用户名: 密码: 验证码:
低能氩离子注入对玉米花粉萌发过程中微丝骨架和钙离子浓度分布的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花粉萌发、花粉管伸长是种子植物实现有性生殖的重要环节,花粉是极有代表性的顶端生长的细胞之一。细胞顶端生长的调控是微丝骨架和Ca~(2+)等参与的十分复杂的过程,因此作为具有顶端生长特征的花粉管已成为研究Ca~(2+)信号与植物细胞骨架的典型材料。本文以玉米花粉为材料,研究了低能Ar~+注入对其萌发活性、花粉内的微丝结构、以及胞内Ca~(2+)浓度分布的影响,为进一步了解花粉极性形成,花粉萌发及花粉管生长的发育调控机理提供了新方法。主要得到如下结果:
     1、利用能量为30keV,剂量为0.78×10~(15)ion/cm~2-13×10~(15)ion/cm~2的Ar~+注入玉米花粉粒,以未注入离子的花粉做为对照观察花粉体外萌发后发现:当注入剂量为5.2×10~(15)ions/cm~2离子时,玉米花粉的萌发率有了明显的提高;当注入剂量超过7.8×10~(15)ion/cm~2以后,萌发率呈现急剧下降的趋势;在注入离子剂量为9.1×10~(15)ion/cm~2时,萌发的花粉不足50%,可以视为半致死剂量。同时我们发现,一些经Ar~+注入后的花粉花粉管生长变的异常,出现了诸如萌发出两条花粉管以及花粉管出现了分枝的现象。
     2、用TRITC-phalloidin对花粉粒和花粉管内的微丝骨架进行染色后,利用激光共聚焦显微镜观察了低能Ar~+注入对花粉粒及花粉管内微丝骨架的影响。用促进花粉萌发的剂量5.2×10~(15)ions/cm~2的Ar~+注入后的花粉在萌发过程中微丝骨架的动态变化明显提前,在未经过离子注入的花粉内的微丝骨架分布还处于启动初期的网络状态时,经离子注入的花粉中的微丝骨架已经完成了它的重新聚合排列,从较为随机的在萌发孔处的交叉排列状态变为浓密的平行束状或环状结构,并集中于花粉萌发孔处;而用剂量为9.1×10~(15)ion/cm~2的Ar~+注入的花粉中的微丝骨架动态变化则相对滞后。说明离子注入可能是改变了花粉内微丝骨架的动态装配,从而对花粉萌发启动产生影响的。
     3、利用低温孵育法在完整的玉米花粉粒中,成功地载入酯化形式的Ca~(2+)荧光探针fluo-3 AM。结果表明,萌发的花粉内游离Ca~(2+)呈极性分布,集中分布于与萌发密切相关的萌发沟部位,以萌发孔部位的Ca~(2+)浓度最高,而在未萌发的花粉中则观察不到Ca~(2+)的极性分布,表明Ca~(2+)有可能是控制花粉萌发启动的重要因素;同样在生长的花粉管内,Ca~(2+)浓度呈现梯度分布,以花粉管尖端Ca~(2+)浓度最高,表明Ca~(2+)与花粉管伸长密切相关。用促进花粉萌发的剂量5.2×10~(15)ions/cm~2Ar~+注入后的花粉在萌发起始,细胞中Ca~(2+)浓度明显增加;而用剂量为9.1×10~(15)ion/cm~2Ar~+注入的花粉却观察到相反的现象。这一结果揭示了低能离子注入后引起了花粉内Ca~(2+)浓度的动态变化可能是微丝骨架的动态装配和花粉萌发变化的初始效应。
Pollen tube,which deliver sperm cells to the egg for fertilization in higher plants,are an established model system for examining polarized cell growth.It is well established that the actin cytoskeleton and cytosolic Ca~(2+) play a critical role in regulating cell tip growth,so the pollen tube has progressively become a model system for the study of plant cell cytoskeleton and Ca~(2+) signal transduction.The aim of this study is to investigate the effects of low energy nitrogen ion implantation on the distribution of the actin cytoskeleton and the cytosolic Ca~(2+) concentration during Maize(Zea mays L) pollen germination,which provides a new method for studying the development control mechanism of pollen polar formation,pollen germination and pollen tube growth.
     Pollen grains of maize were implanted with 30 keV argon ion beams at doses ranging from 0.78×10~(15)ions/cm~2 to 13×10~(15)ions/cm~2.When compared with the control,Ar~+ implantation at the dose of 5.2×10~(15)ions/cm~2 significantly increased maize pollen germination.However,when the ion dose is larger than 7.8×10~(15)ions/cm~2,the rate of pollen germination sharply decreases.At the dose of 9.1×10~(15)ions/cm~2,less than 50%of the treated pollen germinated,can be regarded as medial lethal dose.Meanwhile,we found some abnormal germinated pollen tubes after ion implantation.For example,some pollens germinatied two tubes from one aperture,some of the pollen tubes have branched.
     Labeling with TRITC-phalloidin and using confocal laser scanning microscope,we examined the distribution of the actin cytoskeleton in pollen grains and pollen tubes during pollen germination and pollen tube growth after argon ion implantation.The actin cytoskeleton in the pollens which implanted by 5.2×10~(15)ions/cm~2 argon ion reorganized much earlier than that in control pollens.The actin filaments formed parallel thick bundles at the aperture in ion implanted pollens while the actin cytoskeleton remained at its cross-linked thin filament network in the control pollens.On the contrary,The reorganization of actin cytoskeleton in the pollens which implanted with 9.1×10~(15) ions/cm~2 argon ion comparatively slow than that in control pollens.The results indicating that the effect of argon ion implantation on the germination of pollen might be mediated by reorganization of the actin cytoskeleton.
     The calcium sensitive fluorescence indicator fluo-3 AM was loaded into intact pollen grain cells at low temperature.Results showed cytoplasmic calcium take polarized distribution in germinating pollens.The cytoplasmic calcium concentration near germinal furrow is obviously higher than others which around the aperture has highest apical concentration,but we kan not see this apical gradient[Ca~(2+)]_i in ungerminated pollens, established that Ca~(2+) plays a key role in the regulation of pollen germination.Normally growing pollen tubes possess a steep tip-focused[Ca~(2+)]_i apical gradient,and at tip region of pollen tubes have highest apical concentration of[Ca~(2+)]_i,which established that[Ca~(2+)]_i are indisputably involved in modulation of pollen tube growth.Results showed that pollen cell Ca~(2+) concentration would be increased when implanted with a dose of 5.2×10~(15)ions/cm~2 argon ion,reveal that dynamic change of Ca~(2+) might be the primary effects of the reorganization of actin cytoskeleton and pollen germination after low energy argon ion implantation.
引文
1.孙大业,郭艳林,马力耕等.Signal transduction.Beijing:Science Press,333-334(2001)
    2.孙颖,孙大业Signal transduction in pollen germination and tube growth.Acta Bot Sin,43(12):1211-1217(2001)
    3.Taylor LP,Hepler SK.Pollen germination and tube growth.Anna Rev Plant Physiol Plant Mol Biol,48:461-491(1997)
    4.Wheeler MJ,Franklin-Tong VE,Franklin FCH.The molecular and genetic basis of pollen-pistil interactions.New Phytol,151:565-584(2001)
    5.Yang HY.The role of calcium in the fertilization process in flowering plants.Acta Bot Sin,41(10):1027-1035(1999)
    6.Camacho L,Malho R.Endo/exocytosis in the pollen tube apex is differentially regulated by Ca~(2+) and GTPases.J Exp Bot,54(380):83-92(2003)
    7.Chen CY,Cheung AY,Wu HM.Actin-depolymerizing factor mediates Rac/Rop GTPases-regulated pollen tubes growth.Plant Cell,15:237-249(2003)
    8.Vidali L,Mckenna SK,Hepler PK.Actin polymerization is essential for pollen tube growth.MolBiolCell,12:2534-3545(2001)
    9.王晓华,郝怀庆,王钦丽,郑茂钟,林金星.花粉管细胞结构与生长机制研究进展.Chinese Bulletin of Botany,24(3):340-354(2007)
    10.盛仙永,胡正海.Ca~(2+)、pH在花粉及萌发花粉管生长中的作用进展.西北植物学报,25(1):0194-0199(2005)
    11.Lennon KA,Lord EM.In vivo pollen tube cell of Arabidopsis thaliana I:Tube cell cytoplasm and wall.Protoplasma 214,45-56(2000)
    12.Uwate WJ,Lin J.Cytological zonation of Prunus avium L.pollen tube in vivo.J Ultrastruct Res:71:173-184(1980)
    13.Franklin-Tong,VE.Signaling and the modulation of pollen tube growth.Plant Cell.11:727-738(1999)
    14.de WinAH,Pierson ES.Rational analyses of organelle trajectories in tobacco pollen tube sreveal characteristics of the actomyosin cytoskeleton.Biophys J 76,1648-1658(1999)
    15.朱徽,徐是雄.花粉管及其生殖细胞和精细胞中的细胞骨架.被子植物受精生物学北京:科学出版社,29-58(2002)
    16.Mascarenhas J.Molecular mechanisms of pollen tube growth and differentiation.Plant Cell.5:303-1314(1993)
    17.Stepka M,Ciampolini F,Charzynska M,Cresti M.Localization of pectins in the pollen tube wall of Ornihogalum virens L:Does the pattern of pectin distribution depend on the growth rate of the pollen tube?Planta 210,630-635(2000)
    18.Hao H,Li Y,Hu Y,Lin J.Inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide.New Phytol,165,721-729(2005)
    19.Suen DF,Wu SS,Chang HC,Dhugga KS,Huang AH.Cell wall reactive proteins in the coat and wall of maize pollen:potential role in pollen tube growth on the stigma and through the style.J Biol Chem278,43672-43681(2003)
    20.Hepler,PK,Vidali L.Polarized cell growth in higher plants.Anna Rev Cell Dev Biol,17:159-187(2001)
    21.Martin W.Steer,Jill MSteer.Pollen tube tip growth.New Phytol,111:323-358(1989)
    22.Pierson ES,Cresti M.Cytoskeleton and cytoplasmic organization of pollen and pollen tubes.Int Rev Cytol,140:73-125(1992)
    23.Kamiya N Kuroda K.Velocity distribution of the protoplasmic streaming in Nitella cells.Bot Mag Tokyo 69:544-554(1956)
    24.Kamiya N.Physical and chemical basis of cytoplasmic streaming.Ann.Rev.Plant Physiol.35:205-236(1981)
    25.L.Vidali,P K.Hepler.Actin and pollen tube growth.Protoplasma.215:64-76(2001)
    26.Staiger CJ.Signaling to the actin cytoskeleton in plants.Annu Rev Plant Physiol P lant Mol Biol.51:257-288(2000)
    27.CJ Staiger,F Baluska,D Volkmann PW Barlow,eds,Actin:A Dynamic Framework for Multiple Plant Cell Functions.Kluwer Academic Publishers,323-345(2000)
    28.Mark D,Lazzaro,Luis Cardenas,Aadra P.Bhatt.Calcium gradients in conifer pollen tubes:dynamic properties differ from those seen in angiosperms.Journal of Experimental Botany,56:2619-2628(2005)
    29.Peter K.Hepler.Calcium:A Central Regulator of Plant Growth and Development.The Plant Cell,Vol.17,2142-2155(2005)
    30.PolitoVS.Membrane-associated calcium during pollen grain germination:a micorfluorometric analysis.Protoplasma,117:226-232(1983)
    31.Lovy-Wheeler.Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily.Plant Cell,18:2182-2193(2006)
    32.Pierson ES,Miller,Callaham DA,Hepler PK.Tip-localized calcium entry fluctuates during pollen tube growth.Dev Biol.174:160-173(1996)
    33.LiY Q,BraunL.Periodic deposiiton of arabinogalactan epitopes in the cell wall of pollen tubes in Nicotiana tabacum L.Planta,188:532-538(1992)
    34.Geitmann A,Li YQ,Cresti M.The role of the cytoskeleton and dictyosome acitvity in the pulsatory growth of Nicotiana tabacum and Petrwia hybrida pollen tubes.Botanica Acta,109:102-109(1996)
    35.O Brien TP,Thimann KV.Nat,Acad,Sci,USA,77:2898-2901(1966)
    36.Frank WW.Planta,105:317-341(1972)
    37.Parthasarathy MV,et al.Amer,J,Bot,72(8):1318-1323(1985)
    38.许萍,张丕方.微丝骨架的研究进展.植物学通报,12:37-41(1995)
    39.王春雷,张绍铃.荧光标记在植物花粉管构造及生长特性研究种的应用.西北植物学报,27(2):0407-0413(2007)
    40.Kathleen L,Wilsen.Alenka Lovy.Wheeler,Boris Voigt.Diedrik Menzel.Imaging the actin cytoskeleton in growing pollen tubes.Sex Plant Reprod,19:51-62(2006)
    41.Heslop-Harrison Y,Heslop-Harrison J.Actin during pollen germingation.J.Cell Sci,86:1-8(1986)
    42.徐是雄.松胞素对百合花粉原生质体内肌动蛋白微丝的影响.实验生物学报,25(4):377-389(1992)
    43.徐是雄,李春贵.洋水仙和花粉原生质体中肌动蛋白微丝分布变化的共聚焦显微镜观察.植物学报,35(7):12-19(1993)
    44.Xue C,Yun Z D.Actin organization and distribution during hydration,activation and germination of pollen in amayrllisvittata air using TRITC-phalloidin as a probe.Cytologia 10:133-139(1995)
    45.Cai C,Moscatelli A,Cresti M.Cytoskeleton organization and tube growth.Trends in Plant Sci,2(3):86-91(1997)
    46.Li Y,Zee SY,Liu YM,Huang BQ,Yen LF.Circular F-actin bundles and a G-actin gradient in pollen and pollen tubes of Lilium davidii.Planta 213:722-730(2001)
    47.Wang L,Liu YM,Li Y.Comparison of F-actin fluorescent labeling methods in pollen tubes of Llium davidii.Plant Cell Rep 24:266-270(2005)
    48.YU~1 MM,Ren HY.Visualization of actin cytoskeletal dynamics during cell cycle in tobacco(Nicotiana tbacum L)cells.Biol Cell,98:295-306(2006)
    49.Zhao HP,Ren HY.RoplPs promote actin cytoskeleton dynamics and control the tip growth of lily pollen tube.Sex Plant Reprod,19:83-91(2006)
    50.Justus CD.Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips.Planta,219:103-109(2004)
    51.Fu Y,Wu G,Yang Z.Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes.J Cell Biol,152:1019-1032(2001)
    52.Smith LG.,Oppenheimer DG..Spatial control of cell expansion by the plant cytoskeleton.Ann Rev Cell Dev Biol,21:271-295(2005)
    53.Samaj J,Muller J,Beck M,Bohm N,Menzel D.Vesicular trafficking,cytoskeleton and signaling in root hairs and pollen tubes.Trends Plant Sci,11:594-600(2006)
    54.Liu J,Zhang H,Li Y.Cytoskeleton in pollen and pollen tubes of Ginkgo biloba L.J Integr Plant Biol,47:952-958(2005)
    55.Guo C,Ren HY.Formins:bringing new insights to the organization of actin cytoskeieton.Chin Sci Bull,51:2937-2943(2006)
    56.Holweg C,Honsel A,Nick RA myosin inhibitor impairs auxin-induced cell division.Protoplasma,222:193-204(2003)
    57.Higaki T,Kutsuna N.Okubo E,Sano T.Actin microfilaments regulate vacuolar structu res and dynamics:dual observation of actin microfilaments and vacuolar membrane in living tobacco BY-2 cellls.Plant Cell Physiol,47:839-852(2006)
    58.Wang X,Teng Y,Wang Q,Li X.Sheng X.Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy.Plant Physiol,141:1591-1603(2006)
    59.Gibbon BC,Kovar DR,Staiger CJ.LatrunculinB has diferent efects on pollen germination and tube growth.Plant Cell,11:2349-2364(1999)
    60.Foissner I,Grolig F,Obermeyer G.Reversible protein phosphorylation regulates the dynamic organization of the pollen tube cytoskeleton:effects of calyculin A and okadaic acid.Protoplasma 220:1-15(2002)
    61.Brink RA.The physiology of pollen.Chemotropism effects on growth of grouping grains formation and function of callose plugs,summary and conclusions.Am J Bot,11:417-436(1924)
    62.Brewbacker JL,Kwack BH.The essential role of calcium ion in pollen tube germination and pollen tube growth.Am J Bot,50:859-865(1963)
    63.Herth W,Kreiss H D,Hartmann F.Role of calciumions in tip growth of pollen tubes and moss protonemacells.San Diego CA Academic Press:91-118(1990)
    64.Messerli MA,Creton R,Jaffe LF,Robinson KR.Periodic increases in elongation rate precede increases in cytosolic Ca~(2+) during pollen tube growth.Dev Biol 222:84-98(2000)
    65.Tirlapuru K,Willemsem TM.Change in calcium and calmodulin levels during microsporogenesis pollen development and germination of in Gasteria verrucosa.J Sex Plant Reprod,5:214-223(1992)
    66.Franklin-Tong.Ratio-imaging of Ca~(2+) in the self-incompatibility response of Papaver rhoeas.Plant J,12:1375-1386(1997)
    67.Obermeyer G,Weisenseel MH.Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes.Eur J Cell Biol.39:13-20(1991)
    68.Nobiling R,Reiss HD.Quantitative analysis of calcium gradients and activity in growing pollen tubes of Lilium Longiflorum.Protoplasma.139:20-24(1987)
    69.Miller DD,Callaham DA,Grosss DJ.Free Ca~(2+) dependent protein kinase activity during pollen tube reorientation,Plant Cell,10:1499-1510(1998)
    70.Lazzaro MD,Cardenas L,Bhatt AP,Justus CD,Phillips M S,Holdaway-Clarke TL,Hepler PK.Calcium gradients in conifer pollen tubes:dynamic properties differ from those seen in angiosperms.J Exp Bot 56:2619-2628(2005)
    71.Kong L,Wang M,Wang Q,Wang X,Lin J.Protein phosphatase 1 and/or 2A is involved in the regulation of calcium uptake and pollen tube development in Picea wislonfi.Tree Physiol,26:1001-1012(2006)
    72.Yoon GM.Dowd PE.Gilroy S.McCubbin AG.Calciumdependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth,including regulating potarity.Plant Cell,18:867-878(2006)
    73.Helsper JPFG,Heemskerk JWM.Cytosolic and particulate phosphotidylinositol phospholipase C activities in pollen tubes of Lilium longiflorum.Plant Physiol,71:126-126(1987)
    74.Franklin-Tong VE,Dorbak BK,Allan AC,Watkins PAC,Trewavas AJ.Growing of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate.Plant Cell,8:1305-1321(1996)
    75.Steer MW,Steer JM.Pollen tube tip growth.New phytol.111:323-358(1989)
    76.Tirlapur UK,Shiggaon SV.Distribution of Ca2+ and calmodulin in the papillae cells of the stigma surface,visualized by chlorotetracycline and fluorescing calmodulin-binding phenothiazines.Annu Biol,4:49-53(1988)
    77.田惠桥,远彤.Roles of calcium on angio sperm fertilization.植物生理学报,26(5):369-380(2000)
    78.龚明 杨中汉.Roles of calcium on po llen germination and pollen tube growth.北京 大学学报,自然科学版,31(2):238-249(1995)
    79.Tian HQ,Kuang A,Musgravem E,Russell SD.Calcium distribution in fertile and sterile anthers of a photoperiod-sensitive genie male-sterile rice.Planta,204:183-192(1998)
    80.KONG Hai-Yan,JIA Gui-Xia.Calcium Distribution During Pollen Development of Larix principis-rupprechtii.Acta Botanica Sinica,46(1):69-76(2004)
    81.Malho R,Read ND,Trewavas ND.Calcium channel activity during pollen tube growth and reorientation.Plant Cell,7:1173-1184( 1995)
    82.Malho R,Trewavas AJ.Localized apical increases of cytosolic free calcium control pollen tube orientation.Plant Cell,8:1935-1949(1996)
    83.Malho R.Role of 1,4,5-inositol triphosphate induces Ca~(2+) release in pollen tube orientation.Sex Plant Report,11:231-235(1998)
    84.Kohon T,Shimmen T.Ca~(2+)-induced F-actin fragmentation in pollen tubes.Prot-oplasma,141:177-179(1987)
    85.Coluccio LM,Bretscher A.Resssociation of microcillar core proteins:making a microcillar core in vitro.J Cell Biol,108:495-502(1989)
    86.Klahre U,Friederich E,Kost B.Villin-like actin-binding proteins are experessed ubiquitously in Arabidopsis.Plant Physiol,122:35-48(2000)
    87.Yokota E,Takahara KI,Shimmen T.Actin-bindling protein isolated form pollen tubes of lily.PlantPhysiol.116:1421-1429(1998)
    88.Yokota E,Shimmen T.Characterization of native actin-binding proteins from pollen..The Netherlands,103-118( 2000)
    89.Huang SJ,Blanchoin L,Chaudhry F.A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments.J Biol Chem(2004)
    90.Frankiln-Tong VE,Ride JP,Read ND.The self-incompatibility response in Pa-paver rhoeas is mediated by cytosolic free calcium.Plant J,4:163-177(1993)
    91.Snowman BN,Kovar DR.Signal-mediated depolymerization of actinin pollen during the self-incompatibility response.Plant Cell,14:2613-2626(2002)
    92.Kovar DR,Drobak BY,Staiger CJ.Maize porfilin isoforms are functionally distinct.Plant Cell,2:583-598(2000)
    93.Carlier MF,Ressad F,Pantaloni D.Control of actin dynamics in cell motility.Role of ADF/cofilin.Biol Chem,274:33827-33830(1999)
    94.Kim.Molecular cloning and characterization of anther-perferential cDNA enc-oding a putative active-depolymerizing factor.Plant MolBiol,21:39-05(1993)
    95.Lopez I,Anthony RG,Maciver SK,Jiang CJ.Pollen specific expression of maize genes encoding actin depolymerizing factor-like porteins.Porc Natl Acad Sci,93:7415-7450(1996)
    96.Cartier MF,Laurent V,Santolini J.Actin depolymerizing factor(ADF/cofilin) enhances the rate of filament tumover:implication in actin-based motiliy.J Cell Biol,136:1307-1322(1997)
    97.Smertenko AP,Jiang CJ,Simmons NJ.Ser~6 in the maize actin-depolymerizing factor,ZmADF3,is phosphorylated by acalcium-stimulated protein kinase and is essential for the control of functional activity.Plant J,14:187-193(1998)
    98.Negulyaev YA,Khaitlina SY,Hinssen H,Shumilina EV,Vedernikova EA.Sodium channel activity in leukemia cells is directly contorlled by actin polymerization.J Biol Chem,275:40933-40937(2000)
    99.Hwang JU,Suh S,Yi HJ,Kim J,Lee Y.Actin filaments modulate both stomatal opening and inward K~+ channel activities in guard cells of Vicia faba L.Plant Physiol,115:335-342(1997)
    100.Liu K,Luan S.Voltage-dependent K~+ channel as targets of osmosensing in guard cells.Plant Cell,10:1957-1970(1998)
    101.余增亮,王学栋,吴跃进等.离子注入水稻育种机理初探.安徽农业科学,1:12-16(1989)
    102.余增亮等,离子束生物技术引论.安徽科技出版社,1998年12月,第一版
    103.Yu ZL.Ion beam application in genetic modification.IEEE Transaction on Plasma Science,28:128-132(2000)
    104.Yu ZL.Interaction between low energy ion and the complicated organism.Plasma Science&Technology.1(1):79-85(1999)
    105.Yu ZL,Yang JB,Wu YJ,Cheng BJ.Transferring Gus gene into intact cells by low energy ion beam.Nuclear Instruments and Methodsin Physics Research,B 80/81:1328-1331(1993)
    106.陈恒雷,吕杰,曾宪贤.离子束诱变育种研究及应用进展.生物技术通讯,2:10-13(2005)
    107.虞龙,张宁.离子注入微生物诱变育种的研究与应用进展.微生物学杂志,25(2):60-83(2005)
    108.袁成凌,王纪,等.离子注人花生四烯酸(AA)产生菌诱变选育及产业化研究.第三次全国离子束生物工程学大会暨第一次国际研讨会论文集,(2002)
    109.胡素华,吴瑜,陈斌 单粒子微束装置的研究.核技术,25(9)742-744(2002)
    110.彭士香,王绍虎,余增亮.微离子束:用预定数目的离子对细胞中指定位置进行手术的工具.真空科学与技术,18(1)38-46(1999)
    111.吴李君,Tom K Hei,余增亮.微束单细胞照射的研究和发展.核科学与工程.20(1)78-83(2000)
    112.Hei T.K.et al.Mutagenic effects of a single or an exact number of alpha particles in mammalian cells.Proc.Natl.Acad.Sci.(USA),94:3765-3770(1997)
    113.Li-Jun Wu,Gerhand Randers-Pehrson.et al.Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells.Proc Natl Acad Sci U S A,96:4959-4964(1999)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700