(3):955-964.
    [128]姜鲁.再生水回灌过程中炔雌醇和壬基酚的行为特性研究[硕士学位论文].北京:清华大学,2012.
    [129] Writer J H, Ryan J N, Keefe S H, et al. Fate of4-Nonylphenol and17β-Estradiol in theRedwood River of Minnesota. Environ Sci Technol,2011,46(2):860-868.
    [130] Sui Q, Huang J, Deng S B, et al. Seasonal Variation in the Occurrence and Removal ofPharmaceuticals and Personal Care Products in Different Biological Wastewater TreatmentProcesses. Environ Sci Technol,2011,45(8):3341-3348.
    [131] Adler P, Steger-Hartmann T, Kalbfus W. Distribution of natural and synthetic estrogenicsteroid hormones in water samples from Southern and Middle Germany. Acta HydrochHydrob,2001,29(4):227-241.
    [132] Snyder E M, Snyder S A, Kelly K L, et al. Reproductive responses of common carp(Cyprinus carpio) exposed in cages to influent of the Las Vegas Wash in Lake Mead, Nevada,from late winter to early spring. Environ Sci Technol,2004,38(23):6385-6395.
    [133] Jianzhong Li L J X L. Adsorption and aerobic biodegradation of four selected endocrinedisrupting chemicals in soil-water system. Int Biodeter Biodegr,2012:3-7.
    [134] Writer J H, Barber L B, Ryan J N, et al. Biodegradation and Attenuation of SteroidalHormones and Alkylphenols by Stream Biofilms and Sediments. Environ Sci Technol,2011,45(10):4370-4376.
    [135] Labadie P, Cundy A B, Stone K, et al. Evidence for the migration of steroidal estrogensthrough river bed sediments. Environ Sci Technol,2007,41(12):4299-4304.
    [136] Shore L S L Y, Cohen K B. The Environmental Compartments of Environmental Hormones.Reviews on Environmental Health,2010,25(4):345-350.
    [137] Chen D Y, Xing B S, Xie W B. Sorption of phenanthrene, naphthalene and o-xylene by soilorganic matter fractions. Geoderma,2007,139(3-4):329-335.
    [138]胡顺利.土壤中有机质类型对菲的吸附行为及其可生物利用性的影响[硕士学位论文].大连:大连理工大学,2010.
    [139] Gustafsson O, Haghseta F, Chan C, et al. Quantification of the dilute sedimentary soot phase:Implications for PAH speciation and bioavailability. Environ Sci Technol,1997,31(1):203-209.
    [140]孙可.珠江三角洲地区土壤和沉积物中凝聚态有机质及其对有机污染物吸附行为的影响[博士学位论文].广州:中国科学院广州地理化学研究所,2007.
    [141] Xin J, Liu X, Jiang L, et al. BDE-47sorption and desorption to soil matrix in single-andbinary-solute systems. Chemosphere,2012,87(5):477-482.
    [142] Li J, Fu J, Zhang H, et al. Spatial and seasonal variations of occurrences and concentrationsof endocrine disrupting chemicals in unconfined and confined aquifers recharged byreclaimed water: A field study along the Chaobai River, Beijing. Sci Total Environ,2013,450-451:162-168.
    [143] Zhang J, Sequaris J, Narres H, et al. Pyrene and Phenanthrene Sorption to Model and NaturalGeosorbents in Single-and Binary-Solute Systems. Environ Sci Technol,2010,44(21):8102-8107.
    [144]翁诗甫.傅里叶变换红外光谱分析.化学工业出版社,2010.
    [145] Kang S, Xing B. Phenanthrene Sorption to Sequentially Extracted Soil Humic Acids andHumins. Environ Sci Technol,2004,39(1):134-140.
    [146] Accardi-Dey A, Gschwend P M. Reinterpreting literature sorption data considering bothabsorption into organic carbon and adsorption onto black carbon. Environ Sci Technol,2003,37(1):99-106.
    [147] Cornelissen G, Kukulska Z, Kalaitzidis S, et al. Relations between environmental blackcarbon sorption and geochemical sorbent characteristics. Environ Sci Technol,2004,38(13):3632-3640.
    [148] Yang C, Huang W L, Xiao B H, et al. Intercorrelations among degree of geochemicalalterations, physicochemical properties, and organic sorption equilibria of kerogen. EnvironSci Technol,2004,38(16):4396-4408.
    [149] Xiao B H, Yu Z Q, Huang W L, et al. Black carbon and kerogen in soils and sediments.2.Their roles in equilibrium sorption of less-polar organic pollutants. Environ Sci Technol,2004,38(22):5842-5852.
    [150] Braida W J, Pignatello J J, Lu Y, et al. Sorption Hysteresis of Benzene in Charcoal Particles.Environ Sci Technol,2002,37(2):409-417.
    [151] Zhu D Q, Hyun S H, Pignatello J J, et al. Evidence for pi-pi electron donor-acceptorinteractions between pi-donor aromatic compounds and pi-acceptor sites in soil organicmatter through pH effects on sorption. Environ Sci Technol,2004,38(16):4361-4368.
    [152] Zhu D Q, Pignatello J J. Characterization of aromatic compound sorptive interactions withblack carbon (charcoal) assisted by graphite as a model. Environ Sci Technol,2005,39(7):2033-2041.
    [153] Nicola S. Binding mechanisms of pesticides to soil humic substances. Sci Total Environ,1992,123–124(0):63-76.
    [154] Senesi N, D'Orazio V, Miano T M. Adsorption mechanisms of s-triazine and bipyridyliumherbicides on humic acids from hop field soils. Geoderma,1995,66(3–4):273-283.
    [155] Xiao B, Yu Z, Huang W, et al. Black Carbon and Kerogen in Soils and Sediments.2. TheirRoles in Equilibrium Sorption of Less-Polar Organic Pollutants. Environ Sci Technol,2004,38(22):5842-5852.
    [156] Chefetz B, Xing B S. Relative Role of Aliphatic and Aromatic Moieties as Sorption Domainsfor Organic Compounds: A Review. Environ Sci Technol,2009,43(6):1680-1688.
    [157] Xia G S, Ball W P. Adsorption-partitioning uptake of nine low-polarity organic chemicals ona natural sorbent. Environ Sci Technol,1999,33(2):262-269.
    [158] Chiou C T, Kile D E, Rutherford D W, et al. Sorption of selected organic compounds fromwater to a peat soil and its humic-acid and humin fractions: Potential sources of the sorptionnonlinearity. Environ Sci Technol,2000,34(7):1254-1258.
    [159] Ahmad R, Kookana R S, Alston A M, et al. The nature of soil organic matter affects sorptionof pesticides.1. Relationships with carbon chemistry as determined by C-13CPMAS NMRspectroscopy. Environ Sci Technol,2001,35(5):878-884.
    [160] Pan B, Xing B S, Liu W X, et al. Two-compartment sorption of phenanthrene on eight soilswith various organic carbon contents. J Environ Sci Heal B,2006,41(8):1333-1347.
    [161] Yuan G S, Xing B S. Effects of metal cations on sorption and desorption of organiccompounds in humic acids. Soil Sci,2001,166(2):107-115.
    [162] Pignatello J J. Dynamic interactions of natural organic matter and organic compounds. J SoilSediment,2012,12(8):1241-1256.
    [163] Pan B, Wang P, Wu M, et al. Sorption kinetics of ofloxacin in soils and mineral particles.Environ Pollut,2012,171:185-190.
    [164] Pan B, Xing B. Competitive and Complementary Adsorption of Bisphenol A and17α-Ethinyl Estradiol on Carbon Nanomaterials. J Agr Food Chem,2010,58(14):8338-8343.
    [165] Alexander M. Aging, bioavailability, and overestimation of risk from environmentalpollutants. Environ Sci Technol,2000,34(20):4259-4265.
    [166] Kleineidam S, Rugner H, Grathwohl P. Desorption kinetics of phenanthrene in aquifermaterial lacks hysteresis. Environ Sci Technol,2004,38(15):4169-4175.
    [167] Johnson M D, Keinath T M, Weber W J. A distributed reactivity model for sorption by sailsand sediments.14. Characterization and modeling of phenanthrene desorption rates. EnvironSci Technol,2001,35(8):1688-1695.
    [168] Braida W J, Pignatello J J, Lu Y, et al. Sorption Hysteresis of Benzene in Charcoal Particles.Environ Sci Technol,2003,37(2):409-417.
    [169] Johnson M D, Huang W L, Dang Z, et al. A distributed reactivity model for sorption by soilsand sediments.12. Effects of subcritical water extraction and alterations of soil organicmatter on sorption equilibria. Environ Sci Technol,1999,33(10):1657-1663.
    [170] Weber W J, Kim S H, Johnson M D. Distributed Reactivity Model for Sorption by Soils andSediments.15. High-Concentration Co-Contaminant Effects on Phenanthrene Sorption andDesorption. Environ Sci Technol,2002,36(16):3625-3634.
    [171] Mcginley P M, Katz L E, Weber W J. A distributed reactivity model for sorption by soils andsediments.2. Multicomponent systems and competitive effects. Environ Sci Technol,1993,27(8):1524-1531.
    [172] Chiou C T, Kile D E. Deviations from sorption linearity on soils of polar and nonpolarorganic compounds at low relative concentrations. Environ Sci Technol,1998,32(3):338-343.
    [173] White J C, Pignatello J J. Influence of bisolute competition on the desorption kinetics ofpolycyclic aromatic hydrocarbons in soil. Environ Sci Technol,1999,33(23):4292-4298.
    [174] Xia G S, Ball W P. Polanyi-based models for the competitive sorption of low-polarityorganic contaminants on a natural sorbent. Environ Sci Technol,2000,34(7):1246-1253.
    [175] Xiao B, Yu Z, Huang W, et al. Black Carbon and Kerogen in Soils and Sediments.2. TheirRoles in Equilibrium Sorption of Less-Polar Organic Pollutants. Environ Sci Technol,2004,38(22):5842-5852.
    [176] Yang K, Wang X, Zhu L, et al. Competitive sorption of pyrene, phenanthrene, andnaphthalene on multiwalled carbon nanotubes. Environ Sci Technol,2006,40(18):5804-5810.
    [177] Pan B, Xing B. Competitive and Complementary Adsorption of Bisphenol A and17alpha-Ethinyl Estradiol on Carbon Nanomaterials. J Agr Food Chem,2010,58(14):8338-8343.
    [178] Weber W J, Kim S H, Johnson M D. Distributed Reactivity Model for Sorption by Soils andSediments.15. High-Concentration Co-Contaminant Effects on Phenanthrene Sorption andDesorption. Environ Sci Technol,2002,36(16):3625-3634.
    [179] Leboeuf E J, Weber W J. Macromolecular characteristics of natural organic matter.2.Sorption and desorption behavior. Environ Sci Technol,2000,34(17):3632-3640.
    [180] Johnson M D, Huang W, Weber W J. A Distributed Reactivity Model for Sorption by Soilsand Sediments.13. Simulated Diagenesis of Natural Sediment Organic Matter and Its Impacton Sorption/Desorption Equilibria. Environ Sci Technol,2001,35(8):1680-1687.
    [181] Salloum M J, Chefetz B, Hatcher P G. Phenanthrene sorption by aliphatic-rich naturalorganic matter. Environ Sci Technol,2002,36(9):1953-1958.
    [182] Huang W, Weber W J. A Distributed Reactivity Model for Sorption by Soils and Sediments.10. Relationships between Desorption, Hysteresis, and the Chemical Characteristics ofOrganic Domains. Environ Sci Technol,1997,31(9):2562-2569.
    [183] Xiao B. The effects of soil organic matter heterogeneity on equilibrium sorption by soils andsediments[Doctoral dissertation]. Philadephia: Drexel University,2004.
    [184]任海燕,纪树兰,刘志培,等.17α-乙炔基雌二醇降解菌的分离鉴定及降解特性.环境科学,2006,27(06):1186-1190.
    [185]罗启仕,张锡辉,王慧,等.生物修复中有机污染物的生物可利用性.生态环境,2004(01):85-87.
    [186] Gutendorf B, Westendorf J. Comparison of an array of in vitro assays for the assessment ofthe estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens.Toxicology,2001,166(1-2):79-89.
    [187] Patterson B M, Shackleton M, Furness A J, et al. Fate of nine recycled water trace organiccontaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer:Column studies. Water Res,2010,44(5):1471-1481.
    [188] N. Toride F J L A. The CXTFIT Code for Estimating Transport Parameters from Laboratoryor Field Tracer Experiments, Version2.0. U.S.1995.
    [189] Guoping T, Mayes M A, Parker J C, et al. CXTFIT/Excel-A modular adaptable code forparameter estimation, sensitivity analysis and uncertainty analysis for laboratory or fieldtracer experiments. Comput Geosci-Uk,2010,36(9):1200-1209.
    [190]王洪涛.多孔介质污染物迁移动力学.高等教育出版社,2008.
    [191] Tang G, Mayes M A, Parker J C, et al. Improving parameter estimation for columnexperiments by multi-model evaluation and comparison. J Hydrol,2009,376(3-4):567-578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700