用户名: 密码: 验证码:
光子晶体及其应用的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是一种存在带隙的周期结构的人造材料。其特点是光子晶体能够完全反射频率处于带隙内的电磁波或完全抑制频率处于带隙内的自发辐射。由于光子晶体能带理论是一种精确的理论,因此,在光子晶体的研究中,理论工作就有着特别重要的意义。
     本文首先详细讨论了用于光子晶体能带计算的Order-N算法和直角坐标系下用于发光二极管光输出效率计算的电磁场的时域有限差分算法。
     其次,我们利用一般坐标系下的Order-N算法计算了Sierpinski地毯结构光子晶体的能带。计算结果表明,这种准分形结构光子晶体的能带具有一定的自相似性。其带隙具有多频带隙的特性且带隙的中心频率会随着分形结构单元几何形状的改变而改变。当这种准分形结构光子晶体中含有理想导体时,其能带不但具有大的绝对带隙,多频带隙的特性,而且,随着分形级数的增大,能带会迅速趋向于能级结构.
     再次,利用上述能带的特性,我们讨论了这种准分形结构光子晶体在波分复用滤波器上的应用。计算结果表明,通过改变分形结构单元的几何形状,我们可以较方便地调谐波分复用滤波器的滤波频率。
     最后,利用直角坐标系下的时域有限差分算法,我们详细讨论了光子晶体在提高GaN发光二极管光输出效率中的作用。计算结果表明,对于GaN材料,选择石墨点阵柱状光子晶体在制备上较有利,同时,只有含中心柱结构的这种光子晶体可以提高GaN发光二极管的光输出效率。另外,在塔状光子晶体柱角度合适的情况下,塔状光子晶体柱能有效地提高GaN发光二极管的光输出效率。而光子晶体柱半径和柱心位置的随机变化会随机地改变GaN发光二极管的光输出效率。根据上述结果,我们给出了GaN光子晶体发光二极管的一般设计原则。
Photonic crystal is a kind of artificial periodic structure with photonic band gaps, which can eliminate electromagnetic wave in photonic band gaps. Because photonic band theory is accurate, the theoretical method is very important in studying photonic crystal.In this thesis, firstly, we have studied systematically the Order-N method in general coordinate, which is used in calculating the photonic band and the finite-difference time-domain method in right angle coordinate, which is used in calculating light extraction efficiency of the GaN light emitting diode.Secondly, the photonic band of Sierpinski carpet structure has been calculated by the Order-N method. The numerical results show that there are self-similarity in photonic bands and multifrequency photonic band gaps for the fractal photonic crystal, the center frequencies of the photonic band gaps are influenced by the shape of the fractal structure unit. Moreover, the photonic band of a set of fractal photonic crystal including idealized metal has been calculated by this method. The numerical results show that not only there are several and big absolute photonic band gaps, but also the photonic bands trend to energy levels rapidly with increasing the fractal orders.Thirdly, a kind of fractal photonic crystal wavelength division multiplexed filter has been studied theoretically. The numerical results show that we can tune the frequency of the filter conveniently by changing the shape of the fractal structure unit.Finally, we have systematically studied the effect of the photonic crystal on improving the light extraction efficiency of the GaN light emitting diode. The numerical results show that the graphite lattice photonic crystal with rods should be a good choice for GaN material and only this kind of photonic crystal with thick central pillar can enhance the extraction efficiency for the light emitting diode. Moreover, the results show that the tower -type photonic crystal pillars benefit the output efficiency of the light emitting diode when its angle is optimal. The results also show that the
    
    light extraction efficiency varies randomly with the change of photonic crystal pillars in size and site in some extents randomly, but does not change very much. With the results discussing above, we have given some design rules for the photonic crystal used in the light emitting diodes.
引文
[23].Lidorikis-E; Soukoulis-CM Pulse-driven switching in one-dimensional nonlinear photonic band gap materials: a numerical study Phys. Rev. E 2000(61): 5825-9
    [24].Tsai, Y.-C; Shung, K.W.-K.; Gou, S.-C. Impurity modes in one-dimensional photonic crys tals-analytic approach Journal of Modern Optics 1998(45): 2147-57
    [25]. Shung, K.W.-K.; Tsai, Y.C. Surface effects and band measurements in photonic crystals Physical Review B (Condensed Matter) 1993(48): 11265-9
    [26].Bulgakov, S.A.; Nieto-Vesperinas, M. Field distribution inside one-dimensional random photonic lattices Journal of the Optical Society of America A (Optics and Image Science and Vision) 1998(15): 503-10
    [27].McGurn, A.R.; Christensen, K.T.; Mueller, F.M.; Maradudin, A.A. Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average Physical Review B (Condensed Matter) 1993(47): 13120-5
    [28]. Bulgakov, S.A.; Nieto-Vesperinas, M. Competition of different scattering mechanisms in a one-dimensional random photonic lattice Journal of the Optical Society of America A (Optics and Image Science and Vision) 1996( 13): 500-8
    [29].Xin-Ya Lei; Hua Li; Feng Ding; Weiyi Zhang; Nai-Ben Ming Novel application of a perturbed photonic crystal: high-quality filter Applied Physics Letters 1997(71): 2889-91
    [30].Hongqiang Li; Guochang Gu; Hong Chen; Shiyao Zhu Disordered dielectric high reflectors with broadband from visible to infrared Applied Physics Letters 1999(74): 3260-2
    [31].Peng, R.W.; Mu Wang; Hu, A.; Jiang, S.S.; Jin, GJ.; Feng, D. Photonic localization in one-dimensional kappa-component Fibonacci structures Phys. Rev. B 1998(57):1544-51
    [32].Todori, K.; Hayase, S. Formation of pseudo one-dimensional photonic band in visible region by grating pair method Appl. Phys. Lett. 1997(70): 550-2
    [33].Winn, T.N.; Fink, Y; Fan, S.; Joannopoulos, I.D. Omnidirectional reflection from a one-dimensional photonic crystal Optics Letters 1998(23): 1573-5
    [34].Laude, V; Tournois, P. Superluminal asymptotic tunneling times through one-dimensional photonic bandgaps in quarter-wave-stack dielectric mirrors J. Opt. Soc. Am. B 1999(16):194-8
    [35].Scalora, M.; Dowling, J.P.; Bowden, CM.; Bloemer, M.J. The photonic band edge optical diode J. Appl. Phys. 1994(76): 2023-6
    [36].Gralak-B; Maystre-D Electromagnetic phenomenological study of photonic band structures Journal of Modern Optics 2000(47): 1253-72
    [37].Miyazaki, H.; Jimba, Y; Watanabe, T. Multiphotonic lattices and Stark localization of electromagnetic fields in one dimension Phys. Rev. A 1996(53): 2877-80
    [38].Nojima, S. Excitonic polaritons in one-dimensional photonic crystals Phys. Rev. B 1998(57): R2057-60
    [39].Tocci, Michael D.; Scalora, Michael; Bloemer, Mark J. ; Dowling, J.P.; Bowden, CM.Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures Phys. Rev. A 1996(53): 2799-2803
    [40].Djuric, Z.; Jaksic, Z.; Randjelovic, D.; Dankovic, T.; Ehrfeld, W; Schmidt, A. Enhancement of radiative lifetime in semiconductors using photonic crystals. Infrared Physics & Technology 1999(40): 25-32
    [41].Jing Yong Ye; Ishikawa, M.; Yamane, Y; Tsurumachi, N.; Nakatsuka, H. Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals Appl. Phys. Lett.1999(75): 3605-7
    
    [23].Lidorikis-E; Soukoulis-CM Pulse-driven switching in one-dimensional nonlinear photonic band gap materials: a numerical study Phys. Rev. E 2000(61): 5825-9 [24].Tsai, Y.-C; Shung, K.W.-K.; Gou, S.-C. Impurity modes in one-dimensional photonic crys tals-analytic approach Journal of Modern Optics 1998(45): 2147-57 [25]. Shung, K.W.-K.; Tsai, Y.C. Surface effects and band measurements in photonic crystals Physical Review B (Condensed Matter) 1993(48): 11265-9 [26].Bulgakov, S.A.; Nieto-Vesperinas, M. Field distribution inside one-dimensional random photonic lattices Journal of the Optical Society of America A (Optics and Image Science and Vision) 1998(15): 503-10 [27].McGurn, A.R.; Christensen, K.T.; Mueller, F.M.; Maradudin, A.A. Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average Physical Review B (Condensed Matter) 1993(47): 13120-5 [28]. Bulgakov, S.A.; Nieto-Vesperinas, M. Competition of different scattering mechanisms in a one-dimensional random photonic lattice Journal of the Optical Society of America A (Optics and Image Science and Vision) 1996( 13): 500-8 [29].Xin-Ya Lei; Hua Li; Feng Ding; Weiyi Zhang; Nai-Ben Ming Novel application of a perturbed photonic crystal: high-quality filter Applied Physics Letters 1997(71): 2889-91 [30].Hongqiang Li; Guochang Gu; Hong Chen; Shiyao Zhu Disordered dielectric high reflectors with broadband from visible to infrared Applied Physics Letters 1999(74): 3260-2 [31].Peng, R.W.; Mu Wang; Hu, A.; Jiang, S.S.; Jin, GJ.; Feng, D. Photonic localization in one-dimensional kappa-component Fibonacci structures Phys. Rev. B 1998(57):1544-51 [32].Todori, K.; Hayase, S. Formation of pseudo one-dimensional photonic band in visible region by grating pair method Appl. Phys. Lett. 1997(70): 550-2 [33].Winn, T.N.; Fink, Y; Fan, S.; Joannopoulos, I.D. Omnidirectional reflection from a one-dimensional photonic crystal Optics Letters 1998(23): 1573-5 [34].Laude, V; Tournois, P. Superluminal asymptotic tunneling times through one-dimensional photonic bandgaps in quarter-wave-stack dielectric mirrors J. Opt. Soc. Am. B 1999(16):194-8 [35].Scalora, M.; Dowling, J.P.; Bowden, CM.; Bloemer, M.J. The photonic band edge optical diode J. Appl. Phys. 1994(76): 2023-6 [36].Gralak-B; Maystre-D Electromagnetic phenomenological study of photonic band structures Journal of Modern Optics 2000(47): 1253-72 [37].Miyazaki, H.; Jimba, Y; Watanabe, T. Multiphotonic lattices and Stark localization of electromagnetic fields in one dimension Phys. Rev. A 1996(53): 2877-80 [38].Nojima, S. Excitonic polaritons in one-dimensional photonic crystals Phys. Rev. B 1998(57): R2057-60 [39].Tocci, Michael D.; Scalora, Michael; Bloemer, Mark J. ; Dowling, J.P.; Bowden, CM.Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures Phys. Rev. A 1996(53): 2799-2803 [40].Djuric, Z.; Jaksic, Z.; Randjelovic, D.; Dankovic, T.; Ehrfeld, W; Schmidt, A. Enhancement of radiative lifetime in semiconductors using photonic crystals. Infrared Physics & Technology 1999(40): 25-32 [41].Jing Yong Ye; Ishikawa, M.; Yamane, Y; Tsurumachi, N.; Nakatsuka, H. Enhancement of
    
    [42].Abram, I.; Bourdon, G Photonic-well microcavities for spontaneous emission control Phys. Rev. A 1996(54): 3476-9
    [43].Napoli, A.; Messina, A. Coupling of single atom with localized modes associated to defects in one- dimensional photonic crystals. Radiation Effects and Defects in Solids 1998(147):127-132
    [44].Tartakovskii, A.I.; Kulakovskii, V.D.; Dorozhkin, P.S.; Forchel, A.; Reithmaier, J.P.Far-field emission pattern and photonic band structure in one-dimensional photonic crystals made from semiconductor microcavities. Phys. Rev. B 1999(59): 10251-4
    [45].Konotop, V.V.; Kuzmiak, V. Simultaneous second- and third-harmonic generation in one-dimensional photonic crystals. J. Opt. Soc. Am. B 1999(16): 1370-6
    [46].Kiehne, G.T.; Kryukov, A.E.; Ketterson, J.B. A numerical study of optical second-harmonic generation in a one-dimensional photonic structure Appl. Phys. Lett. 1999(75): 1676-8
    [47].Vlasov-RA; Smirnov-AG Compression of femtosecond light pulses by one-dimensional photonic crystals with two-component relaxing nonlinearity . Phys. Rev. E 2000(61):5808-13
    [48].Akis, R.; Vasilopoulos, P. Large photonic band gaps and transmittance antiresonances in periodically modulated quasi-one-dimensional waveguides Phys. Rev. E 1996(53):5369-72
    [49].Vasseur, J.O.; Deymier, P.A.; Dobrzynski, L.; Djafari-Rouhani, B.; Akjouj, A. Absolute band gaps and electromagnetic transmission in quasi-one-dimensional comb structures Phys. Rev. B 1997(55): 10434-42
    [50].Vasseur, J.O.; Djafari-Rouhani, B. ; Dobrzynski, L.; Akjouj, A.; Zemmouri, J. Defect modes in one-dimensional comblike photonic waveguides Phys. Rev. B 1999(59):13446-52
    [51].Dobrzynski, L.; Akjouj, A.; Djafari-Rouhani, B.; Vasseur, J.O.; Zemmouri, J. Giant gaps in photonic band structures Phys. Rev. B 1998(57): R9388-91
    [52].Maohua-Li; Youyan-Liu; Zhao-Qing-Zhang Photonic band structure of Sierpinski waveguide networks Phys. Rev. B 2000(61): 16193-200
    [53].Krauss, T.F.; De La Rue, R.M. Optical characterization of waveguide based photonic microstructures Appl. Phys. Lett. 1996(68): 1613-15
    [54].Scalora, M.; Bloemer, M.J.; Manka, A.S. ; Dowling, J.P.; Bowden, CM.; Viswanathan, R.;Haus, J.W. Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures Phys. Rev. A 1997(56): 3166-74
    [55].Takeda-E; Todoroki-N; Kitamoto-Y; Abe-M; Inoue-M; Fujii-T; Arai-K Faraday effect enhancement in Co-ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry-Perot resonator J. Appl. Phys. 2000(87): 6782-4
    [56].Inoue, M.; Arai, K.; Fujii, T.; Abe, M. Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers J. Appl. Phys. 1998(83):6768-70
    [57].Centini, M.; Sibilia, C; Scalora, M.; D'Aguanno, G; Bertolotti, M.; Bloemer, M.J.; Bowden,C.M.; Nefedov, I. Dispersive properties of finite, one-dimensional photonic band gap structures: Applications to nonlinear quadratic interactions Phys. Rev. E 1999(60): 4891-8
    
    [58]. Anderson, C.M.; Giapis, K.P. Larger two-dimensional photonic band gaps. Phys. Rev. Lett. 1996(77): 2949-52
    [59].秦柏 金崇君 秦汝虎 田春亮“方形光子晶体的实验研究” 《哈尔滨工业大学学报》2000(32):105.106,110
    [60]. Meade, R.D.; Rappe, A.M.; Brommer, K.D.; Joarmopoulos, J.D. Nature of the photonic band gap: some insights from a field analysis Journal of the Optical Society of America B (Optical Physics) 1993(10): 328-32
    [61]. Shawn-Yu Lin; Chow, E.; Hietala, V. ; Villeneuve, P.R.; Joannopoulos, J.D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 1998(282): 274-6
    [62]. Gruning, U.; Lehmann, V.; Engelhardt, C.M. Two-dimensional infrared photonic band gap structure based on porous silicon Appl. Phys. Lett. 1995(66): 3254-6
    [63]. Gadot, F.; Brillat, T.; Akmansoy, E.; de Lustrac, A. New type of metallic photonic bandgap material suitable for microwave applications Electronics Letters 2000(36): 640-641
    [64]. Gadot, F.; De Lustrac, A.; Lourtioz, J.-M.; Brillat, T.; Ammouche, A.; Akmansoy, E. High-transmission defect modes in two-dimensional metallic photonic crystals J. Appl. Phys. 1999(85): 8499-501
    [65]. Tada, Tetsuya; Poborchii, Vladimir V.; Kanayama, Toshihiko Fabrication of photonic crystals consisting of Sinanopillars by plasma etching using self-formed masks Jpn. J. Appl. Phys. 1999(38): 7253-7256
    [66]. Moussa, R.; Aourag, H.; Amrane, N.; Salomon, L. Temperature effect on photonic band gap in polymer photonic lattices Infrared Physics & Technology 1999(40): 417-22
    [67]. Kushwaha-MS; Djafari-Rouhani-B Band-gap engineering in two-dimensional periodic photonic crystals J. Appl. Phys. 2000(88): 2877-84
    [68]. Gadot, E; Akmansoy, E.; De Lustrac, A. ; Brillat, T.; Ammouche, A.; Lourtioz, J.-M. Transmission resonances in ultra-wideband composite metallic photonic crystals Electronics Letters 1999(35): 478-80
    [69]. Danglot, J.; Vanbesien, O.; Lippens, D. Active waveguides patterned in mixed 2D-3D metallic photonic crystal Electronics Letters 1999(35): 475-7
    [70]. Sondergaard-T; Dridi-KH Energy flow in photonic crystal waveguides Phys. Rev. B 2000(61): 15688-96
    [71]. Poborchi, V.V.; Tada, T.; Kanayaman, T. A visible-near infrared range photonic crystal made up of Sinanopiilars Appl. Phys. Lett. 1999(75): 3276-8
    [72]. Chongjun Jin; Bingying Cheng; Baoyuan Man; Daozhong Zhang; Shouzheng Ban; Be Sun; Lieming Li Two-dimensional metallodielectric photonic crystal with a large band gap Appl. Phys. Lett. 1999(75): 1201-3
    [73]. de Lustrac, A.; Gadot, E; Cabaret, GS.; Lourtioz, J.-M.; Brillat, T.; Priou, A.; Akmansoy, E. Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths Appl. Phys. Lett. 1999(75): 1625-7
    [74]. Weiyi Zhang; An Hu; Xinya Lei; Ning Xu; Naiben Ming Photonic band structures of a two-dimensional ionic dielectric medium Phys. Rev. B 1996(54): 10280
    [75]. Lie-Ming Li; Zhao-Qing Zhang Multiple-scattering approach to finite-sized photonic band-gap materials Phys. Rev. B 1998(58): 9587-90
    [76]. Min Qiu; Sailing He Large complete band gap in two-dimensional photonic crystals with elliptic air holes Phys. Rev. B 1999(60): 10610-12
    [7
    
    [77].金崇君 秦柏 杨森 秦汝虎“三角形复式品格的光子带结构研究”《光学学报》1997(17):409-413
    [78].秦柏 金崇君 秦汝虎“微波光子晶体的实验研究” 《光学学报》 1999(19):239-242
    [79]. Padjen, R.; Gerard, J.M.; Marzin, J.Y. Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems. Journal of Modem Optics. 1994(41): 295-310
    [80]. Plihal, M.; Maradudin, A.A. Photonic band structure of two-dimensional systems: The triangular lattice. Phys. Rev. B 1991(44): 8565-71
    [81]. Chul-Sik-Kee; Jae-Eun-Kim; Hae-Yong-Park; Ikmo-Park; Lim-H Two-dimensional tunable magnetic photonic crystals. Phys. Rev. B 2000(61): 15523-5
    [82]. Fujiwara, Y.; Kikuchi, K.; Hashimoto, M.; Hatate, H.; Imai, T.; Takeda, Y.; Nakano, H.; Honda, M.; Tatsuta, T.; Tsuji, O. Fabrication of two-dimensional InP photonic band-gap crystals by reactive ion etching with inductively coupled plasma. Jpn. J. Appl. Phys. 1997(36): 7763-8
    [83]. Gruning, U.; Lehmann, V.; Ottow, S.; Busch, K. Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 mu m. Appl. Phys. Lett. 1996(68):747-9
    [84]. Lin, H.-B.; Tonucci, R.J.; Campillo, A.J. Observation of two-dimensional photonic band behavior in the visible Appl. Phys. Lett. 1996(68): 2927-9
    [85]. Leonard, S.W.; van Driel, H.M.; Busch, K.; John, S. ; Birner, A.; Li, A.-P.; Muller, F.; Gosele, U.; Lehmann, V. Attenuation of optical transmission within the band gap of thin two-dimensional macroporous silicon photonic crystals. Appl. Phys. Lett. 1999(75): 3063-5
    [86]. Baba, T.; Koma, M. Possibility of InP-based 2-dimensional photonic crystal: an approach by the anodization method. Jpn. J. Appl. Phys. 1995(34): 1405-8
    [87]. Rowson, S.; Chelnokov, A.; Lourtioz, J.-M. Macroporous silicon photonic crystals at 1.55 mu m. Electronics Letters 1999(35): 753-5
    [88]. Nielsen, J.B.; Sondergaard, T.; Barkou, S.E.; Bjarklev, A.; Broeng, J.; Nielsen, M.B. Two-dimensional Kagome structure, fundamental hexagonal photonic crystal configuration Electronics Letters 1999(35): 1736-7
    [89]. Loschialpo, P.; Forester, D.W.; Schelleng, J. Anomalous transmission through near unit index contrast dielectric photonic crystals. J. Appl. Phys. 1999(86): 5342-7
    [90]. Inoue, K.; Wada, M.; Sakoda, K.; Yamanaka, A.; Hayashi, M.; Haus, J.W. Fabrication of two-dimensional photonic band structure with near-infrared band gap. Jpn. J. Appl. Phys. 1994(33): L1463-5
    [91]. Susa-N Transmittance for a two-dimensional photonic-crystal structure consisting of cylinders and liquid crystal. Jpn. J. Appl. Phys. 2000(39): 3466-7
    [92]. Fukaya-N; Ohsaki-D; Baba-T Two-dimensional photonic crystal waveguides with 60 degrees bends in a thin slab structure. Jpn. J. Appl. Phys. 2000(39): 2619-23
    [93]. Nojima, S. Enhancement of optical gain in two-dimensional photonic crystals with active lattice points. Jpn. J. Appl. Phys. 1998(37): L565-7
    [94]. Kawai, N.; Wada, M.; Sakoda, K. Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods. Jpn. J. Appl. Phys. 1998(37): 4644-7
    [9
    
    [95]. Berger, V.; Gauthier-Lafaye, O.; Costard, E. Photonic band gaps and holography. J. Appl. Phys. 1997(82): 60-4
    [96]. Jin Chong-Jun; Li Zhao-Lin; Zhang Dao-Zhong; Cheng Bing-Ying A novel two-dimensional photonic crystal. Chin. Phys. Lett. 1999(16): 20-2
    [97]. Baba, T.; Matsuzaki, T. Theoretical calculation of photonic gap in semiconductor 2-dimensional photonic crystals with various shapes of optical atoms. Jpn. J. Appl. Phys. 1995(34): 4496-8
    [98]. Cassagne, D.; Jouanin, C.; Bertho, D. Optical properties of two-dimensional photonic crystals with graphite structure. Appl. Phys. Lett. 1997(70): 289-91
    [99]. Gadot, F.; Chelnokov, A.; De Lustrac, A.; Crozat, P.; Lourtioz, J.-M.; Cassagne, D.; Jouanin, C. Experimental demonstration of complete photonic band gap in graphite structure. Appl. Phys. Lett. 1997(71): 1780-2
    [100]. Barra, A.; Cassagne, D.; Jouanin, C. Existence of two-dimensional absolute photonic band gaps in the visible. Appl. Phys. Lett. 1998(72): 627-9
    [101]. Magnitskii, S.A.; Tarasishin, A.V.; Zheltikov, A.M. Near-field optics with photonic crystals. Appl. Phys. B 1999(69): 497-500
    [102]. Krauss, T.F.; De La Rue, R.M.; Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths Nature 1996(383): 699-702
    [103]. Agio-M; Andreani-LC Complete photonic band gap in a two-dimensional chessboard lattice. Phys. Rev. B 2000(61): 15519-22
    [104]. Xue-Hua Wang; Ben-Yuan Gu; Zhi-Yuan Li; Guo-Zhen Yang Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices. Phys. Rev. B 1999(60): 11417-21
    [105]. Tan, W.-C.; Preist, T.W.; Sambles, J.R.; Sobnack, M.B.; Wanstall, N.P. Calculation of photonic band structures of periodic multilayer grating systems by use of a curvilinear coordinate transformation. J. Opt. Soc. Am. A 1998(15): 2365-72
    [106]. 李志远 顾本源 杨国桢 “二维各向异性光子晶体完全带隙的增宽”《物理》1999(28):193-195
    [107]. Tran, P. Photonic-band-structure calculation of material possessing Kerr nonlinearity Phys. Rev. B 1995(52): 10673-6
    [108]. Zhenlin Wang; Jun Wu; Xianjie Liu; Yong yuan Zhu; Naiben Ming Nonlinear transmission resonance in a two-dimensional periodic structure with photonic band gap Phys. Rev. B 1997(56): 9185-8
    [109]. Li Zhi-Yuan; Gu Ben-Yuan; Yang Guo-Zhen Improvement of absolute band gaps in 2D photonic crystals by anisotropy in dielectricity. European Physical Journal B 1999(11): 65-73
    [110]. Chun-Zhang; Feng-Qiao; Jun-Wan; Jian-Zi Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures J. Appl. Phys. 2000(87): 3174-6
    [111]. Xiangdong-Zhang; Zhao-Qing-Zhang Creating a gap without symmetry breaking in two-dimensional photonic crystals Phys. Rev. B 2000(61): 9847-50
    [112]. Xiangdong-Zhang; Zhao-Qing-Zhang; Lie-Ming-Li; Jin-C; Zhang-D; Man-B; Cheng-B Enlarging a photonic band gap by using insertion Phys. Rev. B 2000(61): 1892-7
    
    [113]. Sakoda, K. Numerical study on localized defect modes in two-dimensional triangular photonic crystals J. Appl. Phys. 1998(84): 1210-14
    [114]. Ueta, T.; Ohtaka, K.; Kawai, N.; Sakoda, K. Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss J. Appl. Phys. 1998(84):6299-304
    [115]. Xiao-Ping Feng; Arakawa, Y. Defect modes in two-dimensional triangular photonic crystals Jpn. J. Appl. Phys. 1997(36): L120-3
    [116]. Tokushima-M; Kosaka-H; Tomita-A; Yamada-H Triple-exposure method for fabricating triangular-lattice photonic crystals Jpn. J. Appl. Phys. 2000(39): 4236-4
    [117]. Zoorob-ME; Charlton-MDB; Parker-GJ; Baumberg-JJ; Netti-MC Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 2000(404): 740-3
    [118]. Chongjun-Jin; Bingying-Cheng; Baoyuan-Man; Zhaolin-Li; Daozhong-Zhang Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region. Phys. Rev. B 2000(61): 10762-7
    [119]. Cheng, S.S.M.; Lie-Ming Li; Chan, C.T.; Zhang, Z.Q. Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems Phys. Rev. B 1999(59): 4091-9
    [120]. Zhi-Yuan-Li; Xiangdong-Zhang; Xhao-Qing-Zhang Disordered photonic crystals understood by a perturbation formalism. Phys. Rev. B 2000(61): 15738-48
    [121]. Rosenberg, A.; Tonucci, R.J.; Bolden, E.A. Photonic band-structure effects in the visible and near ultraviolet observed in solid-state dielectric arrays. Appl. Phys. Lett.1996(69): 2638-40
    [122]. Rowson, S.; Chelnokov, A.; Lourtioz, J.-M.; Carcenac, F. Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared J. Appl. Phys.1998(83): 5061-4
    [123]. Miyazaki-HT; Miyazaki-H; Ohtaka-K; Sato-T Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope J. Appl. Phys. 2000(87): 7152-8
    [124]. Berger, V.; Gauthier-Lafaye, O.; Costard, E. Fabrication of a 2D photonic bandgap by a holographic method. Electronics Letters 1997(33): 425-6
    [125]. Krauss, T; Song, Y.P.; Thorns, S.; Wilkinson, C.D.W.; DelaRue, R.M. Fabrication of 2-D photonic bandgap structures in GaAs/AlGaAs Electronics Letters 1994(30): 1444-6
    [126]. Happ, T.D.; Kamp, M.; Klopf, F.; Reithmaier, J.P.; Forchel, A. Bent laser cavity based on 2D photonic crystal waveguide Electronics Letters 2000(36): 324-325
    [127]. Nakao, Masashi; Oku, Satoshi; Tamamura, Toshiaki; Yasui, Kenshi; Masuda, Hideki GaAs and InP nanohole arrays fabricated by reactive beam etching using highly ordered alumina membranes Jpn. J. Appl. Phys. 1999(38): 1052-1055
    [128]. Hamano, T.; Hirayama, H.; Aoyagi, Y. New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy Jpn. J. Appl. Phys.1997(36): L286-8
    [129]. Yamasaki, T.; Tsutsui, T. Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres Jpn. J. Appl. Phys. 1999(38): 5916-21
    [130]. Rosenberg, A.; Tonucci, R.J.; Shirley, E.L. Out-of-plane two-dimensional photonic band structure effects observed in the visible spectrum J. Appl. Phys. 1997(82): 6354-6
    
    [131]. Ma, K.-R; Hirose, K.; Yang, F.-R.; Qian, Y.; Itoh, T. Realisation of magnetic conducting surface using novel photonic bandgap structure Electronics Letters 1998(34):2041-2
    [132]. Ohtera, Y; Sato, T.; Kawashima, T. ; Tamamura, T.; Kawakami, S. Photonic crystal polarisation splitters Electronics Letters 1999(35): 1271-2
    [133]. Martin, O.J.F.; Girard, C; Smith, D.R. ; Schultz, S. Generalized field propagator for arbitrary finite-size photonic band gap structures Phys. Rev. Lett. 1999(82): 315-18
    [134]. Cregan, R.F.; Mangan, B.J.; Knight, J.C. ; Birks, T.A.; Russell, P.St.J.; Roberts, P.J.;Allan, D.C. Size-mode photonic band gap guidance of light in air Science 1999(285):1537-9
    [135]. Birks, T.A.; Roberts, P.J.; Russell, P.S.J.; Atkin, D.M.; Shepherd, T.J. Full 2-D photonic bandgaps in silica/air structures Electronics Letters 1995(31): 1941 -3
    [136]. Brechet-F; Leproux-P; Roy-P; Marcou-J; Pagnoux-D Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre Electronics Letters 2000(36): 870-2
    [137]. Wadsworth-WJ; Knight-JC; Ortigosa-Blanch-A; Arriaga-J; Silvestre-E; Russell-PStJ Soliton effects in photonic crystal fibres at 850 nm Electronics Letters 2000(36): 53-5
    [138]. Brechet-F; Roy-P; Marcou-J; Pagnoux-D Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths Electronics Letters 2000(36): 514-15
    [139]. Knight, J.C; Birks, T.A.; Cregan, R.F.; Russell, P.S.J.; de Sandro, P.D. Large mode area photonic crystal fibre Electronics Letters 1998(34): 1347-8
    [140]. Knight, J.C; Birks, T.A.; St. J. Russell, P. ; de Sandro, J.P. Properties of photonic crystal fiber and the effective index model J. Opt. Soc. Am. A 1998( 15): 748-752
    [141]. Ibsen, M.; Durkin, M.K.; Cole, M.J.; Laming, R.I. Optimized square passband fibre Bragg grating filter with in-band flat group delay response Electronics Letters 1998(34):800-802
    [142]. Mangan-BJ; Knight-JC; Birks-TA; Russell-PSJ; Greenaway-AH Experimental study of dual-core photonic crystal fibre Electronics Letters 2000(36): 1358-9
    [143]. Baba, T.; Fukaya, N.; Yonekura, J. Observation of light propagation in photonic crystal optical waveguides with bends Electronics Letters 1999(35): 654-655
    [144]. Benisty, H. Modal analysis of optical guides with two-dimensional photonic band-gap boundaries J.Appl.Phys. 1996(79): 7483-92
    [145]. Sondergaard-T; Bjarklev-A; Kristensen-M; Erland-J; Broeng-J Designing finite-height two-dimensional photonic crystal waveguides Appl. Phys. Lett. 2000(77): 785-7
    [146]. Astratov-VN; Stevenson-RM; Culshaw-IS; Whittaker-DM;Skolnick-MS; Krauss-TF;De-La-Rue-RM Heavy photon dispersions in photonic crystal waveguides Appl. Phys.Lett. 2000(77): 178-80
    [147]. D. J. Ripin, Kuo-Yi Lim, GS. Perich, Pierre R. VHleneuve, Shanhui Fan, E.R. Thoen, J.D. Joannopoulos, E.R Ippen, L.A. Kolodziejski Photonic band gap airbridge microcavity reonances in GaAs/AlxOy waveguides J. Appl. Phys. 2000(87): 1578-80
    [148]. Danglot, J.; Carbonell, J.; Fernandez, M.; Vanbesien, O.; Lippens, D. Modal analysis of guiding structures patterned in a metallic photonic crystal Appl. Phys. Lett. 1998(73): 2712-14
    
    [149]. McGurn-AR Photonic ciystal circuits: A theory for two- and three-dimensional networks Phys. Rev. B 2000(61): 13235-49
    [150]. Foresi, J.S.; Villeneuve, P.R.; Ferrera, J.; Thoen, E.R.; Steinmeyer, G; Fan, S.; Joannopoulos, J.D.; Kimerling, L.C.; Smith, H.I.; Ippen, E.P. Photonic-bandgap microcavities in optical waveguides Nature 1997(390): 143-5
    [151]. Knight, J.C.; Broeng, J.; Birks, T.A. ; Russell, P.StJ. Photonic band gap guidance in optical fibers Science 1998(282): 1476-8
    [ 152]. Silvestre-E; Pottage-JM; Russell-PStl; Roberts-PJ Design of thin-film photonic crystal waveguides Appl. Phys. Lett. 2000(77): 942-4
    [153]. Gander, M.J.; McBride, R.; Jones, J.D.C.; Mogilevtsev, D.; Birks, T.A.; Knight, J.C.;Russell, P.St.J. Experimental measurement of group velocity dispersion in photonic crystal Fibre Electronics Letters 1999(35): 63-64
    [154]. Ferrando, A.; Silvestre, E.; Miret, J.J.; Monsoriu, J.A.; Andres, M.V.; StJ. Russell, P.Designing a photonic crystal fibre with flattened chromatic dispersion Electronics Letters 1999(35): 325-7
    [155]. Chul-Sik Kee; Jae-Eim Kim; Hae Young Park; Kim, S.J.; Song, H.C.; Kwon, Y.S.;Myung, N.H.; Shin, S.Y.; Lim, H. Essential parameter in the formation of photonic band gaps Phys. Rev. E 1999(59): 4695-8
    [156]. Poladian, L. Graphical and WKB analysis of nonuniform Bragg gratings Phys. Rev.E 1993(48): 4758-67
    [157]. Pacradouni-V; Mandeville-WJ; Cowan-AR; Paddon-P; Young-JF; Johnson-SR Photonic band structure of dielectric membranes periodically textured in two dimensions Phys. Rev. B 2000(62): 4204-7
    [158]. Paddon-P; Young-JF Two-dimensional vector-coupled-mode theory for textured planar waveguides Phys. Rev. B 2000(61): 2090-101
    [159]. Adibi-A; Lee-RK; Xu-Y; Yariv-A; Scherer-A Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap Electronics Letters 2000(36): 1376-8
    [160]. Chutinan-A; Noda-S Analysis of waveguides and waveguide bends in photonic crystal slabs with triangular lattice Jpn. J. Appl. Phys. 2000(39): L595-6
    [161]. Meade, R.D.; Devenyi, A.; Joannopoulos, J.D.; Alerhand, O.L.; Smith, D.A.; Kash, K.Novel applications of photonic band gap materials: low-loss bends and high Q cavities J.Appl. Phys. 1994(75): 4753-5
    [162]. Painter, O.; Lee, R.K.; Scherer, A. ; Yariv, A.; O'Brien, J.D.; Dapkus, P.D.; Kim, I.Two-dimensional photonic band-gap defect mode laser Science 1999(284): 1819-21
    [163]. Lin, Shawn-Yu; Hietala, V.M.; Lyo, S.K. ; Zaslavsky, A. Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity Appl. Phys. Lett. 1996(68):3233-3235
    [164]. Smith, D.R.; Schultz, S.; Kroll, N.; Sigalas, M; Ho, K.M.; Soukoulis, CM.Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity Appl. Phys. Lett. 1994(65): 645-7
    [165]. Villeneuve, P.R.; Fan, S.; Joannopoulos, J.D.; Kuo-Yi Lim; Petrich, GS.; Kolodziejski,L.A.; Reif, R. Air-bridge microcavities Appl. Phys. Lett. 1995(67): 167-9
    [166]. Baba, T.; Matsuzaki, T. Fabrication and photoluminescence studies of GalnAsP/InP
    
    [167]. Sondergaard-T Spontaneous emission in two-dimensional photonic crystal microcavities IEEE Journal of Quantum Electronics 2000(36): 450-7
    [168]. Xiao-Ping Feng; Arakawa, Y. Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal IEEE Journal of Quantum Electronics 1996(32):535-42
    [169]. Sondergaard, T.; Broeng, J.; Bjarklev, A.; Dridi, K.; Barkou, S.E. Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure estimated using a new effective-index model IEEE Journal of Quantum Electronics 1998(34): 2308-13
    [170]. Vuckovic, J.; Painter, O.; Yong Xu; Yariv, A.; Scherer, A. Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities IEEE Journal of Quantum Electronics 1999(35): 1168-75
    [171]. O'Brien, J.; Painter, O.; Lee, R.; Cheng, C.C.; Yariv, A.; Scherer, A. Lasers incorporating 2D photonic bandgap mirrors Electronics Letters 1996(32): 2243-4
    [172]. Labilloy, D.; Benisty, H.; Weisbuch, C. ; Krauss, T.F.; Bardinal, V.; Oesterle, U.Demonstration of cavity mode between two-dimensional photonic-crystal mirrors Electronics Letters 1997(33): 1978-80
    [173]. Baba, T.; Matsuzaki, T. Polarisation changes in spontaneous emission from GalnAsP/InP two-dimensional photonic crystals Electronics Letters 1995(31): 1776-8
    [174]. Kitson, S.C.; Barnes, W.L.; Sambles, J.R. Photonic band gaps in metallic microcavities J. Appl. Phys. 1998(84): 2399-403
    [175]. Suzuki, T.; Yu, P.K.L.; Smith, D.R.; Schultz, S. Experimental and theoretical study of dipole emission in the two-dimensional photonic band structure of the square lattice with dielectric cylinders J. Appl. Phys. 1996(79): 582-94
    [176]. Smith, C.J.M.; Benisty, H.; Labilloy, D.; Oesterle, U.; Houdre, R.; Krauss, T.F.; De La Rue, R.M.; Weisbuch, C. Near-infrared microcavities confined by two-dimensional photonic bandgap crystals Electronics Letters 1999(35): 228-30
    [177]. Guo-Chang Gu; Shi-Yao Zhu; Xiang Wu; Hong Chen An active optical multi-channel switch Chin. Phys. Lett. 1999(16): 734-6
    [178]. Xie-Shuang-Yuan; Yang-Ya-Ping; Cheng-Hong; Zhu-Shi-Yao; Wu-Xiang Spontaneous emission from a driven atom embedded in a photonic crystal Chinese Physics Letters 2000(17): 25-7
    [179]. Berggren, M.; Dodabalapur, A.; Slusher, R.E.; Bao, Z.; Timko, A.; Nalamasu, O.Organic lasers based on lithographically defined photonic-bandgap resonators Electronics Letters 1998(34): 90-1
    [180]. Salt-MG; Tan-WC; Barnes-WL Photonic band gaps and flat band edges in periodically textured metallic microcavities Appl. Phys. Lett. 2000(77): 193-5
    [181]. Barnes, W.L.; Preist, T.W.; Kitson, S.C.; Sambles, J.R.; Cotter, N.P.K.; Nash, D.J. Photonic gaps in the dispersion of surface plasmons on gratings Phys. Rev. B 1995(51):11164-7
    [182]. Barnes, W.L.; Preist, T.W.; Kitson, S.C.; Sambles, J.R. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings Phys. Rev. B 1996(54):6227-44
    
    [183]. Shanhui Fan; Villeneuve, P.R.; Joannopoulos, J.D.; E.F. Schubert High extraction efficiency of spontaneous emission from slabs of photonic crystals Phys. Rev. Lett.1997(78): 3294-7
    [184]. Hung-Yu David Yang Theory of microstrip lines on artificial periodic substrates IEEE Transactions on Microwave Theory and Techniques 1999(47): 629-35
    [185]. Higgins, John Aiden; Kim, Moonil; Hacker, Jonathan B.; Sievenpiper, D. Sievenpiper,Dan Application of photonic crystals to quasi-optic amplifiers IEEE Transactions on Microwave Theory and Techniques 1999(47): 2139-2143
    [186]. Jeong-Ki Hwang; Han-Youl Ryu; Yong-Hee Lee Spontaneous emission rate of an electric dipole in a general microcavity Phys. Rev. B 1999(60): 4688-95
    [187]. Zhang-WY; Lei-XY; Wang-ZL; Zheng-DG; Tam-WY; Chan-CT; Ping-Sheng Robust photonic band gap from tunable scatterers Phys. Rev. Lett. 2000(84): 2853-6
    [188]. Wada, M.; Doi, Y; Inoue, K.; Haus, J.W.; Yuan, Z. A simple-cubic photonic lattice in silicon Appl. Phys. Lett. 1997(70): 2966-8
    [189]. Yamamoto, Noritsugu; Noda, Susumu Fabrication and optical properties of one period of a three-dimensional photonic crystal operating in the 5-10 mu m wavelength region Jpn.J. Appl. Phys. 1999(38): 1282-1285
    [190]. Ozbaya, E.; Temelkuran, B.; Sigalas, M. ; Turtle, G; Soukoulis, CM.; Ho, K.M.Defect structures in metallic photonic crystals Appl. Phys. Lett. 1996(69): 3797-9
    [191]. Mittleman, D.M.; Bertone, J.F.; Peng Jiang; Hwang, K.S.; Colvin, V.L. Optical properties of planar colloidal crystals: Dynamical diffraction and the scalar wave approximation Journal of Chemical Physics 1999( 111): 345-54
    [192]. Sigalas, M.M.; Soukoulis, CM.; Biswas, R. ; Ho, K.M. Effect of the magnetic permeability on photonic band gaps Phys. Rev. B 1997(56): 959-62
    [193]. Shepherd, T.J.; Brewitt-Taylor, C.R. ; Dimond, P.; Fixter, G; Laight, A.; Lederer, P.;Roberts, P.J.; Tapster, P.R.; Youngs, I.J. 3D microwave photonic crystals: Novel fabrication and structures Electronics Letters 1998(34): 787-9
    [194]. Cuisin-C; Chelnokov-A; Lourtioz-J-M; Decanini-D; Chen-Y Submicrometer resolution Yablonovite templates fabricated by X-ray lithography Appl. Phys. Lett.2000(77): 770-2
    [195]. Sozuer, H.S.; Haus, J.W.; Inguva, R. Photonic bands: convergence problems with the plane-wave method Phys. Rev. B 1992(45): 13962-72
    [196]. Yannopapas, V.; Stefanou, N.; Modinos, A. Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals Journal of Physics: Condensed Matter 1997(9): 10261-70
    [197]. Gupta, S.; Tuttle, G; Sigalas, M.; Kai-Ming Ho Infrared filters using metallic photonic band gap structures on flexible substrates Appl. Phys. Lett. 1997(71): 2412-14
    [198]. Kao, A.; Mclntosh, K.A.; McMahon, O.B.; Atkins, A.R.; Verghese, S. Calculated and measured transmittance of metallodielectric photonic crystals incorporating flat metal elements Appl. Phys. Lett. 1998(73): 145-7
    [199]. Mei Dong-Bin; Dong Peng; Li Hong-Qiang; Cheng Bing-Ying; Zhang Dao-Zhong Structure and transmission spectra for colloidal crystals with silica spheres Chin. Phys. Lett.1998(15): 21-3
    [200]. Brown, E.R.; McMahon, O.B. Large electromagnetic stop bands in metallodielectric photonic crystals Appl. Phys. Lett 1995(67): 2138-40
    
    [201]. Fukuda, K.; Sun, H.; Matsuo, S.; Misawa, H. Self-organizing three-dimensional colloidal photonic crystal structure with augmented dielectric contrast Jpn. J. Appl. Phys.1998(37): L508-11
    [202]. Blanco-A; Chomski-E; Grabtchak-S; Ibisate-M; John-S; Leonard-SW; Lopez-C;Meseguer-F; Miguez-H; Mondla-JP; Ozin-GA; Toader-O; van-Driel-HM Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres Nature 2000(405): 437-40
    [203]. Feiertag, G; Ehrfeld, W.; Freimuth, H.; Kolle, H.; Lehr, H.; Schmidt, M.; Sigalas, M.M.;Soukoulis, CM.; Kiriakidis, G; Pedersen, T.; Kuhl, J.; Koenig, W. Fabrication of photonic crystals by deep X-ray lithography Appl. Phys. Lett. 1997(71): 1441-3
    [204]. Miguez, H.; Lopez, C; Meseguer, F.; Blanco, A.; Vazquez, L.; Mayoral, R.; Ocana, M.;Fornes, V.; Mifsud, A. Photonic crystal properties of packed submicrometric SiO//2 spheres Appl. Phys. Lett. 1997(71): 1148-1150
    [205]. Noda, S.; Yamamoto, N.; Kobayashi, H.; Okano, M.; Tomoda, K. Optical properties of three-dimensional photonic crystals based on IH-V semiconductors at infrared to near-infrared wavelengths Appl. Phys. Lett. 1999(75): 905-7
    [206]. Zavieh, L.; Mayer, T.S. Demonstration of a three-dimensional simple-cubic infrared photonic crystal Appl. Phys. Lett. 1999(75): 2533-5
    [207]. Noda, S.; Yamamoto, N.; Sasaki, A. New realization method for three-dimensional photonic crystal in optical wavelength region Jpn. J. Appl. Phys. 1996(35): L909-12
    [208]. Wanke, M.C.; Lehmann, O.; Muller, K.; Qingzhe Wen; Stuke, M. Laser rapid prototyping of photonic band-gap microstructures Science 1997(275): 1284-6
    [209]. Lin, S.Y.; Fleming, J.G; Hetherington, D.L.; Smith, B.K.; Biswas, R.; Ho, K.M.; Sigalas,M.M.; Zubrzycki, W.; Kurtz, S.R.; Bur, J. A three-dimensional photonic crystal operating at infrared wavelengths Nature 1998(394): 251-3
    [210]. Wijnhoven, J.E.GJ.; Vos, W.L. Preparation of photonic crystals made of air spheres in titania Science 1998(281): 802-4
    [211]. Katsarakis, N.; Chatzitheodoridis, E.; Kiriakidis, G; Sigalas, M.M.; Soukoulis, CM.;Leung, W.Y.; Turtle, G Laser-machined layer-by-layer metallic photonic band-gap structures Applied Physics Letters 1999(74): 3263-5
    [212]. Mclntosh, K.A.; Mahoney, L.J.; Molvar, K.M.; McMahon, O.B.; Verghese, S.;Rothschild, M.; Brown, E.R. Three-dimensional metallodielectric photonic crystals exhibiting resonant infrared stop bands Appl. Phys. Lett. 1997(70): 2937-9
    [213]. Ji-Zhou; Zhou-Y; Ng-SL; Zhang-HX; Que-WX; Lam-YL; Chan-YC; Kam-CH Three-dimensional photonic band gap structure of a polymer-metal composite Appl. Phys.Lett. 2000(76): 3337-9
    [214]. Hong-Bo Sun; Matsuo, S.; Misawa, H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin Appl. Phys. Lett.1999(74): 786-8
    [215]. Ballato, J.; Dimaio, J.; James, A.; Gulliver, E. Photonic band engineering through tailored microstructural order Appl. Phys. Lett. 1999(75): 1497-9
    [216]. Biswas, R.; Ozbay, E.; Ho, K.-M. Photonic band gaps with layer-by-layer double-etched structures J. Appl. Phys. 1996(80): 6749-53
    
    [217]. Shanhui Fan; Villeneuve, P.R.; Joannopoulos, J.D. Theoretical investigation of fabrication-related disorder on the properties of photonic crystals J. Appl. Phys. 1995(78):1415-18
    [218]. Romanov, S.G; Johnson, N.P.; Fokin, A.V.; Butko, V.Y.; Yates, H.M.; Pemble, M.E.;Sotomayor Torres, CM. Enhancement of the photonic gap of opal-based three-dimensional gratings Appl. Phys. Lett. 1997(70): 2091-3
    [219]. Chelnokov, A.; Rowson, S.; Lourtioz, J.-M.; Duvillaret, L.; Coutaz, J.-L. Light controllable defect modes in three-dimensional photonic crystal Electronics Letters 1998(34): 1965-7
    [220]. Ozbay, E.; Turtle, G; McCalmont, J.S. ; Sigalas, M; Biswas, R.; Soukoulis, C.M.; Ho,K.M. Laser-micromachined millimeter-wave photonic band-gap cavity structures Appl.Phys. Lett. 1995(67): 1969-1971
    [221]. Ozbay, E.; Michel, E.; Tuttle, G; Biswas, R.; Ho, K.M.; Bostak, J.; Bloom, D.M.Double-etch geometry for millimeter-wave photonic band-gap crystals Appl. Phys. Lett.1994(65): 1617-19
    [222]. Amos-RM; Shepherd-TJ; Rarity-JG; Tapster-P Shear-ordered face-centred cubic photonic crystals Electronics Letters 2000(36): 1411-12
    [223]. Hong-Bo-Sun; Ying-Xu; Jia-Yu-Ye; Matsuo-S; Misawa-H; Junfeng-Song; Guotong-Du;Shiyong-Liu Photonic gaps in reduced-order colloidal particulate assemblies Jpn. J. Appl.Phys. 2000(39): L591-4
    [224]. Yoshino, Katsumi; Tada, Kazuya; Ozaki, Masanori; Zakhidov, Anvar A.; Baughman,Ray H. Optical properties of porous opal crystals infiltrated with organic molecules Jpn. J.Appl. Phys. 1997(36): L714-L717
    [225]. Subramania, G; Constant, K.; Biswas, R.; Sigalas, M.M.; Ho, K.-M. Optical photonic crystals fabricated from colloidal systems Appl. Phys. Lett. 1999(74): 3933-5
    [226]. R. C. Hayward, D. A. Saville & LA. Aksay Electrophoretic assembly of colloidal crystals with optically tunable micropatterns Nature 2000(404): 56-9
    [227]. Shanhui Fan; Villeneuve, P.R.; Meade, R.D.; Joannopoulos, J.D. Design of three-dimensional photonic crystals at submicron lengthscales Appl. Phys. Lett. 1994(65):1466-8
    [228]. Hanaizumi, O.; Ohtera, Y.; Sato, T. ; Kawakami, S. Propagation of light beams along line defects formed in a-Si/SiO/sub 2/ three-dimensional photonic crystals: Fabrication and observation Appl. Phys. Lett. 1999(74): 777-9
    [229]. Temelkuran, B.; Ozbay, E. Experimental demonstration of photonic crystal based waveguides Appl. Phys. Lett. 1999(74): 486-8
    [230]. Romanov, S.G; Fokin, A.V.; De La Rue, R.M. Anisotropic photoluminescence in incomplete three-dimensional photonic band-gap environments Appl. Phys. Lett.1999(74): 1821-3
    [231]. Yoshino, K.; Tatsukara, S.; Kawagishi, Y.; Ozaki, M.; Zakhidov, A.A.; Vardeny, Z.V.Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals Appl. Phys. Lett. 1999(74): 2590-2
    [232]. Yoshino, K.; Lee, S.B.; Tatsuhara, S.; Kawagishi, Y.; Ozaki, M.; Zakhidov, A.A.Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal Appl. Phys. Lett. 1998(73): 3506-8
    
    [233]. Romanov, S.G.; Maka, T.; Sotomayor Torres, C.M.; Muller, M.; Zentel, R. Photonic band-gap effects upon the light emission from a dye-polymer-opal composite Appl. Phys. Lett. 1999(75): 1057-9
    [234]. Yamasaki, T.; Tsutsui, T. Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres Appl. Phys. Lett. 1998(72): 1957-9
    [235]. Zhou-J; Zhou-Y; Buddhudu-S; Ng-SL; Lam-YL; Kam-CH Photoluminescence of ZnS:Mn embedded in three-dimensional photonic crystals of submicron polymer spheres Appl. Phys. Lett. 2000(76): 3513-15
    [236]. Vlasov, Yu.A.; Luterova, A.K.; Pelant, B.I.; Honerlage, B.; Astratov, V.N. Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals Appl. Phys. Lett. 1997(71): 1616-18
    [237]. Romanov, S.G. Comment on "Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals" [Appl. Phys. Lett. 1997(71): 1616 ] Appl. Phys. Lett. 1998(73): 550-1
    [238]. Yang-Ya-Ping; Chen-Hong; Zhu-Shi-Yao Quantum interference in spontaneous emission from a V-type three-level atom in a two-band-photonic crystal Chin. Phys. Lett. 2000(17): 425-7
    [239]. Yaping-Yang; Shi-Yao-Zhu Spontaneous emission from a two-level atom in a three-dimensional photonic crystal Physical Review A 2000(62): 013805/1-11
    [240]. Hirayama, H.; Hamano, T.; Aoyagi, Y. Novel surface emitting laser diode using photonic band-gap crystal cavity Appl. Phys. Lett. 1996(69): 791-3
    [241]. Eli Yablonovitch. Liquid versus photonic crystals. Nature 1999(401): 539-541
    [242]. Busch, K.; John, S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys. Rev. Lett. 1999(83): 967-70
    [243]. 谢双嫒 羊亚平 吴翔“驱动场对光子晶体中原子自发辐射的影响”《量子光学学报》 1999(5):38-48
    [244]. 谢双嫒 羊亚干 林志新 吴翔 “驱动场作用下光子晶体中三能级原子的自发发射”《物理学报》1999(48):1459-1469
    [245].羊亚平 林志新 谢双媛 冯伟国 吴翔“光子晶体中三能级原子的自发发射”《物理学报》 1999(48):603-610
    [246]. 金崇君 秦柏 杨淼 秦汝虎 “手征介质构成的体心立方光子晶体的光子带结构研究”《科学通报》 1998(43):155-158
    [247]. 金崇君 秦柏 秦汝虎“手征介质构成的简立方光子晶体带结构计算——平面波法”《光学学报》 1998(18):118-123
    [248). 陈铁歧;徐克王寿“由球形原子构成的多种周期性介电结构的光子能带计算”《光学学报》 1996(16):325-331
    [249]. Pendry, J.B.; MacKinnon, A. Calculation of photon dispersion relations Phys. Rev. Lett. 1992(69): 2772-5
    [250]. Tayeb, G.; Maystre, D. Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities J. Opt. Soc. Am. A 1997(14): 3323-32
    [251]. Freni-A; Mias-C GSM/FEM modelling of plane wave scattering from photonic crystals with defects Electronics Letters 2000(36): 888-9
    [252]. Eibert, Thomas F.;Volakis, John L.; Wilton, Donald R.; Jackson, D.R. Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation IEEE Transactions on Antennas and Propagation 1999(47): 843-850
    
    [253]. Qiu, Y.; Leung, K.M.; Carin, L.; Kralj, D. Dispersion curves and transmission spectra of a two-dimensional photonic band-gap crystal: Theory and experiment J. Appl. Phys. 1995(77): 3631-6
    [254]. Cox, S.J.; Dobson, D.C. Maximizing band gaps in two-dimensional photonic crystals SIAM Journal on Applied Mathematics 1999(59): 2108-20
    [255]. Johnson, N.F.; Hui, P.M. Theory of propagation of scalar waves in periodic and disordered composite structures Phys. Rev. B 1993(48): 10118-23
    [256]. Albert-JP; Jouanin-C; Cassagne-D; Bertho-D Generalized Wannier function method for photonic crystals Phys. Rev. B 2000(61): 4381-4
    [257]. Chan, C.T.; Yu, Q.L.; Ho, K.M. Order-N spectral method for electromagnetic waves Phys. Rev. B 1995(51): 16635-42
    [258]. Lalanne-P; Silberstein-E Fourier-modal methods applied to waveguide computational problems Optics Letters 2000(25): 1092-4
    [259]. Johnson, N.F.; Hui, P.M. k.p theory of photonic band structures in periodic dielectrics Journal of Physics: Condensed Matter 1993(5): L355-60
    [260]. Sailing-He; Min-Qiu; Simovski-CR An averaged-field approach for obtaining the band structure of a dielectric photonic crystal Journal of Physics: Condensed Matter 2000(12): 99-112
    [261]. Centeno-E; Felbacq-D Rigorous vector diffraction of electromagnetic waves by bidimensional photonic crystals J. Opt. Soc. Am. A 2000( 17): 320-7
    [262]. Dansas, P.; Paraire, N. Fast modeling of photonic bandgap structures by use of a diffraction-grating approach J. Opt. Soc. Am. A 1998(15): 1586-98
    [263]. Ohtaka, K.; Ueta, T.; Armemiya, K. Calculation of photonic bands using vector cylindrical waves and reflectivity of light for an array of dielectric rods Phys. Rev. B 1998(57): 2550-68
    [264]. Sakoda, K. Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices Phys. Rev. B 1995(52): 7982-6
    [265]. Chan, C.T.; Datta, S.; Ho, K.M.; Soukoulis, CM. A7 structure: a family of photonic crystals Phys. Rev. B 1994(50): 1988-91
    [266]. Kyriazidou-CA; Contopanagos-HE; Merrill-WM; Alexpoulos-NG Artificial versus natural crystals: effective wave impedance of printed photonic bandgap materials IEEE Transactions on Antennas and Propagation 2000(48): 95-106
    [267]. He-Sai-Ling; Qiu-Min; Simovski-CR Obtaining the band structure of a two-dimensional photonic crystal by an averaged field approach Chin. Phys. Lett.2000(17): 352-4
    [268]. Shepherd, T.J.; Roberts, P.J.; Loudon, R. Soluble two-dimensional photonic-crystal model Phys. Rev. E 1997(55): 6024-38
    [269]. Shepherd, T.J.; Roberts, P.J. Scattering in a two-dimensional photonic crystal: an analytical model Physical Review E 1995(51): 5158-61
    [270]. Lalanne, P. Effective medium theory applied to photonic crystals composed of cubic or square cylinders Applied Optics 1996(35): 5369-80
    
    [271]. Tarhan, I.I.; Watson, G.H. Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation Phys. Rev. B 1996(54): 7593-7
    [272]. Labilloy, D.; Benisty, H.; Weisbuch, C.; Krauss, T.F.; Cassagne, D.; Jouanin, C; Houdre,R.; Oesterle, U.; Bardinal, V. Diffraction efficiency and guided light control by two-dimensional photonic-bandgap lattices IEEE Journal of Quantum Electronics 1999(35): 1045-52
    [273]. Contopanagos, H.F.; Kyriazidou, C.A. ; Merrill, W.M.; Alexopoulos, N.G Effective response functions for photonic bandgap materials J. Opt. Soc. Am. A 1999(16): 1682-99
    [274]. Liu, L.; Liu, J.T. Photonic band structure in the nearly plane wave approximation European Physical Journal B 1999(9): 381-8
    [275]. Axmann, W.; Kuchment, P.; Kunyansky, L. Asymptotic methods for thin high-contrast two-dimensional PBG materials Journal of Lightwave Technology 1999( 17): 1996-2007
    [276]. Imhof, A.; Pine, D.J. Ordered macroporous materials by emulsion templating Nature 1997(389): 948-51
    [277]. Drodofsky, U.; Stuhler, J.; Schulze, T; Drewsen, M.; Brezger, B.; Pfau, T.; Mlynek, J.Hexagonal nanostructures generated by light masks for neutral atoms Appl. Phys. B 1997(B65): 755-9
    [278]. Shimada, T.; Sakurada, T.; Koma, A. Selective epitaxial growth of organic molecules on patterned alkali halide substrates Appl. Phys. Lett. 1999(74): 941 -3
    [279]. Kajii-H; Kawagishi-Y; Take-H; Yoshino-K; Zakhidov-AA; Baughman-RH Optical and electrical properties of opal carbon replica and effect of pyrolysis J. Appl. Phys. 2000(88):758-63
    [280]. Xu-T-B; Cheng-Z-Y; Zhang-QM; Baughman-RH; Cui-C; Zakhidov-AA; Su-J Fabrication and characterization of three-dimensional periodic ferroelectric polymer-silica opal composites and inverse opals J. Appl. Phys. 2000(88): 405-9
    [281]. Schuurmans, F.J.P.; Vanrnaekelbergh, D.; van de Lagemaat, J.; Lagendijk, A. Strongly photonic macroporous gallium phosphide networks Science 1999(284): 141-3
    [282]. Kushwaha, M.S.; Djafar-Rouhani, B. Giant sonic stop bands in two-dimensional periodic system of fluids J. Appl. Phys. 1998(84): 4677-83
    [283]. Halevi, P.; Krokhin, A.A.; Arriaga, J. Photonic crystal optics and homogenization of 2D periodic composites Phys. Rev. Lett. 1999(82): 719-22
    [284]. Dowling, J.P.; Bowden, CM. Anomalous index of refraction in photonic bandgap materials Journal of Modern Optics 1994(41): 345-51
    [285]. Kosaka, H.; Kawashima, T.; Tomita, A. ; Notomi, M.; Tamamura, T.; Sato, T.; Kawakami, S. Self-collimating phenomena in photonic crystals Appl. Phys. Lett.1999(74): 1212-14
    [286]. Borisov, R.A.; Dorojkina, GN.; Koroteev, N.I.; Kozenkov, V.M.; Magnitskii, S.A.; Malakhov, D.V.; Tarasishin, A.V.; Zheltikov, A.M. Fabrication of three-dimensional periodic microstructures by means of two-photon polymerization Appl. Phys. B 1998(B67): 765-7
    [287]. Kawakami, S.; Kawashima, T.; Sato, T. Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering Appl. Phys. Lett. 1999(74):463-5
    [288]. Yamamoto, N.; Noda, S. 100-nm-scale alignment using laser beam diffraction pattern observation techniques and wafer fusion for realizing three-dimensional photonic crystal structure Jpn. J. Appl. Phys. 1998(37): 3334-8
    [2
    
    [289]. Yamamoto, N.; Noda, S.; Sasaki, A. New realization method for three-dimensional photonic crystal in the optical wavelength region: experimental consideration Jpn. J. Appl. Phys. 1997(36): 1907-11
    [290]. Zakhidov, A.A.; Baughman, R.H.; Iqbal, Z.; Changxing Cui; Khayrullin, I.; Dantas, S.O.; Marti, J.; Ralchenko, V.G. Carbon structures with three-dimensional periodicity at optical wavelengths Science 1998(282): 897-901
    [291]. Van Blaaderen, A.; Ruel, R.; Wiltzius, P. Template-directed colloidal crystallization Nature 1997(385): 321-4
    [292]. Skorobogatiy-M; Joannopoulos-JD Photon modes in photonic crystals undergoing rigid vibrations and rotations Physical Review B 2000(61): 15554-7
    [293]. Liu-TH; Zhang-WX; Zhang-M; Tsang-KF Low profile spiral antenna with PBG substrate Electronics Letters 2000(36): 779-80
    [294]. Golshani, A.; Pier, H.; Kapon, E.; Moser, M. Photon mode localization in disordered arrays of vertical cavity surface emitting lasers J. Appl. Phys. 1999(85): 2454-6
    [295]. Qiao, B.; Ruda, H.E. Quantum computing using entanglement states in a photonic band gap J. Appl. Phys. 1999(86): 5237-44
    [296]. McPhedran, R.C.; Botten, L.C.; Nicorovici, N.A. Homogenization of composites: Dynamic and static theories Physica B 2000(279): 5-8
    [297]. Gaididei, Yu.B.; Christiansen, P.L.; Rasmussen, K.O.; Johansson, M. Two-dimensional effects in nonlinear Kronig-Penney models Physical Review B 1997(55): R13365-8
    [298]. Martorell, J.; Vilaseca, R.; Corbalan, R. Second harmonic generation in a photonic crystal Appl. Phys. Lett. 1997(70): 702-4
    [299]. Li-Zhao-Lin; Ni-Pei-Gen; Cheng-Bing-Ying; Jin-Chong-Jun; Zhang-Dao-Zhong; Dong-Peng; Guo-Xing-Cai Silica colloidal crystals with ethanol solvent Chinese Physics Letters 2000(17): 112-14
    [300]. Sievenpiper, D.F.; Lam, C.F.; Yablonovitch, E. Two-dimensional photonic-crystal vertical-cavity array for nonlinear optical image processing Applied Optics 1998(37): 2074-8
    [301]. 刘颂豪 “光纤通信技术的新发展” 《光电子技术与信息》 2002(15):1-8
    [302]. 谭朝文 “插上腾飞的翅膀密集波分复用关键元器件蔚然成器” 《世界产品与技术》 2001(7):18-20
    [303]. 张阳安 李玲 “DWDM技术的发展及关键技术的研究” 《有线电视技术》2001(8):12-15,89
    [304]. O'Keefe, Susan Hot tech hoopla Telecommunications (Americas Edition) 1999(33): 51-52
    [305]. Inoue, A. Great gratings [for DWDM] Photonics Spectra 2000(34): 98-100
    [306]. Garthe, D.; Epple, C.; Edmaier, B. Dense wavelength-division multiplexing and optical networking British Telecommunications Engineering 1999 (18): 119-24
    [307]. Hibino, Y. Passive optical devices for photonic networks IEICE Transactions on Communications 2000(E83-B): 2178-90
    [308]. Kaneko, A.; Sugita, A.; Okamoto, K. Recent progress on arrayed waveguide gratings for DWDM applications IEICE Transactions on Electronics 2000(E83-C): 860-8
    
    [309]. Jinlin He; Xiaohan Sun; Mingde Zhang A novel add/drop multiplexer architecture for DWDM network International Journal of Infrared and Millimeter Waves 2000(21): 57-62
    [310]. Polishuk, Paul DWDM system components Fiber and Integrated Optics 1999(18): 149-153
    [311]. Zhang, K.; Rogers, L. Bandwidth-expandable EDFA offers options for growth Laser Focus World suppl.issue 2000:33-8
    [312]. Nering, R. Transmitter designs incorporate multiple functions Laser Focus World 1999(suppl.issue): 9-10, 12
    [313]. H. Takahashi, S. Suzuki, K. Kato, I. Nishi Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution Electronics Letters 1990(26): 87
    [314]. H. Takahashi, H. Yoshinori, I. Nishi Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon Optics Letters 1992(17): 499-501
    [315]. Chao, H.J.; Wu, L.; Zhang, Z.; Yang, S.H.; Wang, L.M.; Chai, Y.; Fan, J.Y.; Choa, F.S. Photonic front-end processor in a WDM ATM multicast switch Journal of Lightwave Technology 2000(18): 273-285
    [316]. Takesue, H.;Yamamoto, E;Sugie, T. Novel node configuration for DWDM photonic access ring using CMLS IEEE Photonics Technology Letters 2000(12): 1698-700
    [317]. Song, Shaowen Switching issues in the all optical DWDM network CCECE 2000-Canadian Conference on Electrical and Computer Egineering Canadian Conference on Electrical and Computer Engineering. IEEE, Piscataway, NJ, USA,00TH8492. 2000(2): 998-1002
    [318]. Popov, E.;Bozhkov, B.; Neviere, M. Almost perfect blazing by photonic crystal rod gratings Applied Optics 2001(40): 2417-22
    [319]. Maystre, D. photonic crystal diffraction gratings Optics Express 2001(8): 209-216
    [320]. Takano, K.; Nakagawa, K. Frequency analysis of wavelength demultiplexers and optical filters with finite 2-D photonic crystals IEICE Transactions on Electronics 2001(E84-C): 669-77
    [321].刘海山 王启明等 “用于波分复用的光子晶体滤波器”《光电子。激光》2002(13):145-149
    [322].从征“光子晶体提高发光二极管的发光性能” 《激光与光电子学进展》 1998(9):21.22
    [323]. Boroditsky, M.; Gontijo, I.; Jackson, M.; R. Vrijien, Yablonovitch, E.; Krauss, T.; Chuan-Cheng Cheng; Scherer, A.; Bhat, R.; Krames, M. Surface recombination measurements on Ⅲ-Ⅴ candidate materials for nanostructure light-emitting diodes Journal of Applied Physics 2000(87): 3497-504
    [324]. Erchak, A.A.; Ripin, D.J.; Fan, S.; Rakich, P.; Joannopulos, J.D.; Ippen, E.P.; Ptrich, GS.; Kolodziejski, L.A. Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode Applied Physics Letters 2001(78): 563-5
    [325]. S. Datta, C.T. Chan, K.M. Ho, C.M. Soukoulis Effective dielectric constant of periodic composite structures Phys. Rev. B 1993(48): 14936-43
    [326].高本庆《时域有限差分方法 FDTD Method》第一版 北京:国防工业出版社1995
    [327].余天庆《张量分析及演算》第一版 武汉:华中理工大学出版社 1996
    [328].黄克智,薛明德,陆明方 《张量分析》第一版 北京:清华大学出版社 1986
    
    [329].钱曙复,陆林生 《三维欧氏空间张量分析》第一版 上海:同济大学出版社 1997
    [330].王甲升 《张量分析及其应用》第一版 北京:高等教育出版社 1987
    [331]. J.B. Pendry Photonic band structures Journal of Modem Optics 1994(41): 209-229
    [332]. P.M. Bell, J.B.Pendry, L.Martin Moreno, A.J.Ward A program for calculating photonic band structures and transmission coefficients of complex structures Computer Physics Communications 1995(85): 306-322
    [333]. Ward, A.J.; Pendry, J.B. Refraction and geometry in Maxwell's equations Journal of Modem Optics 1996(43): 773-93
    [334]. Ward-AJ; Pendry-JB A program for calculating photonic band structures and Green's functions using a non-orthogonal FDTD method Computer Physics Communications 1998(112): 23-41
    [335]. Ward-AJ; Pendry-JB Calculating photonic Green's functions using a nonorthogonal finite-difference time-domain method Phys. Rev. B 1998(58): 7252-7259
    [336]. J. Arriaga, Ward-AJ; Pendry-JB Order-N photonic band structures for metals and other dispersive materials Phys. Rev. B 1999(59): 1874-1877
    [337]. Ward-AJ; Pendry-JB A program for calculating photonic band structures, Green's functions and transmission/reflection coefficients using a non-orthogonal FDTD method Computer Physics Communications 2000(128): 590-621
    [338].刘培森 《应用傅立叶变换》第一版 北京:北京理工大学出版社 1990
    [339].[英]D.C.香帕尼 著,陈难先,何晓民 译《傅立叶变换及其物理应用》第一版北京:科学出版社 1980
    [340].上海交通大学应用数学系 《积分变换》第一版 上海:上海交通大学出版社 1988
    [341].方俊鑫,陆栋《固体物理学》(上册)第一版 上海:上海科学技术出版社,1980
    [342]. Min-Qiu; Sailing-He A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions J. Appl. Phys. 2000(87): 8268-75
    [343].邓贤照,徐英凯《快速傅立叶变换浅谈》第一版 北京:水力电力出版社 1994
    [344].R.E.克劳切,L.R.拉宾纳 著 酆广增,徐恩钧 校 《多抽样率数字信号处理》第一版 北京:人民邮电出版社 1988
    [345].潘示先 《谱估计和自适应滤波》第一版 北京:北京航空航天大学出版社 1991
    [346].张彦仲,沈乃汉 《快速傅立叶变换及沃尔什变换》第一版 北京:航空工业出版社 1989
    [347].E.O.布赖姆 著 柳群 译 《快速富里叶变换》第一版 上海:上海科学技术出版社 1979
    [348].沈民春,孙丽莎 《现代随机信号与系统分析》第一版 北京:科学出版社 1998
    [349]. W.H. Press, B. E Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipies: The art of Scientific Computing Cambridge University Press 1989
    [350].肖先赐 《现代谱估计-原理与应用》第一版 哈尔滨:哈尔滨工业大学出版社 1991
    [351].W. H.Press,S.A.Teukolsky,W.T. Vetterliung,B.P. Flannery著,傅祖芸,赵梅娜,丁岩等译,傅祖芸校 《C语言数值算法程序大全》第二版 北京:电子工业出版社 1995
    [352]. Yee, K. S. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media IEEE. Trans. Antennas Propagat., 1966(AP-14):302-307
    
    [353].王长清,祝西里《电磁场计算中的时域有限差分方法》第一版 北京:北京大学出版社 1994
    [354].葛德彪,闫玉波 《电磁波时域有限差分方法》第一版 西安:西安电子科技大学出版社 2002
    [355]. Allen Taflove, SuSan C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method second edition Arteeh House, Boston. London 2000
    [356].张克潜,李德杰 《微波与光电子学中的电磁理论》第一版 北京:电子工业出版社 1994
    [357].梁绍荣,王雪君 《电动力学》第一版 北京:北京师范大学出版社 1986
    [358].毕德显 《电磁场理论》第一版 北京:电子工业出版社 1985
    [359].谢处方,饶克谨 《电磁场与电磁波》第二版 北京:高等教育出版社 1987
    [360].Mandbrot B.B. The Fractal Geometry of Nature Freeman San Francisco 1982
    [361].屈世显,张建华 《复杂系统的分形理论与应用》第一版 西安:陕西人民出版社 1996
    [362].高安秀树 著 沈步明,常子文译 《分数维》第一版 北京:地震出版社 1989
    [363].林鸿溢,李映雪 《分形论》第一版 北京:北京理工大学出版社 1992
    [364]. D.L. Jaggard and T. Spielman, Microwave Opt. Technol. Lett. 1992(5): 460
    [365]. Liu Z, Xu J J, Lin Z F, Photonic Band Gaps in Two-Dimensional Crystals with Fractal Structure. Chin.Phys.Lett., 2003(20): 516-518
    [366]. Li L, Xie Y C, Wang Y Q, et al. Absolute Gap of Two-Dimensional Fractal Photonic Structure. Chin.Phys.Lett., 2003(20): 1767-1769
    [367].付云起,张国华,袁乃昌。具有分形特征的PBG微带线。电子学报,2002(30):913-915
    [368]. Pendry J.B.; Holden A.J.; Stewart W.J.; Youngs I. Extremely Low Frequency Plasmons in Metallic Mesostructures Phys. Rev. Lett. 1996(76): 4773-4776
    [369]. Sigalas M.M.; Chan C.T.; Ho K.M.; Soukoulis C.M. Metallic photonic band-gap materials Phys. Rev. B, 1995(52): 11744-11751
    [370]. Sakoda K.; Kawai N.; Ito T.; Chutinan A.; Noda S.; Mitsuyu T.; Hirao K. Photonic bands of metallic system. I. Principle of calculation and accuracy Phys. Rev. B, 2001(64): 045116-1-8
    [371]. Jin C.J.; Cheng B.Y.; Man B.Y.; Zhang D.Z.; Ban S.Z.; Sun B.; Li L.M. Two-dimensional metallodielectric photonic crystal with a large band gap Applied Physics Letters, 1999(75): 1201-3
    [372]. Qiu M,; He S.L. A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions J. Appl. Phys., 2000(87): 8268-75
    [373]. Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, H. A. Haus Channel Drop Tunneling through Localized States Phys. Rev. Lett. 1998(80): 960-3
    [374]. Shanhui Fan; Villeneuve, P.R.; Joannopoulos; Khan, M.J.; Manolatou, C.; Haus, H.A. Theoretical analysis of channel drop tunneling processes Phys. Rev. B 1999(59): 15882-92
    [375]. M.J. Khan, C.Manolatou, Shanhui Fan, Pierre R. Villeneuve, H. A. Haus, J. D. Joannopoulos Mode-Coupling Analysis of Multipole Symmetric Resonant Add/Drop Filters IEEE Journal of Quantum Electronics 1999(35): 1451-60
    
    [376]. Fu Jian, He Sai-Ling Analysis of higher order channel dropping tunneling processes in photonic crystals Chinese Physics Letters 2000(17): 737-9
    [377]. Fu Jian, Sailing He, Sanshui Xiao Analysis of channel-dropping tunnelling processes in photonic crystals with multiple vertical multi-mode cavities Journal of Physics A (Mathematical and General) 2000(33): 7761-70
    [378]. Sharkawy A, Shi S Y, Prather D W. Multichannel wavelength division multiplexing with photonic crystals. Applied Optics, 2001(40): 2247-2252
    [379]. Qiu M, Jaskorzynska B. Design of a channel drop filter in a two-dimensional triangular photonic crystal. Applied Physics Letters, 2003(83): 1074-6
    [380]. Costa R, Melloni A, Martinelli M. Bandpass resonant filters in photonic-crystal waveguides. IEEE Photonics Technology Letters, 2003(15): 401-3
    [381]. Chutinan A, Mochizuki M, Imada M, et al. Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs. Appi. Phys. Lett., 2001(79):2690-2
    [382]. Imada M, Noda S, Chutinan A, et al. Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide. Journal of Lightwave Technology, 2002 (20) :873-878
    [383]. Akahane Y, Mochizuki M, Asano T, et al. Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab. Appl.Phys.Lett., 2003(82): 1341-3
    [384]. Akahane Y, Asano T, Song B S, et al. Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs. Appl. Phys. Lett., 2003(83):1512-14
    [385]. Asano T, Song B S, Tanaka Y, et al. Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic-crystal slab. Appl. Phys. Lett., 2003(83): 407-9
    [386]. Asano T, Mochizuki M, Noda S, et al. A channel drop filter using a single defect in a 2-D photonic crystal slab-defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides. Journal of Lightwave Technology, 2003 (21):1370-6
    [387]. T. Baba, K. Inoshita, H. Tanaka, J. Yonekura, M. Ariga, A. Masutani, T. Miyamoto, F.Koyama, K. Iga, Strong enhancement of light extraction efficiency in GaInAsP 2-D-arranged microcolumns Journal of Lightwave Technology 1999( 17): 2113-20
    [388]. M. Boroditsky, T.F. Krauss, R. Coccioli, R. Vrijien, R. Bhat, E. Yablonovitch, Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals Applied Physics Letters 1999(75): 1036-8
    [389]. M. Boroditsky, R. Vrijien, T.F. Krauss, R. Coccioli, R. Bhat, E. Yablonovitch,Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals Journal of Lightwave Technology 1999( 17): 2096-112
    [390]. S. Fan, P.R. Villeneuve, J.D. Joannopulos, Rate-equation analysis of output efficiency and modulation rate of photonic-crystal light-emitting diodes IEEE Journal of Quantum Electronics 2000(36): 1123-30
    [391]. A.A. Krokhin, J. Arriaga, P. Halevi Speed of light in a 2D photonic crystal in the low-frequency limit Physica A 1997(241): 52-57
    
    [392]. M. Rattier, H. Benisty, R.P. Stanley, J.F. Carlin, R. Houdre, U. Oesterle, C.J.M. Smith, C.Weisbuch, T.F. Krauss, Toward Ultrahigh-Efiiciency Aluminum Oxide Microcavity Light-Emitting Diodes: Guided Mode Extraction by Plotonic Crystals, IEEE Journal on Selected Topics in Quantum Electronics, 2002(8): 23 8-246
    [393]. H.Y. Ryu, J.K. Hwang, Y.J. Lee, Y.H. Lee, Enhancement of Light Extraction From Two-Dimensional Photonic Crystal Slab Structure, IEEE Journal on Selected Topics in Quantum Electronics, 2002(8): 231 -237
    [394]. O. Madelung, Semiconductors-Basic Data Springer 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700