用户名: 密码: 验证码:
短纤维增强铝基复合材料制备工艺与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业迅猛发展,传统单一的材料在性能上已经不能满足发展的需要,金属基复合材料(MMCs)以其良好的物理化学性能及可设计性迅速脱颖而出。金属基复合材料传统的制备工艺为挤压铸造法,该法成本较高,对设备要求较高,工艺较为复杂,且制件后续加工困难。为简化制备MMCs的传统工艺,降低成本,拓宽其在汽车工业中应用,本文尝试使用低压液态金属浸渗法制备铝基复合材料。
     液态浸渗法制备工艺分为两步:一是增强相预制体的制备;二是液态金属的浸渗。预制体的性能决定了复合材料的性能,本文系统地研究了预制体的制备工艺,对比了多种添加剂,经过实验确定了无机粘结剂偏磷酸铝溶液,有机粘结剂淀粉溶液,分散剂聚丙烯酸钠溶液(PAAS),填充剂石墨颗粒及消泡剂正丁醇为最佳添加组分。通过正交实验对预制体制备工艺进行设计与筛选,并利用SEM,XRD对预制体内部组织进行观察分析,得到了预制体最佳制备工艺:原料配比A 9:1,原料配比B 1:10,烧结温度1050℃,保温时间2.5h,确定了烘干和烧结升温制度,制备出满足浸渗实验要求的预制体。
     本文研制了气压液态金属浸渗成型装置,并对复合材料的制备工艺、力学性能以及微观组织结构进行了研究。通过监控浸渗过程中温度场的变化,分析了液态金属在预制体内的流动形式对材料成型的影响。在液态金属浸渗过程中,临界浸渗压力、预制体预热温度、浸渗温度及保压时间等工艺参数对复合材料的致密度,界面结合性能有很大影响。本文计算了上述几个主要因素的理论值并结合实验得到了较为合适工艺参数:浸渗压力0.5MPa,升压速率为2KPa/s;浸渗温度800℃;保压时间1min;保温时间1h。
     本文初步探讨了短纤维增强机理,利用XRD、SEM及EDAX等仪器对液态浸渗法制备Al_2O_(3sf)/Al复合材料过程中所产生的缺陷进行了细致的观察与分析。结果表明复合材料主要缺陷为残留气孔、显微缩孔以及浸渗过程中产生的Mg2Si等夹杂颗粒,而界面反应程度比较微弱,对复合材料性能影响不大,可以通过调整预制体制备工艺及浸渗工艺参数,可以获得力学性能良好的复合材料。
With rapid development of automobile industry, the demand for material with excellent mechanical and physical properties has increased. Metal matrix composites (MMCs) with good physical and chemical properties which can be designed, has come to the fore quickly. The conventional technology for MMCs is squeeze casting. In addition to the good results obtained with this technique, there are some unfavorable factors in squeeze casting limit the development of MMCs. For example, the procedure is pushing molten metal into preheated preform with high pressure, which need the higher quality of preform and put forward hard requirement to infiltration apparatus, moreover process complex and high cost. In order to overcome these problems and broaden the application in the automotive field, in this work, the method that MMCs were fabricated by infiltrating the liquid metal into the preform by low pressure infiltration was used.
     Liquid infiltration technology consists of reinforcement preform fabrication and molten metal was pushed into a preheated preform with pressure. The high-quality of preform is a foundation of high-quality MMCs. In this work, the fabrication processing of preform was studied systematically, The process parameters of short fiber preform which was shaped by wet forming were designed and filtrated through orthogonal test way, the microstructure of preform was observed by SEM and XRD. The results show that the void and fibers distributed uniformly and the optimum technology parameters of preparing the preform was obtained: mass ratio of fiber/filler of 9:1, mass ratio of fiber/binder of 1:10, 1050℃sintering temperature and 2.5h soaking time, and the preform can be used to infiltration experiment.
     First of all, the facility was designed and built for gas pressure infiltration of ceramic performs with molten metal. Secondly, the preparation process, the infiltration process, mechanical properties and microstructure of MMCs were studied. The critical pressure, pre-hearted temperature of preform, the infiltration temperature and holding time have important effect on microstructure and interface of MMCs. They were achieved through combination of theoretical and experimental way, which are 0.5MPa gas pressure and keeping time 1min, 800℃infiltration temperature and 1h holding time. Thirdly, according to temperature field variation of infiltration process, the results that liquid molten flow pattern have influence on fabrication of composites were analyzed.
     Strengthening mechanism of short fiber reinforced MMCs were investigated. The defects of Al_2O_(3sf)/Al composites fabrication by gas pressure infiltration were observed and analyzed carefully by XRD, SEM, EDAX. The results indicated that the main defect of the composites which have most important effect on the mechanical properties is not interface reaction between matrix alloys and reinforcement, but the void and micro-pore in the composites, the short fibers dispersed in-homogeneously and Mg2Si produced from matrix alloys in the process, so the composites with better mechanical properties can be gained by adjusting preparation technology.
引文
[1]张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社,1996,1-2.
    [2]益小苏,杜善义,张立同,等.中国材料工程大典(第10卷)--复合材料工程[M].北京:化学工业出版社,2005,3-7.
    [3] Clyne T W, Withers P J. An Introduction to Metal Matrix Composites[M]. Cambridge, Cambridge University Press, 1995, 1-3.
    [4]陶杰,赵玉涛,潘蕾等.金属基复合材料制备新技术导论[M].北京:化学工业出版社,2007,5-7.
    [5]彭涛.内燃机活塞材料的发展与前景[J].山西科技,2007,3:91-93.
    [6]刘达利,乔丕骧.新型铝活塞[M].北京:国防工业出版社,1999,10-11.
    [7]张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社,1996,16-17.
    [8] Graeme W M. The Theory of Composites[M]. Cambridge: Cambridge Press, 2004, 20-22.
    [9]尹洪峰,任耘,罗发.复合材料及其应用[M].西安:陕西科学技术出版社,2003,6-9.
    [10]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006,178-180.
    [11]邹祖讳.复合材料的结构与性能(R. W.卡恩, P.哈森, E. J.克雷默.材料科学与技术丛书(第13卷))[M].北京:科学出版社,1999,148-151.
    [12]罗守靖.复合材料液态挤压[M].北京:冶金工业出版社,2002,1-3.
    [13] Carre?o M E, Cutard T, Schaller R. Processing and characterization of aluminium-based MMCs produced by gas pressure infiltration[J]. Materials Science and Engineering A, 1998, 251: 48-57.
    [14]李正佳,李贺军,齐乐华.(AlBO)w/Al复合材料制备工艺研究[J].材料科学与工艺, 2007,15(6):761-766.
    [15] Scheidegger A E. The physics of flow through porous media[M]. Toronto University Press, 1974: 108-110.
    [16] Mortensen A, Masur L J, Cornie J A. Infiltration of fibrous preforms by a pure metal: Part I. Theory[J]. Metallurgical and Materials Transactions A, 1989, 20: 2535-2547.
    [17] Mises R, Fredricks K O. Fluid dynamics[M]. Brown University, Providence, Rhode Island, 1941: 140-143.
    [18] Clyne T W, Mason J F. The squeeze infiltration process for fabrication of metal-matrixcomposites[J]. Metall. Trans,1987, 18: 1519-1530.
    [19] Wesley E B. Liquid rise in a capillary tube[J]. Appl. Phys,1946, 17: 37-45.
    [20]周尧和.凝固技术[M].北京:机械工业出版社,1989,9-13.
    [21] Keene B J. Review of data for the surface tension of pure metals[J]. International Materials Review, 1993, 38(4): 157-192.
    [22]王春艳,吴昆.镁基复合材料预制块制备工艺的研究[J].黑龙江工程学院学报,2003,17(1):42-44.
    [23]王涛.界面SiO2层对SiC/Al电子封装材料热膨胀系数的影响[J].硅酸盐通报,2009,28(1):71-74.
    [24] Ouyang Haibo, Li Hejun, Qi Lehua, et al. Fabrication of short carbon fiber performs coated with pyrocarbon/SiC for liquid metal infiltration[J]. Journal Materials Science, 2008, 43: 4618-4624.
    [25]张亚芳,齐雷,张春梅.增强短纤维长径比对复合材料力学性能的影响[J].广州大学学报(自然科学版),2008,7(4):32-34.
    [26] Hine P J, Lusti H R, Gusev A A. Numerical simulation of the effects of volume fraction, aspect tatio and fiber length distribution on the elastic and thermoelastic properties of short fiber composites[J]. Compos Sci Tech, 2002(62): 1445-1453.
    [27] Yuanchen Huang, Kyo KooK Jin, Sung Kyu Ha. Effect of fiber arrangement on mechanical behavior of unidirectional composites[J]. Journal of composite materials, 2008, 42: 1851-1871.
    [28] Clyne T W, Bader M G, Cappleman G R. The use of aδ-alumina fiber for metal-matrix composites[J]. Journal of Materials Science, 1985, 20: 85-96.
    [29] Clyne T W, Mason J F. The squeeze infiltration process for fabrication of metal-matrix composites[J]. Metall. Trans,1987, 18: 1519-1530.
    [30]户田裕之.金属基复合材料の疲劳性能[J].日本金属学会会报,1992,31(12):1040-1047.
    [31]胡锐,朱冠勇,毕晓琴.液相浸渗用多孔预制体制备的研究现状[J].兵器材料科学与工程,2004,27(5):53-57.
    [32] Chiou J M, Chung D D L. Improvement of the temperature resistance of aluminium-matrix composites using an acid phosphate binder[J]. Journal of Materials Science, 1993, 28(6):1435-1446.
    [33] Chiou J M, Chung D D L. Chung. Improvement of the temperature resistance of aluminium-matrix composites using an acid phosphate binder[J]. Journal of Materials Science, 1993, 28(6):1447-1470.
    [34] Chiou J M, Chung D D L. Chung. Improvement of the temperature resistance of aluminium-matrix composites using an acid phosphate binder[J]. Journal of Materials Science, 1993, 28(6): 1471-1487.
    [35] Nayeb H A A, Clark J B. Phase Diagrams of Binary Magnesium Alloys[M]. Metals Park, Ohio: ASM INTERNATIONAL, 1988, 70-72.
    [36]于化顺,闵光辉,刘玉先.SiO2与Mg-Li合金熔体反应动力学分析[J].中国有色金属学报,1999,9(4):785-789.
    [37] García R A, Irisarri A M, Anglada M. Study of the porosity produced in an aluminum alloy matrix composite due to a T6 heat treatment[J]. Materials Science and Engineering: A, 2004, 35(8): 2503-2510.
    [38] Molins R, Bartout J D, Bienvenu Y. Microstructural and analytical characterization of Al2O3---(Al---Mg) composite interfaces[J]. Materials Science and Engineering: A, 1991, 135: 111-117.
    [39] Petitcorps Y L, Quenisset J M, Borgne G L. Segregation of magnesium in squeeze-cast aluminium matrix composites reinforced with alumina fibers[J]. Materials Science and Engineering: A, 1991, 135: 37-40.
    [40]郑明毅.SiCw/AZ91镁基复合材料的界面与断裂行为[D].哈尔滨:哈尔滨工业大学,1999,35-37.
    [41]方峰,江静话,谈淑勇.短纤维预制件强度对铝基复合材料组织的影响[J].东南大学学报(自然科学版),2002,32(3):415-418.
    [42] Peng H X, Fan Z, Mudher D S, et al. Microstructure and mechanical properties of engineered short fibre reinforced aluminium matrix composites[J]. Materials Science and Engineering, 2002, A335:207-216.
    [43] Yongxue Gan, Pei Yi, Changqi Che. Effect of sintering temperature on microwave absorbing behaviour of Mn-Zn ferrite[J]. Journal of Materials Science & Technology, 1993, 5: 5-12.
    [44] Lee H S, Jeon K Y, Kim H Y. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications[J]. Journal Materials Science, 2000, 35(34): 6231-6236.
    [45]王玲,赵浩峰.金属基复合材料及其浸渗制备的理论与实践[M].北京:冶金工业出版社,2005,378-400.
    [46]郑国斌,陈新国.用K2ZrF6溶液处理碳化硅涂层碳纤维制造碳/铝复合丝[J].复合材料学报,1993,10(1):57-63.
    [47]中西治通,恒川好树,奥宫正洋,等.アルナミ織維/アルナミニゥム復合系にぉける臨界溶浸壓のブロセシングバマメータ依存性[J].輕金屬,1991,41(9):576-582.
    [48]张坤.轻金属基复合材料的液相浸渗研究[J].铸造技术,1994,4:46-47.
    [49] Mortensen A, Cornie J A. On the Infiltration of Metal Matrix Composites[J]. Metall. Trans,1987, 18A(6): 1160-1163.
    [50] Arsenault R J, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion[J]. Materials Science and Engineering, 1986, 81: 175-187.
    [51] Lloyd D J. Particle reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews, 1994, 39(1): 1-23.
    [52] Jody N H, Wayne J J, Anil K. Sachdev. Particle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 aluminum-SiCp composites[J]. Materials Science and Engineering, 1994, A183: 69-80.
    [53] Davis C H J, Raghunathan N, Sheppard T. Structure-property relationships of SiC reinforced advanced Al-Zn-Mg-Cu alloy[J]. Materials Science and Technology, 1992, 8: 977-984.
    [54] Vogelsang M, Arsenault R J, Fish R M. An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites[J]. Metallurgical and Materials Transactions A, 1986, 17: 379-389.
    [55] Flom Y, Arsenault R J. Deformation in Al-z.sbnd; SiC composites due to thermal stresses[J]. Materials Science and Engineering, 1985, 75: 151-167.
    [56]邹祖讳.复合材料的结构与性能(R. W.卡恩, P.哈森, E. J.克雷默.材料科学与技术丛书(第13卷))[M].北京:科学出版社,1999,253-255.
    [57] Rong Chen, Guoding Zhang. Casting defects and properties of cast A356 aluminium alloy reinforced with SiC particles[J]. Composites Science and Technology, 1993, 47(1): 51-56.
    [58]张立功,张佐光.先进复合材料中的主要缺陷[J].玻璃钢、复合材料,2001,1(2):42-45.
    [59] Hejun Li, Shoujing Luo, Lehua Qi. Eliminating defects of Zn--Al alloy by squeeze casting or liquid extrusion[J]. Journal of Materials Processing Technology, 1992, 32: 489-498.
    [60]李正佳,李贺军,齐乐华.液态浸渗挤压制备(AlBO)w/Al复合材料缺陷分析[J].稀有金属材料与工程,2007,36(12):2144-2147.
    [61] Patankar S N, Gopinathan V, Ramakrishnan P. Studies on carbon fibre reinforced aluminium composite processd using pre-treated carbon fibres[J]. Journal Material Science, 1991,26: 4196-4202.
    [62]仇宁,钟黎君,李波.α氧化铝—铝合金润湿现象及其机理[J].复合材料学报,1990,7(1):24-29.
    [63]胡连喜,罗守靖,霍文灿.Al2O3短纤维/Al-1.5wt%Mg复合材料的界面研究[J].理化检测-物理分册,1996,32(1):25-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700