用户名: 密码: 验证码:
大豆快生根瘤菌共生基因的遗传分化及快慢生根瘤菌对土壤微生物的影响比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无论是在酸性、碱性还是中性土壤中,目前国际上所使用的大豆根瘤菌剂主要是慢生根瘤菌(Bradyrhizobium)。但在偏碱性土壤中,中华根瘤菌属(Sinorhizobium)为与大豆共生的优势菌,且生长速度比慢生根瘤菌快,发酵成本低。
     虽然大豆快生根瘤菌在偏碱性土壤中有着广阔的应用前景,但其与不同大豆品种的共生特异现象限制了其在农业生产中的应用。本论文针对分离自新疆和黄淮海两个生态区的60株大豆快生根瘤菌代表菌株,分析了3个核心基因(SMc00019, truA, thrA)及不同复制子上的16个共生基因(chromosome:bacA, purL, nodM, gcvT, cysD, cobO, nodE; pSymB:exoA, exoY, phnC; pSymA:nodC, nodS, y4wE, nodDl, nodD2, rhcJ)的遗传分化和进化机制。这些菌株可以划分为5个种群,且不同的种群在不同的复制子上都有不同程度的遗传分化:(1) Sinorhizobium fredii种内多样性最高且分布最广,而S. sojae种内多样性最低且地理分布范围很窄;(2)对于染色体上的核心基因和共生基因及pSymB上的共生基因,基因间重组主要发生在种内而在种间很少,而pSymA上的共生基因可以在不同种群或菌株间进行水平基因转移,且pSymA上共生基因的核苷酸多态性水平及重组值低于染色体和pSymB上的基因。由此可见,大豆快生根瘤菌不同复制子上共生相关基因的进化历史是不相同的,这为逐步揭示大豆快生根瘤菌与大豆品种共生差异现象的形成机制打下了基础。
     在碱性土壤中,能否用大豆快生根瘤菌来代替慢生根瘤菌做为根瘤菌剂呢?本论文比较了分离自黄淮海地区的辽宁慢生根瘤菌B. liaoningense和费氏中华根瘤菌S. fredii在碱性土壤中的竞争结瘤能力及对土壤微生物群落的影响。利用基于rpoB种水平的高通量测序分析发现:(1)大豆开花初期土壤中的微生物群落α-和β-多样性在4个处理(H1,不接种不施肥对照;H2,接种S. fredii; H3,接种B. liaoningense; H4,不接菌施肥对照)比播种前相应的各处理(Q1-Q4)都发生了变化;(2)开花初期与播种前相比OTU百分比增加的有:Thiorhodovibrio, Thioalkalivibrio, Thauera, Sphingomonas, Sphingobium, Bradyrhizobium。降低的有:Nitrobacter, Mesorhizobium, Agrobacterium;(3) Sinorhizobium属在接种S.fredii处理前后的OTU百分比并没有明显变化,但在接种B. liaoningense的处理的开花初期比播种前高出了2倍;Bradyrhizobium属在接种B.liaoningense的处理在开花初期比播种前高出1.6倍,且P值(0.075)也接近显著性临界值;(4)尽管所检测土壤中含有丰度较高的Bradyrhizobium,却并没有发现已知的能够与大豆结瘤的Bradyrhizobium根瘤菌种。但B. liaoningense可以使S. fredii种群数量升高5.6倍(P=0.058);另一方面对开花期大豆根瘤的占瘤率分析表明:在不接菌不施肥对照、施肥对照和接种S. fredii的处理中全部根瘤都是由S. fredii形成的,接种B. liaoningense的处理中S. fredii的占瘤率也高达94.1%。可见,在碱性土壤中接种根瘤菌B. liaoningense竞争不过土著S. fredii。
     因此建议在碱性土壤中接种竞争结瘤能力较强的S. fredii作为大豆根瘤菌剂,但是必须考虑S. fredii菌株的遗传分化与当地大豆品种的匹配性。
Bradyrhizobium strains are widely used as inoculants for soybeans around the world in acidic, alkaline or neutral soil. But in alkalin soil, Sinorhizobium strains are the dominant microsymbionts of soybeans and Sinorhizobium strains are characterized by their faster growth rate than Bradyrhizobium and thus cost less in the fermentation.
     Sinorhizobium inoculants have a broad prospect in alkaline soil, but the symbiosis specificity of Sinorhizobium limited its application. In order to investigate the genetic differentiation and microevolutionary mechanisms of60Sinorhizobium strains from Xinjiang and Huanghuaihai, we selected three housekeeping genes (SMc00019, truA, and thrA) and16symbiosis-related genes (chromosome:bacA, purL, nodM, gcvT, cysD, cobO, nodE; pSymB:exoA, exoY, phnC; pSymA: nodC, nodS, y4wE, nodDl, nodD2, rhcJ). Five distinct species were identified and different levels of genetic differentiation were observed among these species or different replicons:(1) S.fredii has higher intraspecific diversity and wider distribution, but S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution.(2) Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons, this study laid a foundation to reveal the mechanism of symbiotic differences between Sinorhizobium strains and soybean cultivars.
     Can Sinorhizobium inoculants replace Bradyrhizobium inoculants in alkaline soil? The454pyrosequencing of rpoB amplicon was used to compare the microbial community structure and nodulation competition ability after inoculating S. fredii and B. liaoningense in alkaline soil. The results showed that:(1) a and β-diversity of microbial communities have changed in four treatments in flowering period (H1, no inoculation and no fertilizer control; H2, inoculating S.fredii; H3, inoculating B. liaoningense; H4, no inoculation and fertilizer control) as compared to those of corresponding soil samples collected before inoculation (Q1-Q4).(2) The abundance of OTUs has increased in genera of Thiorhodovibrio, Thioalkalivibrio, Thauera, Sphingomonas, Sphingobium, Bradyrhizobium and decreased in genera of Nitrobacter, Mesorhizobium and Agrobacterium.(3) As to the abundance of OTUs belonging to Sinorhizobium, H2did not cause significant difference compared to Q2whereas H3's value is two times of Q3; H3aslo showed higher abundance of Bradyrhizobium than Q3(1.6times, p-value=0.075).(4) Although the abundance of Bradyrhizobium is higher than Sinorhizobium in all test soil samples, we did not find any defined Bradyrhizobium species which can nodulate with soybean. But the populations of S.fredii have increased by inoculating with B. liaoningense (5.6times, P=0.058). Nodule occupation ratio of S.fredii is94.1%in the treatment of inoculating B. liaoningense, and strains isolated from the other three treatments all belonged to S. fredii. Apparently, the nodulation competition ability of S. fredii with soybean is stronger than B. liaoningense in alkaline soil.
     In short, S. fredii is suggested to be used as the inoculants for soybeans in alkaline soils, given the compatibility of different S. fredii strains and soybean cultivars is well considered.
引文
Aaron, W. M., Laurie, L. R. (2012). A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals. FEMS Microbiol Ecol.75,231-241.
    Acosta, J., Eguiarte, L., Santamaria, R., et al. (2011). Genomic lineages of Rhizobium etli revealed by the extent of nucleotide polymorphisms and low recombination. BMC Evol Biol.11(1),305.
    Abdi, H., and Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Comput Stat.2,433-459.
    Adekambi, T., et al. (2003). rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol.41(12),5699-5708.
    Adekambi, T., et al. (2006). rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. Nov., Mycobacterium phocaicum sp. Nov. and Mycobacterium aubagnense sp. Int J Syst Evol Microbiol.56,133-143.
    Albareda, M., Rodriguez-Navarro, D. N., and Temprano, F. J. (2009). Use of Sinorhizobium (Ensifer) fredii for soybean inoculants in South Spain. Eur J Agron.30(3),205-211.
    Alves, A., Henriques, I., Fragoeiro, S., et al. (2004). Applicability of rep-PCR genomic fingerprinting to molecular discrimination of members of the genera Phaeoacremonium and Phaeomoniella. J Bacteriol.53(5),629-634.
    Amadou, C., Pascal, G., Mangenot, S., Glew, M., et al. (2008). Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res.18,1472-1483.
    Anisimova, M. and Gascuel, O. (2006). Approximate likelihood-ratio test for branches:a fast, accurate, and powerful alternative. Syst Biol.55(4).
    Appunu, C., N'Zoue, A., Laguerre, G. (2008). Genetic diversity of native Bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl Environ Microbiol.74(19),5991-5996.
    Ashley, S. J., Gregory, C., Jo H., Rob, K., Noah, F. (2013). A meta-analysis of changes in bacterial and archaeal communities with time. ISME J.7(13),1493-1509.
    Bailly, X., Giuntini, E., Sexton, M. C., Lower, R. P., Harrison, P. W., Kumar, N., Young, J. P. W. (2011). Population genomics of Sinorhizobium medicae based on low-coverage sequencing of sympatric isolates. ISME J 5,1722-1734.
    Bailly, X., Olivieri, I., Brunel, B., Cleyet-Marel, J. C. C., Bena, G. (2007). Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species. J Bacteriol.189,5223-5236.
    Bailly, X., Giuntini, E., Sexton, M. C., Lower, R. P., Harrison, P. K., Kummar, N., Young, J. P. W. (2011). Population genomics of Sinorhizobium medicae based on low-coverage sequencing of sympatric isolates. ISME J.5,1722-1734.
    Bartsev, A., Kobayashi, H., Broughton, W. (2004). Rhizobial signals convert pathogens to symbionts at legume interface. Plant Physiol.5,19-31.
    Basit, H. A., Angle, J. S., Salem, S., et al. (1991). Phenotypic diversity among strains of Bradyrhizobium japonicum belonging to serogroup 110. Appl Environ Microbiol.57(5), 1570-1572.
    Berge, O., Lodhi, A., Brandelet, G., et al. (2009). Rhizobium alamii sp. nov., an exopolysaccharide producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol. 59,367-372.
    Bianco, C., Defez, R. (2009). Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot.60,3097-3107.
    Bianco, C., Defez, R. (2010). Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol.76, 4626-4632.
    Biondi, E. G., Pilli, E., Giuntini, E., Roumiantseva, M. L., et al. (2003). Genetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian region. FEMS Microbiol Lett.220,207-213.
    Brain, C. H., Spenceer, C. H. B. (1995). Estimates of gene flow in Eichhornia paniculata (Pontederiaceae); Effects of Range SubStructure. Heredity 75,549-560.
    Brain, G. S. (1999). Multilocus sequence typing:molecular typing of bacterial pathogens in anera of rapid DNA sequencing and the internet. Curr Opin Microbiol.2,312-316.
    Breitbart, M., Hewson, I., Felts, B., et al. (2003). Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol.85(20),6220-6223.
    Bryant, D., Moulton, V., Spillner, A. (2007). Consistency of the Neighbor-Net algorithm. Algorithms Mol Bio.2,8.
    Caetano-anolles, G., and Gresshoff, P.M. (1991). Plant genetic control of nodulation. Annu Rev Microbiol.45,345-382.
    Camerini, S., Senatore, B., Lonardo, E., Imperlini, E., Bianco, C., Moschetti, G., Rotino, G. L. Campion, B., Defez, R. (2008). Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol.190,67-77.
    Chao, A. (1984). Non-parametric estimation of the number of classes in a population. Scand J Statist. 11(4),265-270.
    Chen, W. X., et al. (1988). Numerica taxonomic study fast-growing soybean rhizobia and proposal that Rhizobium fredii be assigned to sinorhizobium gen. nov.. Int J Syst Evol Microbiol.38,392-397.
    Chen, W. X., Li, G. S., Li, Qi. Li, Y., et al. (1991). Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Evol. Microbiol.41,275-280.
    Clark, K. R., Gorley, R. N. (2006). PRIMER v.6:User Manual/Tutorial. PRIMER-E:Plymouth, WA.
    Claudia, S., Pablo, V., et al. (2005). Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol.14, 4033-4050.
    Cooper, J. (2007). Early interactions between legumes and rhizobia:disclosing complxity in a molecular dialogue. J Appl Microbiol.103(5),1355-1365.
    Cosseau, C., Batut, J. (2004). Genomeics of the ccoNOQP-encoded ebb 3 oxidase complex in bacteria. Arch Microbiol.181(2),89-96.
    Craig, J. V., Karin, R., John, F., Heidelberg., et al. (2004). Environmental genome shotgun sequencing of the Sagasso Sea. Science 304,66-74.
    Darwin, Charles. (1876). The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life (London:John Murray).
    Daniel, H. (2000). Primer of population genetics,3rd edition, Sinauer.
    De Lajudie, P., Willems, A., Nick, G., et al. (1998). Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov.. Int J Syst Evol Microbiol.48,369-382.
    Den Herder, G., Schroeyers, K., Holsters, M., Goormachtig, S. (2006). Signaling and gene expression for water-tolerant legume nodulation. CRC Crit Rev Plant Sci.25,367-380.
    Denarie, J., Roche, P. (1991). Rhizobium nodulation signal. Molecular signals in plant-microbe communications (London:CRC Press),296-324.
    Didelot, X., Falush, D. (2007). Inference of bacterial microevolution using multilocus sequence data. Genetics 175,1251-1266.
    Dixon, R., and Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol. 2(8),621-631.
    Dobert, R., Breil, B., Triplett, E., et al. (1994). DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Mol Plant Microbe Interact.7(5),564-572.
    Duineveld, B. M., Rosado, A. S., van Elsas, J. D., van Veen, J. A. (1998). Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol.64,4950-4957.
    Eardly, B. D., Materon, L. A., Smith, N. H., Johnson, D. A., Rumbaugh, M. D., and Selander, R. K. (1990). Genetic Structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Appl Environ Microbiol.56,187-194.
    Ellstrand, N. C. (1993). Population genetic consequences of small population size:implications for plant conservation. Annu Rev Ecol Syst.24,217-241.
    Epstein, B., Branca, A., Mudge, J., et al. (2012). Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae. PLoS Genet.8, el002868.
    Faith, P. D. (1992). Conservation evaluation and phylogenetic diversity. Biol Conserv.61,1-10.
    Fierer, N., Bradford, M. A., Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology 88(6),1354-1364.
    Fisher, R. F., and Long, S. R. (1993). Interactions of NodD at the nod box:NodD Binds to two distinct sites on the same face of the Helix and induces a bend in the DNA. J Mol Biol.233(3),336-348.
    Frias, L. J., Shi, Y., Tyson, G. W., et al. (2008). Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA.105(10),3805-3810.
    Futuyma, Douglas. (1998). Evolutionary Biology. Sinauer Associates. Glossary. ISBN 0-87893-189-9.
    Garbeva, P., van Veen, J. A., van Elsas, J. D. (2004). Microbial diversity in soil:Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann Rev.42, 243-270.
    Galardini, M., Pini, F., Bazzicalupo, M., Biondi, E. G., Mengoni, A. (2013). Replicon-dependent bacterial genome evolution:the case of Sinorhizobium meliloti. Genome Biol Evol.5,542-558.
    Galibert, F., Finan, T. M., Long, S. R., et al. (2001). The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293,668-672.
    Gao, J. L., Sun, J. Q., Li, Y., Wang, E. T., and Chen, W. X. (1994). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Evol Microbiol. 44(1),151-158.
    Gao, J. L., Turner, S. L., Kan, F. L., et al. (2004). Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov. isolated from Astragalus adusurgens growing in the northen regions of China. Int J Syst Evol Microbiol.54,2003-2021.
    Gao, J. L., Terefework, Z., Chen, W. X., Lindstrom, K. (2001). Genetic diversity of rhizobia isolated from Astragalus adsurgens growing in different geographical regions of China. J Biotechnol.91, 155-168.
    Gelman, A., Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Stat Sci. 7,457-472.
    Gi, L. E., Doreen, E., Brady, S. F., Bettermann, A. A., et al. (2002). Isolation of antibiotics turbomyc in A and B from ameta genomic library of soil microbial DNA. Appl Environ Microbiol.68(9), 4301-4306.
    Gibbs, M. J., Armstrong, J. S., Gibbsa, J. (2000). SisterScanning:A monte carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16,573-582.
    Gilson, E., Climent, J. M., Brutlag, D., et al. (1984). A family of dispersed repetitive extragenic palindromic DNA sequence in E.coli. EMBO J.3,1417-1421.
    Giongo, A., Ambrosini, A., Vargas, L. K., et al. (2008). Evaluation of genetic diversity of bradyrhizobia strains nodulating soybean [Glycine max (L.) Merrill] isolated from South Brazilian fields. Appl Soil Ecol.38(3),261-269.
    Giraud, E., et al. (2007). Legumes symbioses:absence of Nod genes in photosynthetic bradyrhizobia. Science 316,1307-1312.
    Graham, P. H. (1964). The application of computer technique to the taxonomy of the root-nodule bacteria of legumes. Microbiology 35,511-517.
    Gomes, N. C. M., Heuer, H., Schonfeld, J., Costa, R., Hagler-Mendonca, L., Smalla, K. (2001). Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant and Soil 232,167-180.
    Guan, S. H., Gris, C., Cruveiller, S., Pouzet, C., et al. (2013). Experimental evolution of nodule intracellular infection in legume symbionts. ISME J.7,1367-1377.
    Han, L. L., Wang, E. T., Han, T. X., Liu, J., Sui, X. H., Chen, W. F., Chen, W. X. (2009). Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant and Soil 324,291-305.
    Handelsman, J., Rondon, M. R., Brady, S. F., et al. (1998). Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products. J Biol Chem.5(10),245-249.
    Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C., Martiny, J. B. H. (2012). Beyond biogeographic patterns:processes shaping the microbial landscape. Nat Rev Microbiol.10,497-506.
    Harrison, P. W., Lower, R. P. J., Kim, N. K. D., Young, J. P. W. (2010). Introducing the bacterial "chromid":not a chromosome, not a plasmid. Trends Microbio.18,141-148.
    Harrison, S. P., Mytton, L. R., Skot, L., et al. (1992). Characterization of Rhizobium isolates by amplification of DNA polymorphism using random primers. Can J Microbiol.38,1009-1015.
    Heath, K. D., Tiffin, P. (2009). Stabilizing mechanisms in a legume-rhizobium mutualism. Evolution 63, 652-662.
    Heath, L., van der, W. E., Varsani, A., Martin, D. P. (2006). Recombination patterns in aphthoviruses mirror those found in other picornaviruses. J Virol.80,11827-11832.
    Herridge, D. F., Peoples, M. B., Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311,1-18.
    Higgins, C. F., Ferro-luzzi, A. G., Barnes, W. M., et al. (1982). A novel intercistronic regulatory element of prokaryotic operons. Nature 298,760-762.
    Hong, K. S., Lim, H. K., Chung, E. J., et al. (2007). Selection and characterization of forest soil metagenome genes encoding lipolytic enzymes. J Microbiol.17(10),1655-1660.
    Hudson, R. R., Kaplan, N. L. (1985). Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111,147-164.
    Hudson, R. R., Slatkin, M., Maddison, W. P. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics 132,583-589.
    Hughes, A. L., Friedman, R., Rivailler P., French, J. O. (2008). Synonymous and nonsynonymous polymorphisms versus divergences in bacterial genomes. Mol Biol Evol.25,2199-2209.
    Hulton, C. S. J., Higgins, D. F., Sharp, P. M. (1991). ERIC sequences:a novel family of repetitive elements in the genomes of Escherichia coli, Salminella typhimurium and other enterobacteria. Mol Microbiol.5,825-834.
    Huson, D. H., Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Mol Biol Evol.23(2),254-267.
    Huson, D. H. (1998). SplitsTree:analyzing and visualizing evolutionary data. Bioinformatics 14(1), 68-73.
    Ikeda, S., Rallos, L. E. E., Okubo, T., et al. (2008). Microbial community analysis of field-grown soybeans with different nodulation phenotypes. Appl Environ Microbiol.74(18),5704-5709.
    Iwabe, N. K. I., Kuma, M., Hasegawa, S., Osawa and Miyata, T. (1989). Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA.86,9355-9359.
    Jakobsson, M., Rosenberg, N. A. (2007). CLUMPP:a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14),1801-1806.
    Jason, A. P., Ayme, S., Omry, K., Zhao, J., Susannah, G.T., Jeffery, L. D., Edward, S. B., Ruth, E. L. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA.,6548-6553.
    Jarvis, B. D, Tighe, W. (1994). Rapid identification of Rhizobium species based on cellular fatty acid analysis. Plant and Soil 161,31-34.
    Jurasinski, G., Retzer, V., Beierkuhnlein, C. (2009). Inventory, differentiation, and proportional diversity:A consistent terminology for quantifying species diversity. Oecologia.159(1),15-26.
    Jeffrey, J. W., Dan, K., Marcelo, L. G., Nicholas, B. S., Samual, S., Kevin, Y., Teresa, A. C, Allen, R. B., Rob, K., Largus, T. A. (2011). Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci USA. doi.1015676108.
    John, G. (1998). Population Genetics:A Concise Guide (Johns Hopkins Press).
    Jo, H. (2004). Metagenomics:Application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev.68(4),669-685.
    Jose, I., Jimenez-Zurdo., Claudio, V., Anke, B. (2013). Insights into the noncoding rnome of Nitrogen-Fixing endosymbiotic a-proteobacteria. Mol Plant Microbe Interact.26,160-167.
    Jukes, T. H., Cantor, C. R. (1969). Evolution of protein molecules. Biochem Soc Trans.,21-132.
    Kaneko, T., Nakamura, Y., Sato, S., et al. (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res.7(6),331-338.
    Kaneko, T., Nakamura, Y., Sato, S., et al. (2002). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA 110. DNA Res.9(6),189-197.
    Kathleen, A., Jill, E. C. (2005). Beachcomber Biology:The Shannon-Weiner species diversity index. ABLE.27,334-338.
    Kawaguchi, M., and Minamisawa, K. (2010). Plant-Microbe communications for symbiosis. Plant Cell Physiol.51(9),1377-1380.
    Kay, E., Vogel, T. M., Bertolla, F., Nalin, R., Simonet, P. (2002). In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol. July 68(1),3345-51.
    Kevin, D. Q. (2005). Ernst Mayr and the modern concept of species. Proc Natl Acad Sci USA.102(1), 6600-6607.
    Kiers, E. T., Rousseau, R. A., West S. A., et al. (2003). Host sanctions and the legume-rhizobium mutualism. Nature 42,78-81.
    Kimura, M. (1985). The neutral theory of molecular evolution. New Sci.107(1464),41.
    Knietsch, A., Bowien, S., Whited, G., et al. (2003). Identification and characterization of coenzyme B12 dependent glycerol dehydratase and diol dehydrataseencoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol.69(6),3048-3060.
    Koonin, E. V., Makarova, K. S., Aravind, L. (2001). Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol.55,709-42.
    Kouchi, H., Imaizumi-Anraku, H., Hayashi, M., et al. (2010). How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol.57(9),1381-1397.
    Kuklinsky-Sobral, J.,Araujo, W. L., Mendes, R., et al. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol. 6(12),1244-1251.
    Kuklinsky-Sobral, J., Araujo, W. L., Mendes, R., et al. (2005). Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with plyphosate herbicide. Plant and Soil 273(1),91-99.
    Kumar, P. A., Sasi Jyothsna, T. S., Srinivas, T. N. R., Sasikala, C., Ramana, C. V., Imhoff, J. F. (2007). Two novel species of marine phototrophic Gammaproteobacteria:Thiorhodococcus bheemlicus sp. nov. and Thiorhodococcus kakinadensis sp. nov.. Int J Syst Evol Microbiol.57(11),2458-2461.
    Kurtz, S., Philippy, A., Delcher, A. L., et al. (2004). Versatile and open software for comparing large genomes. Genome Biol.5(2), R12.
    Lande, R., Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution.37, 1210-1226.
    Larkin, M. (2007). Curbing false positives and pseudo-epidemics. Lancet Infect Dis.7(3),186.
    Lee, C. M., Yeo, Y. S., Lee, J. H., et al. (2008). Identification of a novel 4 hydroxyphenylpyruvate dioxygenase from the soil metagenome. Biochem Biophys Res Commun.370(2),322-326.
    Leps, J., and Smilauer, P. (2003). Multivariate analysis of ecological data using CANOCO (Cambridge, United Kingdom, Cambridge University Press).
    Leticia, B. P., Renato, V., Laura, M. M. O. (2014). Changes in the bacterial community of soil from a Neutral Mine Drainage Channel. PLoS ONE doi:10.1371.
    Levin, D. A., Kerster, H. W. (1974). Gene flow in seed plants. Evol Biol.7,139-220.
    Li, Q. Q., Wang, E. T., Zhang, Y. Z., Zhang, Y. M., Tian, C. F., Sui, X. H., Chen, W. F., and Chen, W. X. (2011a) Diversity and biogeography of rhizobia isolated from root nodules of Glycine max grown in Hebei province, China. Microb Ecol.61,917-931.
    Li, Q. Q., Wang, E. T., Chang, Y. L., Zhang, Y. Z., Zhang, Y. M., Sui, X. H., Chen, W. F., and Chen, W. X. (2011b). Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol.61,1981-1988.
    Li, Y., et al. (2008). Genetic Structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor App Genet.117,857-871.
    Librado, P., Rozas, J. (2009). DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11),1451-1452.
    Lodeiro, A. R., Lopez-garcia, S. L., Althabegoiti, M. J., et al. (2004). Parasitic traits and plant defenses in the rhizobia-legume symbiosis. Annu Rev Plant Biol.3,125-166.
    Lopez-Garciaa, S. L., Perticarib, A., Piccinettib, C., Ventimigliac, L., et al. (2009). In-Furrow inoculation and selection for higher motility enhances the efficacy of Bradyrhizobium japonicum Nodulation. Agron. J.101(2),357-363.
    Lorio, J. C., Kim, W. S., Krishnan, A.H., Krishnan, H. B. (2010). Disruption of the glycine cleavage system enables Sinorhizobium fredii USDA257 to form nitrogen-fixing nodules on agronomically improved North American soybean cultivars. Appl Environ Microbiol.76,4185-4193.
    Lozano, L., Hernandez-Gonzalez, I., Bustos, P., Santamaria, R. I., Souza, V., Young, J. P. W., Davila, G., Gonzalez, V. (2010). Evolutionary dynamics of insertion sequences in relation to the evolutionary histories of the chromosome and symbiotic plasmid genes of Rhizobium etli populations. Appl Environ Microbiol.76,6504-6513.
    Lozupone, C., Knight, R. (2005). UniFrac:a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol.71,8228-8235.
    Lozupone, C., Hamady, M., and Knight, R. (2006). UniFrac:an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7,371.
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., Knight, R. (2011). UniFrac:an effective distance metric for microbial community comparison. Microb Ecol.5,169-172.
    Man, C. X., Wang, H., Chen, W. F., Sui, X. H., Wang, E. T., Chen, W. X. (2008). Diverse rhizobia associated with soybean grown in the subtropical and tropical regions of China. Plant and Soil 3(10),77-87.
    Mankin, S. L., Hill, D. S., Olhoft, P. M., et al. (2007). Disarming and sequencing of Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659. In Vitro Cell Dev Biol Plant.43(6), 521-535.
    Mao, C., Qiu, J., Wang, C., Charles, T. C., Sobral, B.W. (2005). NodMutDB:a database for genes and mutants involved in symbiosis. Bioinformatics.21,2927-2929.
    Marchetti, M., Capela, D., Glew, M., et al. (2010). Experimental evolution of a plant pathogen into a legume symbiont. PLoS Bio.8, e1000280.
    Marco, G., Francesco, P., et al. (2013). Replicon-dependent bacterial genome evolution:The Case of Sinorhizobium meliloti. Genome Biol Evol.5(3),542-558.
    Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet.9, 387-402.
    Martens, M., Dawyndt, P., Coopman, R., et al. (2008). Advantages of multilocus sequence analysis for taxonomic studies:A case study using 10 housekeeping genes in the genera Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol.58(1),200-214.
    Martens, M., Delaere, M., Coopman, R., et al. (2007). Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol.57(3),489-503.
    Martin Cuadrado, A. B., Lopez Garcia, P., Alba, J. C., et al. (2007). Metagenomics of the deep mediterranean, a warm bathypelagic habitat. PLoS ONE 2(9),914.
    Martin, D, P, Williamson, C, Posada, D. (2005). PDP2:recombination detection and analysis from sequence alignments. Bioinformatics 21,260-262.
    Martin, B., Humbert, O., Amara, M. C., et al. (1992). A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumonia. Nucleic Acids Res.20,3479-3483.
    Masson-Boivin, C., Giraud, E., Perret, X., Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes:how many rhizobium recipes? Trends Microbiol.17,458-466.
    Maynard, S. J. (1992). Analyzing the mosaic structure of genes. J Mol Evol.34,126-129.
    Mayr, E., and Provine, W. B. (1980). The Evolutionary Synthesis:Perspectives on the unification of biology (Harvard University Press, Cambridge, MA).
    McDonald, J. H., Kreitman, M. (1991). Adaptive protein evolution at the adh locus in drosophila. Nature 351,652-654.
    Meinhardt, L. W., Krishnan, H. B., Balatti, P. A., et al. (1993). Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol Microbiol.9(1),17-29.
    Mergaert, P., Uchiumi, T., Alunni, B., et al. (2006). Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc Natl Acad Sci USA.103(13),5230-5235.
    Miche, L., Moulin, L., Chaintreuil, C., Contreras-Jimenez, J. L., Munive-Hernandez, J. A., Villegas-Hernandez, M. D., Crozier, F. Bena, G. (2010). Diversity analyses of Aeschynomene symbionts in Tropical Africa and Central America reveal that nod-independent stem nodulation is not restricted to photosynthetic bradyrhizobia. Environ Microbiol.12,2152-2164.
    Michiel, V. (2011). A species concept for bacteria based on adaptive divergence, Trends Microbiol.19, No.1.
    Minamisawa, K., Itakura, M., Suzuki, M., et al. (2002). Horizontal transfer of nodulation genes in soils and microcosms from Bradyrhizobium japonicum to B. elkanii. Environ Microbiol.17(2),82-90.
    Myers, N., Mittermeier, R. A., Mittermeier, Cristina, G., da Fonseca, G. A. B., Kent, J. (2000). "Biodiversity hotspots for conservation priorities". Nature 403,853-858.
    Mylvaganam, S., Dennis, P. (1992). Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130,399-410.
    Naomi, W. (2006). New directions and interactions in metagenomics research. FEMS Microbiol Ecol. 55(3),331-338.
    Nick, G., Jussila, M., Hoste, B., et al. (1999). Rhizobia isolated from root nodules of tropical leguminous trees characterized using DNA-DNA dot-blot hybridisation and rep-PCR genomic fingerprinting. Syst Appl Microbiol.22(2),287-299.
    Nielsen, K. M. (1998). Barriers to horizontal gene transfer by natural transformation in soil bacteria. Acta Pathologica, APMIS Suppl.84,77-84.
    Noah, F., Jonathan, W. L., Byron, J. A., Uffe, N. N., Scott, T. B., Christian, L. L., Sarah, O., Jack, A. G., Diana, H. W., Gregory, C. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA.52(109),21390-21395.
    Noah, F., Mark, A. B., Robert, B. J. (2007). Toward an ecological classification of soil bacteria. Ecology 88(6),1354-1364.
    Noel, K. D., Brill, W. J. (1980). Diversity and dynamics of indigenous Rhizobium japonicum. Appl Environ Microbiol.40,931-938.
    Novikova, N. I., Pavlpva, E. A., Vorobjeb, N. I., et al. (1994). Numerical taxonomy of Rhizobium strains from legumes of temperate zone. Int J Syst Evol Microbiol.44,734-742.
    Oecd. (2010). Safety Assessment of Transgenic Organisms, Volume 4:OECD Consensus Documents pp.171-174.
    Oka-Kira, E., and Kawaguchi, M. (2006). Long-distance signaling to control root nodule number. Curr Opin Plant Biol.9,496-502.
    Oksanen, J., Kindt, R., Legendre, P., O'Hara, R. B. (2007). Vegan:community ecology package version 1.8.
    Oldroyd, G. E. D., and Downie, J. A. (2004). Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol.5(7),566-576.
    Op den Camp, R., Streng, A., De Mita, S., et al. (2011). LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331,909-912.
    Pace, N. R., Stahl, D. A., Lane, D. J., et al. (1985). Analyzing natural microbial populations by rRNA sequences. ASM News.51,4-12.
    Padidam, M., Sawyer, S., Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology 265,218-225.
    Patriarca, E. J., et al. (2002). Key role of bacterial NH4+metabolism in Rhizobium-plant symbiosis. Microbiol. Microbiol Mol Biol Rev.66,203-222.
    Paul, G. W., Pamela, S. S. (1991). Estimates of gene flow among populations, geographic races, and species in the Ipomopsis aggregata complex. Genetics 150,639-647.
    Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philos Mag.2(6), 559-572.
    Peck, M. C., Fisher, R. F., and Long, S. R. (2006). Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol.188(15),5417-5427.
    Perret, X., Staehelin, C., and Broughton, W. J. (2000). Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev.64(1),180-201.
    Pierce, S. K. Fang, X. Schwartz, J. A. Jiang, X. Zhao, W. Curtis, N. E. Kocot, K. M. Yang, B. Wang, J. (2011). Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic Sea Slug, Elysia chlorotica. Mol Biol Evol.29(6),1545-1556.
    Pieter, V., Rene, H., et al. (1995). AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res. 23(21),4407-4414.
    Posada, D., Crandall, K. A. (2001). Evaluation of methods for detecting recombination from DNA sequences; Computer simulations. Proc Natl Acad Sci USA.98,13757-13762.
    Posada, D., Crandall, K. A. (1998). Modeltest:Testing the model of DNA substitution. Bioinformatics 14(9),817-818.
    Prell, J., Poole, P. (2006). Metabolic changes of rhizobia in legume nodules. Trends Microbiol.14(4), 161-168.
    Pritchard, J. K., Stephens, M. D. P. (2000). Inference of population structure using multilocus genotype data. Genetics 155(2),945-959.
    Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyaa, Series A, J Indian Soc Agric Stat.26,329-358.
    R Development Core Team. (2007). R:A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL. http://www.R-project.Org.
    Reis, M. P., Barbosa, F. A. R., Chartone-Souza, E., Nascimento, A. M. A. (2013). The prokaryotic community of a historically mining-impacted tropical stream sediment is as diverse as that from a pristine stream sediment. Extremophiles 17,301-309.
    Retief, J. D. (2000). Phylogenetic analysis using PHYLIP. Methods Mol Biol.132(2):243-258.
    Richter, M., and Rossello-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA.106,19126-19131.
    Rivas, R., Martens, M., De Lajudie, P., et al. (2009). Multilocus sequence analysis of the genera Bradyrhzobium. Syst Appl Microbiol.32(2),101-110.
    Rodriguez-Navarro, D. N., Bellogin, R., Camacho, M., et al. (2003). Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. Europ J Agronomy.19(2),299-309.
    Rosenzweig, N., Bradeen, J. M., Tu, Z. J., Mckay, S. J., Kinkel, L. L. (2013). Rhizosphere bacterial communities associated with long-lived perennial prairie plants vary in diversity, composition, and structure. Can J Microbiol.59(7),494-502.
    Sandifer, E. D. (2003). "How Euler Did It". The Mathematical Association of America:MAA Online.
    Saikia, S. Jain, V. (2007). Biological nitrogen fixation with non-legumes:An achievable target or a dogma? Curr Sci.92(3),317-322.
    Saitou, N., Nei, M. (1987). The neighbor joining method:A new method for reconstructing phylogenetic trees. Mol Biol Evol.4(4),406-425.
    Salminen, M. O., Carr, J. K., Burke, D. S., et al. (1995). Identification of break points in intergenoty pic recombinants of HIV type 1 by Boot scanning. AIDS Res Hum Retroviruses.11,1423-1425.
    Satwik R., and Yoshi O. (2010). NeatMap-non-clustering heatmap alternatives in R. BMC Bioinformatics 11(45).
    Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., et al. (2009). Introducing Mothur: Open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol.75(23),7537-7541.
    Schmidt, T. M., DeLong, E. F., Pace, N. R. (1991). Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Mol Biol.173,4371-4378.
    Selltstedt, A., Wullings, B., Nystrom, U., Gustafsson, P. (1992). Identification of Casuarina-Frankia strains by use of polymerase chain reaction (PCR) with arbitrary primers. FEMS Microbiol Lett. 72(1),1-5.
    Sharples, G. J., R. G. Lloyd. (1990). Anovel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res.18,6503-6508.
    Shimodaira, H., and Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol.16(8),1114-1116.
    Silva, C., Kan, F. L., Martinez-Romero, E. (2007). Population genetic structure of Sinorhizobium meliloti and S. medicae isolated from nodules of Medicago spp. in Mexico. FEMS Microbiol Ecol. 60,477-489.
    Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N., Heuer, H., and Berg, G. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:Plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol. 67(10),4742-4751.
    Sprent, J. (2003). Plant biology:mutual sanctions. Nature 422,672-674.
    Sprent, J. I. (2007). Evolving ideas of legume evolution and diversity:a taxonomic perspective on the occurrence of nodulation. New Phytol.174,11-25.
    Stackebrandt, E., et al. (2002) Report of the ad hoc committee for the reevaluation of the species definition in bacteriology. Int J Syst Evol Microbiol.52,1043-1047.
    Stapley, J., Reger, J., Feulner, P. G. D., Smadja, C., Galindo, J., Ekblom, R., Bennison, C., Ball, A. D., Beckerman, A. P., Slate, J. (2010). Adaptation genomics:the next generation. Trends Ecol Evol. 25,705-712.
    Stein, J. L., Marsh, T. L., DeLung, E. F., et al. (1996). Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment front a planktonic marine archaeon. J Bacteriol.178,591-599.
    Stern, M. J., Ames, G. F., Smith, N. H., et al. (1984). Repetitive extragenic palindromic sequences:A major component of the bacterial genome. Cell 37,1015-1026.
    Sugawara, M., Epstein, B., et al. (2013). Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol.14, R17.
    Sultan, M., Schulz, M. H., Richard, H., et al. (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321,956-960.
    Swofford, D. L. (1998). PAUP:phylogenetic analysis using parsimony (and Other Methods), version 4. Sunderland, Massachusetts, Sinauer Associates.
    Tamura, K., Peterson, D., Peterson, N., et al. (2011). MEGA5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol.28(10),2731-2739.
    Tang, J., Bromfield, E. S. P., Rodrigue, N., Cloutier, S., Tambong, J. T. (2012). Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol. 2,2943-2961.
    ter Braak, C. J. F. (1986). Canonical correspondence analysis:a new eigenvector technique for multivariate direct gradient analysis. Ecology 67,1167-1179.
    ter Braak, C. J. F. (1987a). The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69,69-77.
    ter Braak, C. J. F. (1987b). Ordination. In:Jongman R. H. C., ter Braak C. J. F., van Tongeren O. F. R. eds. Data Analysis in Community and Landscape Ecology (Pudoc, Wageningen reissued in 1995 by Cambridge University Press, Cambridge),91-173.
    ter Braak, C. J. F., Smilauer, P. (2002). Canoco reference manual and CanoDraw for windows user's guide:software for canonical community ordination (version 4.5) (Microcomputer Power, Ithaca, New York).
    Terefework, Z., Kaijalainen, S., Lindstrom, K. (2001). AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientais and Galega officinalis. J Biotechnol.91(23),69-80.
    Theunis, M., Kobayashi, H., Broughton, W. J., Prinsen, E. (2004). Flavonoids, NodDl, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact.17,1153-1161.
    Thomas, E. F., Lisa, C., Christopher, D. C., James, I. P. (2005). Influence of inorganic nitrogen management regime on the diversity of Nitrite-Oxidizing bacteria in agricultural grassland soils. Appl Environ Microbiol.71(12),8323-8334.
    Tian, C. F., Young, J. P. W., Wang, E. T., Tamimi, S. M., and Chen, W. X. (2010). Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba:the role of recombination and lateral gene transfer. FEMS Microbiol Ecol.73,563-576.
    Tian, C. F., Zhou, Y. J., Zhang, Y. M., Li, Q. Q., Zhang, Y. Z., Li, D. F., Wang, S., Wang, J., Gilbert, L. B., Li, Y. R., and Chen, W. X. (2012). Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci USA. 109,8629-8634.
    Tighe, S. W., de Lajudie, P., Dipietro, K., et al. (2000). Analysis of cellular fatty acids and phenotypic relationships of Agrobaterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol.50,787-801.
    Toidi, A., Drancourt, M., Raoult, D. (2008). The rpoB gene as a tool for clinical microbiologists. Microbiology 17,37-45.
    Turner, S. L., and Young, J. P. W. (2000). The glutamine synthetases of rhizobia:phylogenetics and evolutionary implications. Mol Biol Evol.17,309-319.
    Van Berkum, P., Terefework, Z., Paulin, L., et al. (2003). Discordant phylogenies within the rrn loci of Rhizobia. J Bacteriol.185(10),2988-2998.
    Vasse, J., de Billy, F., Camut, S., et al. (1990). Correlation between ultrastrucrural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol.172(8),4295-4306.
    Versalovic, J., Schneider, M., De Bruijn, F. J., et al. (1994).Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. J Mol Cell Biol.5(1),25-40.
    Vinuesa, P., Rojas-Jimenez, K., Contreras-Moreira, B., Mahna, S. K., Prasad, B. N., Moe, H., Selvaraju, S. B., Thierfelder, H., Werner, D. (2008). Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. Appl Environ Microbiol.74,6987-6996.
    Vinuesa, P, Silva, C, Werner, D, Martinez-Romero, E. (2005). Population genetics and phylogenetic inference in bacterial molecular systematics:the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol.34,29-54.
    Vinuesa, P., Roj as-Jimenez, K., Contreras-Moreira, B., Mahna, S. K., Prasad, B. N., Moe, H., Selvaraju, S. B., Thierfelder, H., and Werner, D. (2008). Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic Continent. Appl Environ Microbiol.74,6987-6996.
    Wang, D., Yang, S., Tang, F., Zhu, H. (2012). Symbiosis specificity in the legume-rhizobial mutualism. Cell Microbiol.14,334-342.
    Wei, G. H., Tan, Z. Y., Chen, W. X., et al. (2003). Characterization of Rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizboium loessense sp. nov.. Int J Syst Evol Microbiol.53,1575-1583.
    Wei, G. H., Wang, E. T., Chen, W. X., et al. (2002). Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. And Kummerowia stipulacea. Int J Syst Evol Microbiol.52,2231-2239.
    Welsh, J., and McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res.4,59-65.
    Werner, J. J., Koren, O., Hugenholtz, P., DeSantis, T. Z., Walters, W.a, Caporaso, J.G., Angenent, L. T., Knight, R., Ley, R. E. (2012). Impact of training sets on classification of high-throughput bacterial 16S rRNA gene surveys. Int J Syst Evol Microbiol.6,94-103.
    White, S. P., Grove, A. (2006). Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol.8(1),51-62.
    Whitman, W. B., Coleman, D. C. and Wiebe, W. J. (1998). Prokaryotes:The unseen majority. Proc Natl Acad Sci USA.95(12),6578-6583.
    William, J. D., and William, J. B. (2009). Symbiotic use of pathogenic strategies:rhizobial protein secretion systems. Nat Rev Microbiol.7,312-320.
    Yan, A. M., Wang, E. T., Kan, F. L. (2000). Sinorhizobium melilotii associated with Medicago sativa and Melilotus spp. Int J Syst Evol Microbiol.50,1887-1891.
    Yao, Z. Y., Kan, F. L., Wang, E. T., et al. (2002). Characterization of Rhizobia that nodulate legume species of the genera Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol.52,2219-2230.
    Young, J. P. W., Haukka, K. (1996). Diversity and phylogeny of rhizobia. New Phytol.,87-94.
    Young, J. P. W. (1985). Rhizobium population genetics:enzyme polymorphism in isolated from Peas, elover, beans and Lueerne grown at the same site. Mierobiology 131,2399-2408.
    Young, J. P. W., Crossman, L. C., et al. (2006). The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol.7, R34.
    Zabran, H. H. R. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe condit ion and in arid climate. Microbiol Mol Biol Rev.63,968-989.
    Zhang, Y. M., Tian, C. F., Sui, X. H., and Chen, W. X. (2012). Robust markers rebust markers reflecting phylogeny and taxonomy of rhizobia. PLoS ONE 7, e44936.
    Zhang, Y. M., Li, Y., Jr, Chen, W. F., Wang, E. T., Tian, C. F., Li, Q. Q., Sui, X. H., and Chen, W. X. (2011). Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol.77,6331-6342.
    Zhang, Y. M., Li, Y. Jr., Chen, W. F., et al. (2011). Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol.77(18), 6331-6342.
    Zhou, J. M., Bruns, M. A., Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. Appl Environ Microbiol.62,316-322.
    陈丹明,曾昭海,隋新华,等.(2002,).紫花苜蓿高效共生根瘤菌的筛选[J].草业科学19(6),27-31.
    陈文新.(1990).土壤和环境微生物学,北京农业大学出版社.
    陈文新,汪恩涛,等.(2004).根瘤菌-豆科植物共生多样性与地理环境的关系.中国农业科学(1).
    陈文新.(1993).根瘤菌分类研究进展.农业出版社137-139.
    冯瑞华.(2000).慢生型大豆根瘤菌的遗传多样性研究.应用与环境生物学报6(2),176-181.
    盖钧镒,汪越胜.(2001).中国大豆品种生态区域划分的研究.中国农业科学6,139-145.
    黄钦耿,(2009).森林红壤微生物的功能生态学分析及宏基因组文库构建:[硕士论文].福建师范大学.
    黄循柳,黄仕杰,等.(2009).宏基因组学研究进展.微生物学通报36(7),1058-1066.
    李勤勤.2012.大豆根瘤菌的生物地理学、种群进化和共生适应机制的研究:[博士论文].北京:中国农业大学.
    林稚兰,黄秀梨.(2000).现代微生物学与实验技术[M].北京:科学出版社9-13.
    李卫东,张孟臣.(2006).黄淮海夏大豆及品种参数.北京:中国农业科学技术出版社1-26.
    沈世华,荆玉祥.(2003).中国生物固氮研究现状和展望[J].科学通报 48(6),532-540.
    王涛,柴丽红,姜成林.(2003).免培养法对一热泉细菌多样性的初步研究.微生物学报 43 (5),541-546.
    徐豹,郑惠玉,吕景良,等.(1984).中国大豆的蛋白资源.大豆科学3(4),329-331.
    杨凤环,李正楠,姬惜珠,等.(2008)BOX-PCR技术在微生物多样性研究中的应用.微生物学通报8,1282-1286.
    杨升辉,王素阁,于会勇,等.(2014).接种根瘤菌对夏大豆籽粒灌浆特性及品质的影响.大豆科学33(4),Inpress.
    袁志辉.(2006).宏基因组学方法在环境微生物生态及基因查找中的应用研究:[硕士论文].重庆:西南大学.
    张小平,陈强,李登煜.(1999).用AFLP技术研究花生根瘤功的遗传多样性.微生物学报39(6),484-488.
    张于光,王慧敏,李迪强.(2005).三江源高寒草甸土固氮基因(nifH)的多样性和系统发育研究.微生物学报45(2),66-171.
    张于光,李迪强,王慧敏,等.(2005).应用生态学报16(5),956-960.
    张延明.(2012).大豆根瘤菌生物地理分布的生态学特征及基因组学研究:[博士论文].北京:中国农业大学.
    张云增.(2012).高效大豆根瘤菌的接种效果及中华根瘤菌属的大豆品种选择性机理研究:[博士论文].北京:中国农业大学.
    朱伟云,姚文,毛胜勇.(2003).变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化.微生物学报 43(4),503-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700