用户名: 密码: 验证码:
毛细管电泳富集新技术在农药残留及药物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳(Capillary Electrophoresis, CE)以其分离效率高、分析时间短、样品需要量少、操作费用低等优点,日益成为一种高效的分离分析方法。但由于其进样体积小和检测光程短,对常用的紫外检测器而言,CE的一个主要缺陷是灵敏度较低,解决此问题的一个有效途径是采用离线或在线样品富集的方法。在线富集技术具有简单经济,无需对商品仪器进行改造的优点。样品在线富集方法如推扫、阴阳离子耗尽进样一推扫、场放大样品堆积、pH调制酸(碱)堆积、pH梯度一推扫、胶束解离样品堆积、胶束有机溶剂堆积等己经成功应用于各种样品的分析中。在系统查阅有关文献资料的基础上,进行了以下研究工作:
     1.建立了分散液液微萃取与胶束毛细管电动色谱在线推扫(DLLME-sweeping- MEKC)测水样中的三嗪类除草剂残留的快速、灵敏检测方法。并对影响萃取和推扫效果的参数,例如萃取剂和分散剂的种类及用量、萃取时间、加盐量、水溶液pH值、缓冲溶液pH、浓度进行了优化。在最优条件下,五类除草剂的富集倍率高达17540~28 800。此方法的线性获得范围0.15~20 ng/mL,线性相关系数范围为0.9994~0.9997,检出限为0.05~0.10 ng/mL。日内相对标准偏差为1.5%~5.1% (n=5)和2.9%~5.6%(n =15)。在河水、井水和地表水水样中五类除草剂相对回收率在0.5 ng/mL和20.0 ng/mL的混合水平上分别为94.9%~112.0%和80.7%~100.6%。该方法已成功地应用于分析实际水样中的三嗪类除草剂残留。
     2.建立了分散液液微萃取与胶束毛细管电动色谱在线推扫测定黄瓜中的烟碱类杀虫剂(噻虫啉、啶虫脒、氯噻啉和吡虫啉)残留的快速、灵敏的新方法。并对影响萃取和推扫效果的因素、萃取剂和分散剂的种类及用量、萃取时间、盐浓度、样品基质和缓冲溶液浓度等进行了优化。在最优条件下,此方法的富集倍率达到4320~9957倍(峰面积),检出限为0.7~1.2 ng/g,定量限(信噪比为10:1)3~5 ng/g,线性范围噻虫嗪,啶虫脒和吡虫啉为4.0~200 ng/g,氯噻啉为5.0~200 ng/g。日内和日间相对标准偏差范围分别是3.8%~4.4%(n=5)和6.5%~8.5%(n=15)。在黄瓜中加标浓度为10 ng/g和50 ng/g的相对回收率在83.0%~98.6%之间,相对标准偏差低于6.3%。该方法已成功地应用于分析黄瓜样品中的烟碱类杀虫剂。
     3.建立了胶束溶剂堆积毛细管区带电泳法(MSS-CZE)测定马钱子制剂中的士宁和马钱子碱的含量。选择pH 4.0 30 mmol/L磷酸盐(含20%乙腈)为缓冲液,样品基质:8 mmol/L磷酸盐,5 mmol /LSDS为样品基质;分离电压20 kV,进样0.5 psi 150s,DAD检测波203 nm。士的宁和马钱子碱的浓度在0.2~15.0μg/mL内线性良好,线性相关系数分别为0. 9984和0. 9976,在中药制剂样品中加标回收率均在94.1%~114.4%之间,检测限分别0.02和0.05μg/mL。相对标准偏差在2.21%~4.56%之间MSS-CZE可有效地分离、测定马钱子中药制剂中的士的宁和马钱子碱的含量,方法简便、快速、准确、可靠。可作为药材中有效成分质量控制的方法。
     4.建立了胶束解离样品富集胶束毛细管电动色谱方法(AFMC-MEKC)测定苦参及其制剂中的氧化苦参碱和苦参碱的方法。选择20 mmol/LpH 9.5硼砂和30 mmol/L SDS(含30%甲醇)为缓冲液,6 mmol/LSDS,30 mmol/L硼砂为样品基质,未涂层熔融石英毛细管柱(内径75μm,总长50 cm,有效长度40 cm)分离电压20 kV,进样0.5 psi,120 s,紫外检测波长205 nm,温度25℃的条件下进行测定。氧化苦参碱,苦参碱的浓度在1.0~100.0μg/mL范围内与峰面积呈良好的线性关系,线性相关系数分别为0.9954和0.9996,检出限分别为0.3,0.02μg/mL。该方法已用于苦参及其苦参片制剂药品中氧化苦参碱和苦参碱含量的测定,其样品平均回收率在96.3%~107.2 %之间,取得了满意的结果。
Capillary electrophoresis (CE) has been recognized as a highly attractive separation technique due to its high separation efficiency, short analysis time, small sample requirements and low operation cost. However, the main drawback of CE is the poor concentration sensitivity due to the small injection volumes and a short optical path length in the most commonly used UV detection. One solution to the problem is to apply off-line and/ or on-line sample concentration methods. The on-line concentration techniques have advantages of simplicity and economy because of no requirements of modification in CE instrumentation. Some on-line concentration techniques such as sweeping, anion or cation selective exhaustive injection-sweeping, large volume sample stacking, field-enhanced sample stacking, acid or base pH-mediated stacking dynamic pH junction-sweeping, micelle to solvent stacking and analyte focusing by micelle collapse have enjoyed much success to the analysis of many types of samples. This thesis is mainly concerned with the following aspects:
     1. A rapid, sensitive method for the multiresidue analysis of five commonly used triazine herbicides in environment waters was developed using dispersive liquid–liquid microextraction (DLLME) coupled with on-line sweeping in micellar electrokinetic chromatography (MEKC). Parameters that affect the extraction and sweeping efficiency, such as the kind and volume of the extraction and disperser solvent, extraction time, salt addition, the pH in water sample, the pH and concentration of separation buffer were investigated and optimized. Under the optimum conditions, the enrichment factors were achieved in the range of 17540 to 28800. The linearity of the method was obtained in the range of 0.15~20 ng/mL with the correlation coefficients (r2) ranging from 0.9994 to 0.9997. The limits of detection were 0.05~0.1 ng/mL. The intraday relative standard deviations (RSDs) varied from 1.5 % to 5.1 % (n=5) and interday from 2.9% to 5.6% (n =15). The relative recoveries of the five herbicides in water samples at spiking levels of 0.5 ng/mL and 15 ng/mL were 94.9%~112.0% and 80.7%~100.6%. The proposed method has been successfully applied to the analysis of target herbicide residues in water samples with satisfactory results.
     2. A novel method was developed by using dispersive liquid–liquid microextraction (DLLME) coupled with sweeping-MEKC for the multiresidue analysis of chloronicotinyl insecticide thiacloprid (TCL),acetamiprid (ACT), imidaclothiz(ICZ) and imidacloprid (ICL) in cucumbers. Parameters that affect the extraction and sweeping efficiency, such as the kind and volume of the extraction and disperser solvent, extraction time and salt addition, sample matrix and organic modifiers concentration in separation buffer were investigated and optimized. Under the optimum conditions, the enrichment factors were achieved in the range of 4320~9957 (EFA). The linearity of the method for thiacloprid, acetamiprid, and imidacloprid was in the range of 4.0- 200 ng/g in cucumber samples, and for imidaclothiz ranged from 5.0 to 200 ng/g, with the correlation coefficients (r) ranging from 0.9961 to 0.9984, respectively. The limits of detection (LODs, S/N=3) ranged from 0.7 to 1.2 ng/g. The intraday relative standard deviations (RSDs) varied from 3.8% to 4.4% (n=5) and interday from 6.5% to 8.5% (n =15). The recoveries in cucumbers at spiking levels of 10 ng/g and 100 ng/g were ranging from 83.0 to 98.6% with the RSDs lower than 6.3%. The proposed method has been successfully applied to the analysis of target chloronicotinyl insecticide residues in cucumber samples with satisfactory results.
     3. The determination of strychnine and brucine in traditional Chinese medicine preparation was established by micelle to solvent stacking in capillary zone electrophoresis. The optimal condition of the running buffer solution was 30 mmol/L phosphates containing 20% acetonitrile at pH 4.00. The sample matrix was 8 mmol/L phosphate and 5 mmol/L SDS pH 3.00. The samples were injected with pressure at 0.5 psi for 150 s. The applied voltage was 20 kV and the wavelength of the detection was 205 nm.The method had good linearity and reproducibility in the range of strychnine and brucine, the correlation coefficients (r) were 0.9984~0.9976. The relative recoveries of strychnine and brucine in Traditional Chinese medicine were 94.1%~114.4%. In this condition, strychnine and brucine can be well separated from the other components. The method is convenient, rapid, accurate and reliable, and can be used to control the quality of effective components in Traditional Chinese medicine.
     4. A novel method for the determination of oxymatrin and matrin in Sophora flavescens Ait. and Chinese medicine preparation by analyte focusing by micelle collapse in micellar electrokinetic chromatography. The optimal condition of the running buffer solution was 20 mmol/L sodium borate, 30 mmol /L SDS and 25% methanol at pH 9.50. The sample matrix was 30 mmol/L sodium borate and 6 mmol/L SDS. The samples were injected with pressure at 0.5 psi for 120s. The applied voltage was 20 kV and the wavelength of the detection was 205 nm.The calibration curve was linear over a range of 0.5~10μg/mL for oxymatrin and matrin, with correlation coefficients of 0.992and 0.993, respectively. The detection limits (S/N = 3:1)for oxymatrin and matrin were 0.10 and 0.20μg/ml, respectively. The relative recoveries of oxymatrin and matrin in Traditional Chinese medicine and Sophora flavescens Ait. were 94.1%~114.4%.
引文
[1] Jorgenson J W,Lukas K D. Zone electrophoresis in open-tubular glass capillary[J]. Anal Chem.,1981,53(8):1298-1302.
    [2] Jorgenson J W , Lukas K D. High-resolution separations based on electrophoresis and electroosmosis[J]. J. Chromatogr. A,1981,218:209-216.
    [3] Terabe S,Otsuka K,Ichikawa K,et al. Electrokinetic separations with micellar solution and open-tubular capillary [J]. Anal. Chem.,1984,56(1):111-113.
    [4] Hjerten S,Liao J,Yao K. Theoretical and experimental study of electrophoretic mobilization of isoelectric focused protein zones[J]. J. Chromatogr.,1987,387:127- 136.
    [5] Cohen A,Karger B. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins[J]. J. Chromatogr.,1987,397:409- 415.
    [6]毛细管电泳研究进展.第一届全国毛细管电泳学术报告会论文集[C].北京,1993:10- 88.
    [7] Tellez S,Forges N,Roussin A. Coupling of microdialysis with capillary electrophoresis: a new approach to study of drug transfer between two compartments to the body in feely rats[J]. J. Chromatogr. A,1992,581(2):257-266.
    [8] Zhao M G,Hao A Y,Lie J,et al. New cyclomaltoheptaose (β-cyclodextrin) derivative 2-O-(2-hydroxybutyl) cyclomaltoheptaose:Preparation and its application for the separation of enantiomers of drugs by capillary electrophoresis[J]. Carbohydr. Res.,2005,340(8):1563-1565.
    [9] Zhang R, Guo B L. Analysis of alkaloids by high performance capillary electrophoresis[J]. Chin Tradit Herbal Drugs., 2005,36(12):1889-1892.
    [10] Bishop S C,Mccord B R,Gratz S R,et al. Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector[J]. J. Forensic Sci.,2005,50(2):326-335.
    [11] Schmitt U,Eran M,Holzgrabe U. Chiral capillary electrophoresis: Facts and fiction on the reproducibility of resolution with randomly substituted cyclodextrins[J]. Electrophoresis,2004,25(16):2801-2807.
    [12] Frías S,Sánchez M J,Rodríguez M A. Determination of triazine compounds in ground water samples by micellar electrokinetic capillary chromatography[J]. Anal. Chim. Acta,2004,503:271-278.
    [13] Hinsmann P,Arce L,Píos A,et al. Determination of pesticides in waters by automatic on-line solid-phase extraction–capillary electrophoresis[J].J. Chromatogr. A,2000,866(1):137- 146.
    [14] Smith J T,Nashabeh W,El Rassi Z. Micellar electrokinetic capillary chromatography with in situ charged micelles. 1. Evaluation of N-D-Gluco-N-methylalkanamide surfactants as anionic borate complexes[J]. Anal. Chem.,1994,66 (7) :1119-1133.
    [15] Schmitt P,Garrison A W,Freitag D,et al. Application of cyclodextrin-modified micellar electrokinetic chromatography to the separations of selected neutral pesticides and theirenantiomers[J]. J. Chromatogr. A,1997,792(1-2):419- 429.
    [16] Smith C J,Grainger J,Patterson Jr D G. Separation of Polyeyelic aolnatic hydroearbon metablites byγ-CD-modified micellar electrokinetic chromatography with laser-induced fluorescence detection[J]. J. Chromatogr. A,1998,803(1-2):241-247.
    [17] Kaneta T,Yamashita T,Imasaka T. Separation of polycyclic aromatic hydrocarbons by micellar electrokinetic chromatography with laser fluorescence detection[J]. Anal. Chim. Acta,1995,29(3):371-375.
    [18] Van Bruijnsvoort M,Sanghi S K,Poppe H,et al. Determination of chlorophenols by micellar electrokinetic chromatography with electrochemical detection[J]. J. Chromatogr. A,1997,75(1-2):203-213.
    [19] Olsson J C,Dyemark A,Karlberg B. Determination of heterocyclic aromatic amines by micellar electrokinetic chromatography with amperometric detection[J]. J. Chromatogr. A, 1997 ,765(2):329-335.
    [20] Krattinger B,Bruno A E,Widmer H M,et al. Hologram-based thermooptical absorbance detection in capillary electrophoresis: separation of Nucleosides and Nucleotides[J]. Anal. Chem.,1995,67(1):124-130.
    [21] Quirino J P,Terabe S. Electrokinetic chromatography[J]. J. Chromatogr. A,1999,856(2):465-482.
    [22] Sepaniak M J,Vo-Dinh T,Troopina V,et al. Evaluation of a Separation-Based Fiber-Optic Sensor in a Micellar Electrokinetic Capillary Chromatography Mode of Operation[J]. Anal. Chem.,1997,69(16-18):3806-3811.
    [23] Otsuka K,Terabe S,Ando T. Electrokinetic chromatography with micellars solutions. Separation of phenylthiohydantion-amino acids[J]. J. Chromatogr.,1985,332 :219-226.
    [24] Erim F B,Xu X,Kraak J C. Application of micellar electrokinetic chromatography and indirect UV detection for the analysis of fatty acids[J]. J. Chromatogr. A,1995,694(2):471-479.
    [25] Kancta T,Komatsubara T,Shiba H,et al. Separation and detection of cynine-labeled amino acids by micellar electrokinetic chromatography combined with fluorescence detection using diode-based[J]. Anal. Sci.,1998,14(22):1017-1019.
    [26] Fuehigami T,Imasaka T. Capillary micellar electrokinetic chromatography based on indirect semiconductor laser fluorescence detection[J]. Anal. Chim. Acta.,1994,291(1-2):183-188.
    [27] Amankwa L N , Kuhr W G. Indirect fluorescence detection in micellar electrokinetic chromatography[J]. Anal. Chem.,1991,63(17):1733-1737.
    [28] Moring S E,Reel R. Optical improvements of a Z-shaped cell for high-sensitivity UV absorbance detection in capillary electrophoresis[J]. Anal. Chem.,1993,65(23):3454-3459.
    [29] Djordjevic N M,Widder R,Kuhnn M. Signal enhancement in capillary electrophoresis by using a sleeve cell arrangement for optical detection[J]. J. High. Resolut. Chromatogr. , 1997 ,20(4):189-192.
    [30] Cheng H L, Kaneta T.On-line sample concentration techniques in capillary electrophoresis: Velocity gradient techniques and sample concentration techniques for biomolecules[J]. Electrophoresis,2004,25:4058-4073.
    [31] Breadmore M.C. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips [J].Electrophoresis,2007,28:254-281
    [32] Simpson S L, Quirino J P, Terabe S, On-line sample preconcentration in capillary electrophoresis: Fundamentals and applications[J]. J. Chromatogr. A,2008,184 (1-2):504-541
    [33] Borrull F, Calull M, Aguilar C. Sorbent preconcentration procedures coupled to capillary electrophoresis for environmental and biological applications[J]. Aguilar, Anal. Chim. Acta., 2008,616(1):1-18.
    [34] Kitagawa F, Otsuka K, Micellar electrokinetic chromatography on microchips[J] J.Sep. Sci. 2008,31 (5):794-802.
    [35] García-Ruiz C , Marina M L. Sensitive chiral analysis by capillary electrophoresis[J]. Electrophoresis,2006,27(1):195-212.
    [36] Lin C H,Kaneta T. On-line sample concentration techniques in capillary electrophoresis: Velocity gradient techniques and sample concentration techniques for biomolecules[J]. Electrophoresis,2004,25(23-24):4058-4073.
    [37] Palmer J F. High-salt stacking principles and sweeping:Comments and contrasts on mechanisms for high-sensitivity analysis in capillary electrophoresis[J]. J. Chromatogr. A , 2004 ,1036(2):95-100.
    [38] Urbánek M,KrivánkováL,Bocek P. Stacking phenomena in electromigration: From basic principles to practical procedures [J]. Electrophoresis,2003,24(3):466-485.
    [39] Quirino J P,Kim J B,Terabe S. Sweeping: Concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis[J]. J. Chromatogr. A,2002,965(1-2):357-373.
    [40] Pyell U. Micellar electrokinetic chromatography-from theoretical concepts to real samples [J]. Anal .Bioanal. Chem.,2001,371(6):691-703.
    [41] Quirino J P,Terabe S. Sample stacking of cationic and anionic analytes in capillary electrophoresis [J]. J. Chromatogr. A,2000,902(1):119-135.
    [42] Mikkers F E P,Everaerts F M,Verheggen T P E M. High-performance zone electrophoresis [J]. J. Chromatogr.,1979,169:11-20.
    [43] Burgi D S,Chien R L. Optimization in sample stacking for high-performance capillary electrophoresis[J]. Anal. Chem.,1991,63(18):2042-2047.
    [44] Chien R L,Helmer J C. Electroosmotic properties and peak broadening in field-amplified capillary electrophoresis[J]. Anal. Chem.,1991,63(14):1354-1361.
    [45] Basheer C,Wang H,Jayaraman A,et al. Polymer-coated hollow fiber microextraction combined with on-column stacking in capillary electrophoresis[J]. J. Chromatogr. A , 2006 ,1128(1-2):267-272.
    [46] Fang H,Zeng Z,Liu L. Centrifuge microextraction coupled with on-line back-extractionfield-amplified sample injection method for the determination of trace ephedrine derivatives in theurine and serum[J]. Anal.Chem.,2006,78(17):6043-6049.
    [47] Shi Y,Huang Y,Duan J,et al. Field-amplified on-line sample stacking for separation anddetermination of cimaterol,clenbuterol and salbutamol using capillary electrophoresis [J]. J.Chromatogr. A,2006,1125(1):124-128.
    [48] Acedo-Valenzuela M I,Galeano-Díaz T,Mora-Díez N,et al. A response surface methodology inthe development of a stacking-sensitive capillary electrophoresis method by field-amplifiedinjection for the analysis of tricyclic antidepressants in the presence of salts[J]. J. Sep. Sci.,2006,29(13):2091-2097.
    [49] Yang Y,Boysen R I,Hearn M T W. Optimization of field-amplified sample injection for analysisof peptides by capillary electrophoresis-mass spectrometry[J]. Anal. Chem. , 2006 ,78(14):4752-4758.
    [50] Gong M,Wehmeyer K R,Limbach P A,et al. On-line sample preconcentration usingfield-amplified stacking injection in microchip capillary electrophoresis[J]. Anal. Chem.,2006,78(11):3730-3737.
    [51] Chien R L , Burgi D S. Sample stacking of an extremely large injection volume inhigh-performance capillary electrophoresis[J]. Anal. Chem.,1992,64(9):1046-1050.
    [52] Kuo C Y,Chiou S S,Wu S M. Solid-phase extraction and large-volume sample stacking with anelectroosmotic flow pump in capillary electrophoresis for determination of methotrexate and itsmetabolites in human plasma[J]. Electrophoresis,2006,27(14):2905-2909.
    [53] Xiong Y,Park S R,Swerdlow H. Base stacking: pH-mediated on-column sample concentration forcapillary DNA sequencing[J]. Anal. Chem.,1998,70(17):3605-3611.
    [54] Gillogly J A,Lunte C E. pH-mediated acid stacking with reverse pressure for the analysis ofcationic pharmaceuticals in capillary electrophoresis[J]. Electrophoresis,2005,26(3),633-639.
    [55] Arnett S D,Lunte C E. Investigation of the mechanism of pH-mediated stacking of anions fortheanalysis of physiological samples by capillary electrophoresis[J]. Electrophoresis,2003,24(11):1754-1752.
    [56] Zhao Y P,Lunte C E. pH mediated field amplification on-column preconcen- tration of anions inphysiological samples for capillary electrophoresis[J]. Anal. Chem.,1999,71(18):3985-3991.
    [57] Aebersold R , Morrison H D. Analysis of dilute peptide samples by capillary zoneelectrophoresis[J]. J. Chromatogr.,1990,516(1):79-88.
    [58] Quirino J P,Terabe S. Exceeding 5000-fold concentration of dilute analytes in micellarelectrokinetic chromatography[J]. Science,1998,282(5388):465-468.
    [59] Simpson Jr S L, Quirino J P , Terabe S. On-line sample preconcentration in capillaryelectrophoresis: Fundamentals and applications[J]. J. Chromatogr. A,2008,1184(1-2):504-541.
    [60] Quirino J P,Iwai. Y,Otsuka K,et al. Determination of environmentally relevant aromatic amines in the ppt levels by cation selective exhaustive injection-sweeping-micellar electrokinetic chromatography[J]. Electrophoresis,2000,21(16):2899-2903.
    [61] Isoo K , Otsuka K , Terabe S. Application of sweeping to micellar electrokinetic chromatography-atmospheric pressure chemical ionization-mass spectrometric analysis of environmental pollutants[J]. Electrophoresis,2001,22(16):3426-3432.
    [62] Quirino J P,Terabe S,Otsuka K,et al. Sample concentration by sample stacking and sweeping using a microemulsion and a single-isomer sulfatedβ-cyclodextrin as pseudostationary phases in electrokinetic chromatography[J]. J. Chromatogr. A,1999,838(1-2):3-10.
    [63] Núňez O,Kim J B,Moyano E,et al. Analysis of the herbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection[J]. J. Chromatogr. A,2002,961(1):65- 75.
    [64] Lin C E, Liu Y C,Yang T Y,et al. On-line concentration of s-triazine herbicides in micellar electrokinetic chromatography using a cationic surfactant[J]. J. Chromatogr. A , 2001 ,916(1-2):239-245.
    [65] Da Silva C L,De Lima E C,Tavares M F M. Investigation of preconcentration strategies for the trace analysis of multi-residue pesticides in real samples by capillary electrophoresis[J]. J. Chromatogr. A,2003,1014(1-2):109-116.
    [66] Zhang S H,Yang Y Y,Han D D,et al. Determination of triazine herbicides residues in water samples by on-line sweeping concentration in micellar electrokinetic chromatography [J]. Chin. Chem. Lett.,2008,18(16):1487-1490.
    [67] Huang H Y,Lien W C,Huang I Y. Anion-selective exhaustive injection-sweeping microemulsion electrokinetic chromatography[J]. Electrophoresis,2006,27(16):3202-3209.
    [68] Monton M R N,Quirino J P,Otsuka K,et al. Separation and on-line preconcentration by sweeping of charged analytes in electrokinetic chromatography with nonionic micelles[J]. J. Chromatogr. A,2001,939(1-2):99-108.
    [69] Zhang S H,Li C,Song S J,et al. Application of dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for trace analysis of six carbamate pesticides in apples[J].Anal. Methods,2010,2:54-62.
    [70] Juan-Garíca A,Font G,PicóY. On-line preconcentration strategies for analyzing pesticides in fruits and vegetables by micellar electrokinetic chromatography[J]. J. Chromatogr. A , 2007 ,1153(1-2):104-113.
    [71] Yu L , Li F Y. Dynamic pH junction-sweeping capillary electrophoresis for on-line preconcentration of toxic pyrrolizidine alkaloids in Chinese herbal medicine[J]. Electrophoresis,2005,26(22):4360-4367.
    [72] Britz-McKibbin P,Markuszewski M J,Iyanagi T,et al. Picomolar analysis of flavins in biological samples by dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection[J]. Anal. Biochem.,2003,313(1):89-96.
    [73] Britz-Mckibbin P,Terabe S. High-sensitivity analyses of metabolites in biological samples by capillary electrophoresis using dynamic pH junction-sweeping[J]. Chem. Rec.,2002,2(6):397-404.
    [74] Britz-McKibbin P,Otsuka K,Terabe S. On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection[J]. Anal. Chem.,2002,74(15):3736-3743.
    [75] Gong M,Wehmeyer K R,Limbach P A,et al. Unlimited-volume electrokinetic stacking injection in sweeping capillary electrophoresis using a cationic surfactant[J]. Anal. Chem.,2006,78(17):6035-6042.
    [76] Meng P,Fang N,Wang M,et al. Analysis of amphetamine,methamphetamine and methylenedioxy-methamphetamine by micellar capillary electrophoresis using cation-selective exhaustive injection[J]. Electrophoresis,2006,27(16):3210-3217.
    [77] Isoo K,Terabe S. Analysis of metal ions by sweeping via dynamic complexation and cation-selective exhaustive injection in capillary electrophoresis[J]. Anal. Chem. , 2003 ,75(24):6789-6798.
    [78] Zhu L,Tu C,Lee H K. On-line concentration of acidic compounds by anion-selective exhaustive injection-sweeping-micellar electrokinetic chromatography [J]. Anal. Chem. , 2002 ,74(22):5820-5825.
    [79] Quirino J P,Terabe S. Approaching a million fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection:Cation-selective exhaustive injection and sweeping[J]. Anal. Chem.,2000,72(5):1023-1030.
    [80] Quirino J P,Haddad P R. Online Sample Preconcentration in Capillary Electrophoresis using Analyte Focusing by Micelle Collapse[J]. Anal. Chem.,2008,80(17):6824-6829.
    [81] Quirino J P. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography[J]. J. Chromatogr. A,2008,1214(1-2):171-177.
    [82] Dawod M,Breadmore M C,Guijt R M,et al. Strategies for the on-line preconcentration and separation of hypolipidaemic drugs using micellar electrokinetic chromatography[J]. J. Chromatogr. A,2010,1217(3):386-393.
    [83] Quirino J P. Micelle to solvent stacking of organic cations in capillary zone electrophoresis with electrospray ionization mass spectrometry[J]. J. Chromatogr. A,2009,1216:294-299.
    [84] Guidote AM Jr, Quirino J P.On-line sample concentration of organic anions in capillary zone electrophoresis by micelle to solvent stacking[J]. J. Chromatogr. A,2010,1217(40):6290-6295.
    [85] Raynie D E. Modern extraction techniques[J]. Anal. Chem.,2004,76:4659-4664.
    [86] Wang Z,Hennion B,Urruty L,et al. Solid-phase microextraction coupled with high performance liquid chromatography: a complementary technique to solid-phase microextraction-gas chromatography for the analysis of pesticide residues in strawberries[J]. Food Addit. Contam.,2000,17(11):915-923.
    [87] Falqui-Cao C,Wang Z,Urruty L,et al. Focused microwave assistance for extracting some pesticide residues from strawberries into water before their determination by SPME/HPLC/DAD[J].J. Agric. Food. Chem.,2001,49:5092-5097.
    [88] Capriel P,Haisch A,Khan S U. Supercritical methanol:an efficacious technique for the extraction of bound pesticide residues from soil and plant samples[J]. J. Agric. Food. Chem.,1986,34:70-73.
    [89] Lehotay S J,Schaner A,Nemoto S,et al. Determination of pesticide residue in nonfatty foods by supercritical fluid extraction and gas chromatography/mass spectrometry: Collaborative Study[J]. J. AOAC Int.,2002,85(5):1148-1166.
    [90] Motohashi N,Nagashima H,Párkányi C. Supercritical fluid extraction for the analysis of pesticide residues in miscellaneous samples[J]. J. Biochem. Bioph. methods,2000,43(1-3):313-328.
    [91] Popp P,Kalbitz K,Oppermann G. Application of solid-phase microextraction and gas chromatogtrphy with eletron-capture and mass spectrometric detection for the determination of hexachlorocychohexanes in soil solutions[J]. J. Chromatogr. A,1994,687:133-140.
    [92] Sánchez-Ortega A,Sampedro M C, Unceta N,et al. Solid phase microextraction coupled with high performance liquid chromatography using on-line diode-array and electrochemical detection for the determination of fenitrothion and its main metabolites in environmental water samples[J]. J. Chromatogr. A,2005,1094(1-2):70-76.
    [93] Natangelo M , Tavazzi S , Benfenati E. Evaluation of solid phase microextraction-gas chromatography in the analysis of some pesticide with different mass spectrometric techniques:application to environmental waters and food samples[J]. Anal. Letters,2002,35(2):327-338.
    [94] Ahmadia F,Shahsavari A A,Rahimi-Nasrabadi M. Automated extraction and preconcentration of multiresidue of pesticides on a micro-solid-phase extraction system based on polypyrrole as sorbent and off-line monitoring by gas chromatography–flame ionization detection[J]. J. Chromatogr. A,2008,1193(1-2):26-31.
    [95] Sae-Khow O,Mitra S. Carbon nanotubes as the sorbent for integratingμ-solid phase extraction within the needle of a syringe[J]. J. Chromatogr. A,1216,2009(1-2):2270-2274
    [96] Ciucanu I,Swallow K C,CǎpritǎR. Micro-solid phase extraction with helical-solid-sorbent in the presence of organic solvent for gas chromatography–mass spectrometry analysis of per-O-methylated mono- and disaccharides[J]. Anal.Chim. Acta,2004,519:93-101.
    [97] Pederson-Bjergaard S, Rasmussen K E. Liquid-Liquid-Liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J]. Anal. Chem.,1999,71:2650-2656.
    [98]王春,吴秋华,王志,等.基于中空纤维的液相微萃取技术的研究进展[J].色谱,2006,24(5):516-523.
    [99] Basheer C, Lee H K, Obbard J P. Determination of organochlorine pesticides in seawater using liquid-phase hollow fibre membrane microextraction and gas chromatography-mass spectrometry[J]. J. Chromatogr. A,2002,968:191-199.
    [100] Zhu L Y,Ee Z K,Zhao L M,et al. Analysis of phenoxy herbicides in bovine milk by means of liquid-liquid-liquid microextraction with a hollow-fiber membrane[J]. J. Chromatogr. A,2002,963:335-343.
    [101] Lambropoulou D A,Albanis T A. Application of hollow fiber liquid phase microextraction for the determination of insecticides in water[J]. J. Chromatogr. A,2005,1072:55-61.
    [102] Shen G,Lee H K. Hollow fiber-protected liquid-phase microextraction of triazine herbicides[J]. Anal. Chem.,2002,74:648-654.
    [103] Rezaee M,Assadi Y,Milani Hosseini M R,et al. Determination of organic compounds in water using dispersive liquid–liquid microextraction[J]. J. Chromatogr. A,2006,1116(1-2):1-9.
    [104] Berijani S,Assadi Y,Anbia M,et al. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water[J]. J. Chromatogr. A,2006,1123(1):1-9.
    [105] Fari?a L,Boido E,Carrau F,et al. Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection[J]. J. Chromatogr. A,2007,1157(1-2):46 -50.
    [106] Fattahi N,Samadi S,Assadi Y,et al. Solid-phase extraction combined with dispersive liquid-liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples[J]. J. Chromatogr. A,2007,1169(1-2):63-69.
    [107] Wu Q H,Zhou X,Li Y M, et al. Application of dispersive liquid-liquid microextraction combined with high-performance liquid chromatography to the determination of carbamate pesticides in water samples[J]. Anal. Bioanal. Chem.,2009,393(6-7):1755-1761.
    [108] Wu Q H,Li Y P,Wang C,et al. Dispersive liquid–liquid microextraction combined with high performance liquid chromatography–fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples[J]. Anal.Chim. Acta,2009,638(2):139-145.
    [109] Wu Q H,Wang C,Liu Z M,et al. Dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography[J]. J. Chromatogr. A,2009,1216(29):5504-5510.
    [110] Zhang S H,Li C,Song S J,et al. Application of dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for trace analysis of six carbamate pesticides in apples [J]. Anal. Methods,2010,2:54–62
    [111] Baranowska I,Barchanska H,Pacak E. Procedures of trophic chain samples preparation for determination of triazines by HPLC and by ICP-AES methods[J]. Environ.Pollut.,2006,143:206-211.
    [112] Schmitt P, Garrison AW,Freitag D,et al. Separation of s-triazine herbicides and their metabolites by capillary zone electrophoresis as a function of pH[J]. J Chromatogr A,1996,723:169-177.
    [113] Foret F, Sustacek V, Bocek P, Separation of some triazine herbicides and their solvolytic products by capillary zone electrophoresis[J]. Electrophoresis,1990,11:95-97.
    [114] Carabias Martínez R,Rodríguez Gonzalo E,Mu?oz Domínguez A I,et al. Determination of triazine herbicides in water by micellar electrokinetic capillary chromatography [J]. J Chromatogr A,1996,733:349-360.
    [115] S. Fr′?as M J,Sánchez M A,Rodr′?guez. Determination of triazine compounds in ground water samples by micellar electrokinetic capillary chromatography [J]. Anal. Chimica Acta,2004,503: 271-278.
    [116] Quirino J P,Terabe S. Sweeping of analyte zones in electrokinetic chromatography[J]. Anal. Chem,1999,71:1638-1644.
    [117] Nunez O,Kim J B, Moyano E,et al. Analysis of the herbicides paraquat,diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection[J]. J Chromatogr A,2002,961 (1):65-75.
    [118] Isoo K, Otsuka K, Terabe S. Application of sweeping to micellar electrokinetic chromatography-atmospheric pressure chemical ionization-mass spectrometric analysis of environmental pollutants[J]. Electrophoresis,2001,22:3426-3432.
    [119] Clóvis L. da Silva, Elizabete C, et al. Investigation of preconcentration strategies for the trace analysis of multi-residue pesticides in real samples by capillary electrophoresis[J]. J Chromatogr A,2003,1014 (2):109-116.
    [120] Zhang S H,Yang Y Y,Han D D,et al. Determination of triazine herbicide residues in water samples by on-line sweeping concentration in micellar electrokinetic chromatography[J]. Chin Chem Letters,2008,19:1487-1490.
    [121] Chang J S, Huang SD. Simultaneous derivatization and extraction of anilines in waste water with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometric detection[J]. Talanta,2008,75(1):70-75.
    [122] Nagaraju D,Huang SD. Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry[J]. J Chromatogr A,2007,1161(2):89-97.
    [123] Liang P , Xu J , Li Q. Application of dispersive liquid–liquid microextraction and high-performance liquid chromatography for the determination of three phthalate esters in water samples [J]. Anal Chim Acta,2008,609(1):53-58.
    [124] Xiong J,Hu B. Comparison of hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection[J]. J Chromatogr A, 2008, 1193 (2): 7-18.
    [125] Naseri MT,Hemmatkhah P,Milani Hosseini M R,et al. Combination of dispersive liquid–liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples[J]. Anal Chim.Acta, 2008, 610(1): 135-141.
    [126]邓天福,高扬帆,陈锡岭,新烟碱类杀虫剂的选择毒性机理[J], 2010, 38(4):23-26
    [127] General Administration of Quality Supervision, Inspection Quarantine of People’s Republic of China, Inquiry for Pestic ideresidue limits,国家质量监督检验检疫总局进出口食品安全局,农药残留限量查询, http:/ /www. tbt-sps. gov. cn/foodsafe/x lbz/Pag es/pesticide. aspx, 2009
    [128] General Administration of Quality Supervision, Inspection Quarantine of People’s Republic of China, Japan Positive Lists,国家质量监督检验检疫总局进出口食品安全局,日本肯定列表, http: / /www. tbt-sps. gov. cn / foodsafe /x lbz /Pages/Japan. aspx, 2009
    [129] Obana H,Okihashi M,Akutsu K,et al. Determination of Neonicotinoid Pesticide Residues in Vegetables and Fruits with Solid Phase Extraction and Liquid Chromatography Mass Spectrometry [ J]. Agric. Food Chem.,2003,51( 9): 2501- 2505.
    [130] Zhou Q X,Xiao J P,Ding Y J. Sensitive determination of fungicides and prometryn in environmental water samples using multiwalled carbon nanotubes solid-phase extraction cartridge[ J]. Anal Chim Anta,2007,602:223- 228.
    [131] Seccia S,Fidente P,Barbini D A. Multiresidue determination of nicotinoid insecticide residues indrinking water by liquid chromatography with electrosprayionization mass spectrometry Anal. Chim. Acta. 2005,553:21- 26.
    [132] Secciaa S,Fidenteb P, Montesanoa D,et al. Determination of neonicotinoid insecticides residues in bovine milksamples by solid-phase extraction clean-up and liquid chromatography with diode-array detection[J].J. Chromatogr. A,2008,1214:115- 120
    [133] Singh S B, Kulshrestha G. Residues of Thiamethoxam and Acetamaprid, Two Neonicotinoid Insecticides, in/on Okra Fruits (Abelmoschus esculentusL) [J]. Bull. Environ. Contam. Toxicol., 2005, 75 ( 5):945- 951.
    [134] Xie W,Qian Y,Ding H Y,et al. Simultaneous Determination of Seven Neonicotinoid Pesticide Residues in Food by Ultraperformance Liquid Chromatography Tandem Mass Spectrometry[J]. Chinese J. Anal. Chem. 2009,37( 4):495- 499.
    [135]孙娟,陈冠华,王坤.毛细管电泳在线电推扫测定蔬菜中3种氯化烟碱类农药残留[J].分析化学,2010,38 (8):1151- 1155.
    [136] The committee of the pharmacopoeia of the ministry of heath of the people’s republic of China [M].Pharmacopoeia of the people’s republic of China,chemical industry press,Beijing,2000,Vol. 1,p.38.
    [137] International Olympic committee medical code,world anti-doping agency,website: www. wada-ama.org.
    [138] Grieve M.A Modern Herbal: the medicinal,culinary,cosmetic and economic properties,cultivation and folk-lore of herbs,grasses,fungi,shrubs&trees with their modern scientific uses [M].3rd ed.,tiger books international,London,1992,p.592.
    [139]顾志平,张曙明,王春兰,连文琰,肖培根,陈建民.高效液相色谱法测定马钱属植物中士的宁和马钱子碱的含量[J].药学学报,1997,32(10):791-794.
    [140] De B,Bisset N G,Separation of Strychnos nux-vomica alkaloids by high- performance liquid chromatography [J]. J. Chromatogr.,1991,587:318-320.
    [141] Wang Z H,Zhao J Z,Xing J B,et al. Analysis of strychnine and brucine in postmortem specimens by RP-HPLC: A case of fatal intoxication[J]. J. Anal. Toxicol.,2004,28,141-144.
    [142] Choi Y H,Sohn Y M, Kim, et al. Analysis of strychnine from detoxified seeds using liquid chromatography-electrospray mass spectrometry [J]. J. Ethnopharm.,2004,93:109-112.
    [143]杨玉林,温忆敏,芮振荣,沈朝烨.气相色谱-质谱联用技术分析中毒样品中四种生物碱[J]中国卫生检验杂志,2004, 14 (3):272-273.
    [144] Rosano T G,Hubbard J D,Meola J M,et al. Fatal Strychnine poisoning:Application of gas chromatography and tandem mass spectrometry [J]. J. Anal. Toxicol.,2000,24: 642-647.
    [145] Frederich M,Choi Y H,Angenot L,et al. Metabolomic anaylsis of Strychnos nux-vomica,Strychnos icaja and Strychnosignatii extracts by H-1 nuclear magnetic resonance spectrometry and multivariate analysis techniques [J]. Phytochem,2004,65:1993-2001.
    [146]贾克沛,迟芳振,王建华.骨筋丸胶囊中白芍及马钱子的薄层色谱鉴别[J].山东医药工业, 2002,21(3):15.
    [147] Wang C,Han D D,Wang Z,et al. Analysis of Strychnos alkaloids in traditional Chinese medicines with improved sensitivity by sweeping micellar electrokinetic chromatography[J]. Anal. Chim. Acta. 2006,572(2):190-196.
    [148] Chen W S,Li L L,Li X,et al. Separation and determination of strychnine and brucine in Strychnos nux-vomica L. and its preparation by capillary zone electrophoresis[J]. Biomed. Chromatogr.,2000,14:541-543.
    [149] Feng H T, Li S F Y. Determination of five toxic alkaloids in two common herbal medicines with capillary electrophoresis [J]. J. Chromatogr A,2002,973:243-247.
    [150] Feng H T,Yuan L L, Li S F Y. Analysis of Chinese medicine preparations by capillary electrophoresis–mass spectrometry [J]. J Chromatogr A,2003,1014:83-91.
    [151]柴逸峰,张国庆,纪松岗等.毛细管区带电泳法测定马钱子及其制剂中士的宁和马钱子碱的含量[J].第二军医大学学报. 2000,Feb,21 (2):146-148.
    [152]曹红,刘云,靳守东.毛细管区带电泳法测定马钱子药材及其制剂中士的宁和马钱子碱的含量[J].总后卫生部药品仪器检验所.2002,22 (4):279-282.
    [153]李洪霞,蒋秀荣,侯士果等.毛细管区带电泳法对马钱子药材中生物碱质量控制的研究[J].首都师范大学化学系,北京. 2006,10(41 : 777-779.
    [154] Kim J B,Quirino J P,Otsuta K,Terabe S. On-line sample concentration in micellar electrokinetic chromatography using cationic surfactants [J]. J. Chromatogr. A,2001,916:123-130.
    [155]国家药典委员会.中华人民共和国药典:一部[M].2005版.北京化学工业出版社,2005: 141.
    [156]陈曙霞.苦参生物碱的药理研究进展[J].中成药,2003,25 (1): 75-77.
    [157]王俊学,王国俊.苦参碱及氧化苦参碱的药理作用及临床应用[J].肝脏,2000,5:116-117.
    [158]刘玉清,孙晓东,惠汝太.苦参的药理活性及其临床应用[J].中国分子心脏病学杂志,2003, 3 (4):234 - 237.
    [159] Wang G F,Zhang S Y,Guo Z G,et al. Simultaneous determination of three alkaloids in Sophora flavescens Ait. and in Yeyean Lotions by high performance capillary electrophoresis[J]. Chin.Pharm.Anal.,2000,20 (5):331-333.
    [160]张国庆,吕磊,赵亮等,优化的高效毛细管电泳法测定肝力保胶囊中苦参碱和氧化苦参碱的含量[J].第二军医大学学报,2008,29 (1):108-110.
    [161]田娟,王智民,王维皓. HPLC测定苦参药材中苦参碱和氧化苦参碱的含量[J].中国实验方剂学杂志,2006,12:23-24.
    [162]侯伟雄,陈静君,李思华.气相色谱法测定妇炎平泡腾片中苦参碱的含量[J].广东药学院学报2005,21:254-255.
    [163]布日额,其其格玛,东格尔道尔吉.薄层扫描法测定苦豆子中的苦参碱和氧化苦参碱的含量[J].中国民族民间医药杂志,2005,(74):166-168.
    [164] Quirino J P. Analyte focusing by micelle collapse in CZE:Nanopreparation of neutrals Electrophoresis,2009,30:875- 882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700