用户名: 密码: 验证码:
煤电工业发展对淮南地表水体的环境影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉积物作为水环境中金属元素的主要蓄积库,可以反映水体受金属污染的状况。随着淮南市“煤电化三大基地”的建设,大量的固体废物堆置在地表,在风化、淋溶作用下,有害金属元素将会释放,并迁移到周围的土壤和地表水体中,对矿区的生态环境造成了一定的危害。本文通过对矿区沉陷水体及灰场周边水体的表层沉积物进行研究,从总量上分析水体沉积物中金属元素的分布、富集特征;通过科学的评价,揭示受煤电工业影响的水体金属污染状况,预测金属元素对水环境的生态风险,同时对金属元素的迁移性规律进行研究。结果如下:
     1、矿区沉陷水体沉积物中,元素Cd的危害程度较其他金属严重。矿井区的生态危害程度为:报废矿井区>老矿井区>新矿井区。开采时间越长,煤矸石风化、淋溶的程度就越高,金属对矿区造成的生态危害就越大。
     2、淮南三大灰场周边水体沉积物中,金属cd的生态危害最为严重。各灰场周边水体受金属元素危害的程度为:上窑采样区>高皇采样区>新集采样区。
     淮南粉煤灰中金属含量以残渣态为主,灰中金属向环境迁移的量很小,但是长久堆置,粉煤灰中金属元素可溶出态的比例会越来越大。
     pH值对灰场土壤中Cd元素形态含量及其迁移影响很大,是沉积环境中Cd元素富集的重要因素。
     3、田集示范区沉陷水体上覆水中元素Cu的含量超出渔业水质标准;元素Hg的含量超出地表水环境质量标准。表层沉积物中Cu和zn的含量相对较高。通过金属相关性分析可知,表层沉积物中As、Cr和cu可能有相同的污染来源;Hg、Pb、Cd和Zn也可能有相同的污染来源。表层沉积物金属主要以残渣态为主,对水体造成二次污染的可能性较小。
     通过评价可知元素Cd的危害最大。因风刮及降水沉降的影响,致使大量的煤矸石及煤颗粒涵盖于矿区周边土壤中,导致项目区沉陷地土壤中的金属含量略高于灰场土壤。
     本文对水体环境金属污染的调查可知,整个淮南矿区沉陷水体及灰场周边水体沉积环境的生态风险为轻微级,属安全等级。
As the accumulation place of metals in the water environment, sediments can reflect the situation about how metals pollute waters. With the development of the three bases of coal mines, power plants and chemical factories in Huainan, lots of solid wastes were stacked on the ground surface. Because of the effect of weathering and leaching, hazardous metal elements among solid wastes will release and transfer into surrounding soils and surface waters, snd they will damage the ecological environment of the mining area. Through studying on the surface sediment of subsidence-waters in the mine area and waters around the ash field, this paper analyzes the characteristics of metal distribution and enrichment by measuring the total amount, and reveals the situation of water pollution by metals under the influence of the development of coal mines and power plants through the scientific evaluation, predicts the ecological risk on the water quality caused by metals, meanwhile, studies the mobility law of metal elements. The results show that:
     1、According to the sediments of subsidence waters in the mining areas, the damage degree of Cd is larger than other metal elements'. The order of degrees in which the ecology is harmed in the study area is, abandoned mining areas' > old mining areas' > new mining areas'. The longer the time of the exploitation is, the higher the degree of weathering and leaching of coal gangue rises, and the more serious the potential ecological risk caused by metals becomes in the mining area.
     2、Through the assays of waters sediments in the three major ash fields in Huainan, the damage from Cd is the most serious. The order of harm-to-ecology degrees of the study areas is Shangyao sampling area's > Gaohuang sampling area's > Xinji sampling area's. The morphology of metals in the coal fly ash is mainly the residual state and the amount of metals in the coal fly ash transferring to the environment is very small. However, as the stacking time passes, the proportion of soluble stated metals in the coal fly ash will get bigger and bigger. pH obviously influences the morphological concentration of Cd in soils surrounding the ash field, it is an important factor for Cd to enrich in sedimentary environment.
     3、The concentration of Cu in the overlying level of subsidence waters in Tianji exceeds the corresponding one of environmental quality standards for fishery water , the concentration of Hg exceeds the corresponding one of environmental quality standards for surface water . The concentration of Cu and Zn in the superficial sediment is relatively higher. Through the analysis of metal correlation, it is found that As, Cr and Cu in the superficial sediment maybe come from the same pollution source, and Hg, Pb, Cd and Zn maybe also get out of the same pollution source. The morphology of metals in the superficial sediment of project area is mainly the residual state, the possibility of a secondary water pollution caused by metals is smaller.
     It is found that the damage caused by Cd is the most serious by evaluation. Under the brush of wind and rain lots of particles drop off the coal gangue and the coal and cover on the soil near the mining area, which causes that the metals concentrations in soils of the coal mining subsidence land of the project are a little higher than those in soils of the ash field of Tianji power plant.
     Through the investigation on metal pollution of water environment, it is found that the ecological risk of sedimentary environment of the all subsidence waters and waters around the ash field is of a slight and safe grade.
引文
[1]袁旭音,陈骏,吕宝源,等.太湖沉积物微量元素特征和变化:自然与人类活动的影响[J].地质论评,2003,19(5):552-560.
    [2]Foster U,Wittmann G T W.Metal pollution in the Aquatic Environment[M].Berlin:Spring-erverlag,1979,110-192.
    [3]陈静生.沉积物金属污染研究中的若干问题[J].环境污染治理技术与设备,1983,4(8):1-12.
    [4]张鑫,周涛发,杨西飞.河流沉积物重金属污染评价方法比较研究[J].合肥工业大学(自然科学版),2005,28(11):1419-1423.
    [5]杨卓,李贵宝,王殿武,等.白洋淀底泥重金属的污染及潜在生态危害评价[J].农业环境科学学报,2005,24(5):945-951.
    [6]淮南市人吣政府.淮南生态市建设规划(2003-2020)[R].淮南:淮南市人民政府,2005.6
    [7]Spliethoff,Hemond.History of toxic metal discharge to surface water soft the Aberjona watershed Environscitechnol,1996,30(1):121-128.
    [8]Callender E and P C Van Metre,Reservoir sediment cores show U.S.lead declines.Environmental Science & Technology,1997,31(9):424A-428A
    [9]Van Metre P C and E Challender(1996) Identifying water-quality trends in the Trinity River,Texas,USA,1969-1992,usingsediment cores from Lake Livingston.Environmental Geology,1996,28(4):1-4
    [10]Calmanl W,Ahlfw,Forster U,Sediment quality assessment:chemical and bioIogicaI appro aches.In:Calmano W.,Forster U.,eds.Sediment and toxic substance:Environmental effects and ecotoxity[M].Berlin:Springer,1995,1-36.
    [11]Santschi P.H.,Hoehener P.,Benoit G.et al,Chemical processes at the sediment-water interface[J].Mar.Chem.,1990,30(1-3),269-315.
    [12]Huang W.,Campredom R.,Abrao J.J.,et al,Variation of heavy metals in recent sediments from Piratininga Lagoon(Brazil)-interpretation of geochemical data with the aid of multivariate analysisf[J]Environmental Geology,1994,Vol 36(4):241-247.
    [13]Lawson N.M.,Mason R.P.,Laporte J.M,The fate and transport of mercury,methyl mercury,and other trace metals in Chesapeake Bay tributaries[J].Wat.Res.,Vol 35(2):501-515.
    [14]Rate A.W.Distribution of Heavy Metals in Near-shore Sediments of the Swan River Estuary[J].Western Australia,Water Air and Soil Pollution,2000,124(1/2):155-168.
    [15]Gonzalez A.E.,Assessment of Metals in Sediments in a Tributary of Guadalquivir River(Spain):Heavy Metal Partitioning and Relation Between the Water and Sediment System[J].Water Air and Soil Pollution,2000,121(11/12):11-29.
    [16]Muller G.Index of geo-accumulation in sediments of the Rhine River[J].GeoJ,1969,2:108-118.
    [17]McCauley Dennis J,DeGraeve G M,Linton T K.Sediment quality guide linesand assessment:overview and research needs[J].Environmental Science&Policy,2000,(3):133-14.
    [18]Hankason Lars.An ecological risk index for aquatic pollution con troI:A sediment ecological approach[J].Water Res,1980,14:975-1001.
    [19]Hilton J A mathematical model for analysis of sediment cole date:Implications for enrichment factor calculation sand trace-metal transport mechanismsLJJ.Chemical Geology,1985,48:281-291.
    [20]刘文新,架兆坤,汤鸿霄,乐安江沉积物中金属污染的潜在生态风险评价[J].生态学报,1999,19(2):206-211.
    [21]贾振邦,周华,赵智杰,等.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报(自然科学版),2000,36(4):525-530.
    [22]贾振邦,霍文毅,赵智杰,等.应用次生相富集系数评价柴河沉积物重金属污染[J].北京大学学报(自然科学版),2000,36(6):808-812.
    [23]陈静生,等.中国东部河流沉积物中重金属含量与沉积物土要性质的关系[J].环境化学,1996,15(1):8-15.
    [24]方涛,肖邦定,张晓华,等.曝气对两种不同类型沉积物中重金属释放的影响[J].中国环境科学,2002,22(4):355-359.
    [25]陈振楼,许世远,柳林,等.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报,2000,55(6):641-651.
    [26]柳林,许世远,陈振楼.上海潮滩表层沉积物重金属的分布特征[J].上海环境科学,2000,19(7):309-312.
    [27]张于平,瞿文川.太湖沉积物中重金属的测定及环境意义[J].岩矿测试,2001,20(1):34-36.
    [28]陈敬安,万国江,徐经意.洱海沉积物粒度记录与气候千湿变迁[J].沉积学报,2000,18(3):341-345
    [29]贾振邦.柴河沉积物中重金属的聚类分析研究[J].环境科技,1993,17(4):41-44.
    [30]贾振邦,汪安,昊平,等.用脸谱图法对太子柯本溪市区段河流沉积物中重金属污染进 行评价的研究[J].北京大学学报(自然科学版),1993,29(6):736-744.
    [31]贾振邦,霍文毅,赵智杰,等.应用次生相富集系数评价柴河沉积物重金属污染[J].北京大学学报(自然科学版),2000,36(6):808-812.
    [32]Persaud,D.,Jaagumagi,R.,and Hayton,A.1993.Guidelines for the protection and management of aquatic sediment quality in Ontario.ISBN 0-7729-9248-7.Ontario Ministry of the Environment,Ottawa,Ontario.23p.
    [33]MacDonald DD,Ingersoll CG,Berger TA(2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems.Arch Environ Contam Toxicol 39:20-31.
    [34]G.Allen Burton,Jr.Sediment quality criteria in use around the world[J].Limnology,2002,3:65-75.
    [35]GB4284-84,农用污泥中污染物控制标准[S].北京:中国标准出版社,1984.
    [36]乔胜英,蒋敬业,向武,等.武汉地区湖泊沉积重金属的分布及潜在生态效应评价[J].长江流域资源与环境,2005,12(3):353-357.
    [37]张丽旭,任松,蔡健.东海三个倾倒区表层沉积物重金属富集特征及潜在生态风险评价[J].海洋通报,2005,24(2):92-96.
    [38]刘文新,栾北坤,汤鸿霄.乐安江沉积物中重金属污染的潜在生态风险评价[J].生态学报,1999,19(2):206-211.
    [39]滕彦国,等.应用地质累积指数评价沉积物中重金属污染:选择地球化学背景的影响[J].环境科学与技术,25(2):7-9.
    [40]张泰芳.安徽省_十壤环境背景值调查研究报告[R].合肥:安徽省环境监测中心站,1992:1-260.
    [41]宋祖光.杭州湾潮滩表层沉积物中重金属和磷的分布、形态及其环境意义.硕十论文.2007
    [42]Dauvalter V,Rognend S.Heavy metal pollution in sediments of the Pasvik River drainage.Chemosphere,2001,42(1):9-18.
    [43]Jain C K,Sharma M K.Distribution of trace metals in the Hindom River system,India.Journal of Hydrology,2001,253(1-4):8190.
    [44]Lin Saulwood,Hsieh I-Jy,Huang Kuo-Ming,et al.Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments.Chemical Geology,2002,182(2-4):377-394.
    [45]Huang Kuo-Ming,Lin Saulwood.Consequence and implication of heavy metal spatial va- riation in sediments of the Keeiung River drainagebasin,Taiwan.Chemosph ere,20-03,53(9):1113-1121.
    [46]Pagnanelli F,Moscardini F,Giuliano V,et al.Sequential extraction of heavy metals in fiver sediments an abandoned pyritc mining area:pollution detection and affinity series.Environmental Pollution,2004,132(2):189-201.
    [47]王天阳,王国祥.昆承湖沉积物中重金属及营养元素的污染特征[J].环境科学研究,2008,21(1):51-58.
    [48]胡雄星,韩中豪。张进,等.黄浦江表层沉积物中重金属污染的潜在生态风险评价[J].长江流域资源与环境,2008,17(1):109-112.
    [49]黄先飞,秦樊鑫,胡继伟,等.红枫湖沉积物中重金属污染特征与生态危害风险评价[J].环境科学研究,2008,21(2):18-23.
    [50]孟红明,张振克.石梁河水库沉积物中重金属的累积污染研究[J].环境科学研究,2008,21(3):44-50.
    [51]刘培陶,崔龙鹏,沈卫星,等.粉煤灰堆放场土壤环境微量元素分析与风险评价[J].农业环境科学学报,2008,27(1):207-211.
    [52]崔龙鹏,白建峰,史永红,等.采矿活动对煤矿区土壤中重金属污染研究[J].土壤学报,2004,41(6):896-903.
    [53]刘培陶.淮南粉煤灰处置环境影响评价.硕士论文.2008
    [54]李永华,杨林生,王丽珍,等.基于BCR和HG-ICP-AES的矿区土壤重金属污染特征分析[J].光谱学与光谱分析,2007,27(9):1834-1836.
    [55]李仁英,杨浩,王丽,等.滇池沉积物中重金属的形态分布特征[J].土壤,2008,40(2):264-268.
    [56]刘培陶,崔龙鹏,沈卫星,等.淮南粉煤灰中重金属元素形态分析[J].能源技术与管理,2008:64-66.
    [57]王孝堂.土壤酸度对重金属形态分配的影响[J].土壤学报,1991,28(1):103-107.
    [58]廖敏,黄昌永,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86.
    [59]莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1):9-12.
    [60]杨忠芳,陈岳龙,钱鑂,等.土壤pH对镉存在形态影响的模拟实验研究[J].地学前缘,2005,12(1):252-260.
    [61]孙贤斌,李玉成,张小平,等.淮南市重金属污染对土壤动物群落和多样性影响研究[J]. 生态学杂志,2005,24(10):1163-1166.
    [62]崔龙鹏.对淮南矿区采煤沉陷地生态环境修复的思考[J].中国矿业,2007,16(6):46-48
    [63]黄廷林.河流沉积物中重金属释放规律的研究[D].西安:西安理工大学,1994.
    [64]GB3838-2002,中国国家地表水环境质量标准[S].北京:中国标准出版社,2002.
    [65]GB11607-89,中国国家渔业水质标准[S].北京:中国标准出版社,1990.
    [66]刘文新,栾兆坤,汤鸿霄.乐安江沉积物中金属污染的潜在生态风险评价[J].生态学报,1999,19(2):206-211.
    [67]刘文新,李向东.深圳湾水域中重金属在不同相间的分布特征[J].环境科学学报,2002,22(3):305-309.
    [68]郑宝林,解立新.淮南平圩电厂二期工程铁路输煤系统方案研究[J].铁道标准设计,2007(7):115-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700