用户名: 密码: 验证码:
用于一氧化碳低温氧化的负载型和复合型氧化铜基多孔纳米催化剂体系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种主要的大气污染物,由许多工业过程、交通运输和家庭生活所产生的CO气体的存在对人类的身体健康和生活环境造成了极大的危害。因此,CO的脱除就显得尤为重要,其中催化氧化脱除是最为有效的方法。近年来,对价格低廉、原料易得的铜系列催化剂的研究得到广泛的关注。众所周知,材料的物理和化学性能不仅和其化学组成相关,还和其多孔性和形貌结构有着至关重要的联系。因此,设计制备特定孔结构和特定形貌的材料成为众多科研工作者研究的热点。
     到目前为止,以金属氧化物为载体负载CuO制备负载型催化剂的研究已经开展的非常广泛。在催化领域,由于多孔金属氧化物具有高比表面积、均匀的孔径分布等优势,其能促进活性组分金属颗粒在其表面的高分散和稳定化并最终促进催化剂性能的提高;因此,近年来其作为催化剂和催化剂载体的研究吸引了人们的普遍关注。然而,以多孔金属氧化物为载体负载CuO催化剂并应用到催化CO低温氧化中的研究却鲜有报道。因此,开发出具有高比表面积和多孔结构的氧化铜基金属氧化物催化剂仍是一个很具挑战性但有着重要研究价值的工作。本论文中,选取过渡金属铜氧化物基负载型和复合型多孔纳米催化剂为研究对象,对催化剂的制备过程、组分之间的协同作用、催化剂CO低温氧化活性及活性机理等进行了系统研究,旨在开发出一个全新的催化剂体系。具体研究内容和结果归纳如下:
     1.首次采用阳离子型表面活性剂CTAB辅助合成法,制备出具有介孔结构的CuO/Ce_(0.8)Zr_(0.2)O_2催化剂和CuO-Fe_2O_3复合氧化物催化剂。制备的样品采用XRD、N_2-sorption、TG-DTA、SEM、TEM、H_2-TPR和XPS等表征手段表征其组成和结构,并在微反-色谱装置上考察了其催化CO低温氧化的催化活性。XRD和TEM分析结果表明,催化剂由纳米尺度的颗粒组成。氮气吸附-脱附等温线表明,所制备的这两个纳米催化剂体系具有高比表面积和均匀的介孔孔径分布。活性测试结果显示,这两个介孔纳米催化剂均具有高的催化CO低温氧化活性。催化剂的高催化性能和活性组分铜物种含量、焙烧温度、比表面积、颗粒粒径、活性组分与载体的协同作用等因素息息相关。此外,我们系统地研究了不同CuO/Ce_(0.8)Zr_(0.2)O_2催化剂的制备方法和CuO/Ce_xZr_(1-x)O_2催化剂中铈锆比对该催化剂体系结构和性能的影响。同时,研究了该催化剂催化CO氧化的反应动力学。
     2.采用阳离子型表面活性剂CTAB辅助合成法,制备出多孔α-Fe_2O_3纳米棒,并采用沉积-沉淀法在其表面负载CuO制备出负载型CuO/α-Fe_2O_3NRs催化剂。样品的结构和形貌表征结果显示,所制备的α-Fe_2O_3具有一维棒状结构,且在纳米棒表面存在5-12nm的多孔结构;根据SEM、TEM和TG-DTA等表征结果我们提出了该多孔α-Fe_2O_3纳米棒的形成机理。负载CuO后的催化剂保持了载体的棒状结构,粒径大小约6nm的CuO颗粒包埋或半包埋在载体的孔道中。通过H_2-TPR和XPS等表征结果证实,Cu_2O物种提供了催化反应中的活性位,我们在此基础上提出了在CuO/α-Fe_2O_3NRs催化剂上CO氧化的机理。并和商品α-Fe_2O_3负载CuO催化剂进行对比,对该催化剂体系催化CO氧化的反应动力学进行初步探讨。
     3.采用无模板剂钛酸丁酯在强酸条件下自水解的办法,制备出具有大孔-介孔结构的二氧化钛(MMTD),并采用沉积-沉淀法制备出负载型CuO/MMTD纳米催化剂。表征结果显示,负载CuO后的催化剂保持了载体MMTD的高比表面积和分级孔结构。活性测试结果表明,400℃焙烧的8wt.%-CuO/MMTD催化剂具有最高的催化活性。通过与商品级和仅具有介孔结构的TiO_2负载CuO催化剂的对比研究后发现,大孔结构促进了反应物分子和产物分子的传质作用并最终导致了其催化CO低温氧化性能的提高。该CuO/MMTD催化剂体系的催化性能还和CuO的负载量、预处理温度、高比表面积等因素息息相关。通过H_2-TPR和XPS等表征探讨研究了该催化剂的催化活性位。
     4.首次以具有纤维状结构的高比表面积凹凸棒石粘土(APT)为载体,负载CuO制备出负载型CuO/APT催化剂。对所制备的催化剂进行了系统的结构表征和催化CO低温氧化性能研究。结果显示:该凹凸棒石为载体的催化剂催化CO低温氧化的催化性能与前面所研究的铜基多孔金属氧化物催化剂相当。由于凹凸棒石粘土独特的性能、低廉的价格和易获得性,其在不同的催化反应中(尤其是在催化CO低温氧化中),具有极大的潜在应用价值。
As the major air pollutant, carbon monoxide is usually emitted from many industrial process, transportation and domestic activities. It is harmful to human health and environment. In order to control the toxic emission, catalytic oxidation of CO is an efficient way. During the last decades, a number of catalysts have been studied, in which precious metal catalysts have been demonstrated to be bery effective. Although the precious metal catalysts have high activity for CO oxidation, the high cost and limited availability discourage their extensive applications. Much attention has thus recently been paid to base metal as catalysts, especially copper oxide, for the purpose to find an alternative catalytic component to reduce using or enen replace the noble metal. Furthermore, the physical and chemical properties of materials depend not only on the chemical composition but crucially also on their porosity and shape, and much effort has been focused on tailoring the pore size and external morphology of the materials. In the fields of catalysts, porous oxides have recently attracted great interest for the use as catalyst and catalyst support, since the porous supports have remarkably large surface areas and narrow pore size distributions so as to give rise to well dispersed and stable metal particles on the surface and as consequence would show an improved catalytic performance.
     However, to the best of our knowledge, there are few reports on the study of porous metal oxides support CuO for CO oxidation at low temperature. It is still a challenge to develop high surface area and porous metal oxides catalysts for the application of enhancing catalytic performance. In the dissertation, the preparation process of the copper-based porous metal oxide catalysts, the synergistic effect, and the catalytic mechanism for CO oxidation were systematically investigated, aiming at developing new catalyst system for the abatement of CO at low temperature. The following results and conclusions have been obtained:
     1. The surfactant-assisted method of nanocrystalline particle assembly was employed to prepare the high-surface area mesoporous CuO/Ce_(0.8)Zr_(0.2)O_2 and CuO-Fe_2O_3 composite catalysts in the presence of the cationic surfactant CTAB for the first time. All the as-prepared samples were characterized by X-ray diffraction (XRD), N_2-sorption, thermogravimetry-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), hydrogen temperature-programmed reduction (H_2-TPR), X-ray photoelectron spectroscopy (XPS) and other techniques. Their catalytic behavior for low-temperature CO oxidation was studied by using a microreactor-GC system. XRD and TEM analysis indicated that the catalysts particles were nanoscaled. N_2 adsorption-desorption isotherms realved a mesoporous nanocatalyst system with high-surface area and uniform pore-size distribution. The results of catalytic activity measurements showed that these mesoporous nanostructured CuO/Ce_(0.8)Zr_(0.2)O_2 and CuO-Fe_2O_3 composite catalysts were very active for low-temperature CO oxidation. The catalytic behavior depended on the CuO loading amount, the calcination temperature, the surface area, the particles size and the synergistic effect of the catalysts. Especially, for the CuO/Ce_(0.8)Zr_(0.2)O_2 catalyst system, the influences of the prepared method and the Ce/Zr ratio on the catalytic performance were investigated in detail. The results indicated that the surfactant-assisted method prepared catalysts show the highest catalytic activity and the Ce_(0.8)Zr_(0.2)O_2 is the best Ce/Zr ratio for the catalyst in the application of CO oxidation.
     2. Porousα-Fe_2O_3 nanorods were prepared by a surfactant-assisted method in the presence of the cationic surfactant CTAB. The structure and morphology of obtained products were characterized and the CO oxidation activities were investigated. Theα-Fe_2O_3 nanorods possess a mesostructure with a pore size distribution in the range of 5-12 nm and high surface area, exhibiting high catalytic activity for CO oxidation. The mechanism for the CTAB-assisted synthesis of porousα-Fe_2O_3 nanorods is proposed. CuO nanocrystals with size about 6 nm were loaded on the surface of porousα-Fe_2O_3 nanorods by a deposition-precipitation (DP) method, which retained the mesoporosity ID structure and exhibited superior activity for catalytic oxidation of CO, as compared with that on commercialα-Fe_2O_3 powders. The enhanced catalytic activity of the CuO/α-Fe_2O_3NRs nanocatalysts was attributed to the strong interaction between CuO nanocrystals and the porous nanorods support, supported by the H_2-TPR and XPS analysis results. The active site of the CuO/α-Fe_2O_3NRs nanocatalysts was Cu_2O, identified by the anaylsis results. And the scheme of CO oxidation over CuO/α-Fe_2O_3NRs nanocatalyst was proposed.
     3.Hierarchically mesoporous-macroporous titanium dioxide (MMTD) was synthesized by the hydrolysis of tetrabutyl titanate in the absence of surfactant and autoclaving at 60℃, which exhibits a porous hierarchy of wormhole-like mesostructure in the framework of macrochannels. Different contents of CuO nanoparticles were supported on the MMTD by a deposition-precipitation method, retaining the high surface areas and hierarchical porosity. The prepared MMTD support and resulted CuO/MMTD nanocatalysts were characterized and their catalytic behavior for low-temperature CO oxidation was studied by using a microreactor-GC system. The CuO/MMTD catalyst with 8 wt.% CuO content and calcined at 400℃was found to have the highest catalytic activity. The comparative study of the influence of the hierarchically porous structure on the catalytic activity was employed. The catalytic activity depended on the CuO loading amount, the precalcination temperature, the meso-macroporous framework, the surface area and the particle size of the CuO/MMTD catalysts. The active site of the CuO/MMTD nanocatalysts was Cu_2O, identified by the anaylsis results.
     4. Fiber-like high-surface-area attapulgite (APT) clay was used as the support of CuO nanoparticles for the first time, and the texural and structural properties of the prepared CuO/APT nanocatalysts were characterized by XRD, SEM, TEM, N_2 sorption analysis and XPS techniques. The catalytic behavior of the prepared CuO/APT catalysts for low-temperature CO oxidation was investigated, indicating interesting catalytic activity that comparable to the previously reported metal oxide supported CuO catalysts. Due to the unique property and the feature of much low cost and easy availability, the use of APT clay renders a great promise to be the catalyst support for the applications in various catalytic reactions including the low-temperature CO oxidation.
引文
[1] Galo J. de A.A. Soler-lllia, C. Sanchez, B. Lebeau, et al. Chem. Rev, 2002, 102:4093.
    [2] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [3] Z.L. Wang, Y. Liu, Z. Zhang. Handbook of Nanophase and Nanostructured Materials-Materials Systems and Applications (Vol 1), Kluwer Academic/Plenum Publishers, ISBN 7-302-05734-6.
    [4] A.C. Templiton, W.P. Wuelfing, R.W. Murray. Acc. Chem. Res., 2000,33:27.
    [5] G.A. Somorjai. Proceedings of Robert A. Welch Foundation Conferences on Chemical Research,Houston, Texas, November 9-11, 1981, The surface science of heterogeneous catalysis, in:Heterogeneous Catalysis, vol. XXV, 1981, 83.
    [6] M.A. El-Sayed. Acc. Chem. Res., 2001, 34: 257.
    [7] C.M. Lieber. Solid State Comm., 1998,107: 607.
    
    [8] K.S.W. Sing, D.H. Everett, R.A. Haul, et al. Pure Appl. Chem, 1985, 57: 603.
    
    [9] C.T. Kresge, M.E. Leonowicz, W.J. Roth, et al. Nature, 1992,359: 710.
    
    [10] J.S. Beck, J.C. Vartuli, W.J. Roth, et al. J. Am. Chem. Soc., 1992,114: 10834.
    
    [11] Galo J. de A. A. Soler-lllia, Clement Sanchez, Benedicte Lebeau et al. Chem. Rev., 2002, 102:4093.
    
    [12] 阳晓宇.纳米孔材料的设计与合成:催化中心的稳定化 [博士学位论文].吉林:吉林大学,2007.
    
    [13] D.M. Bibby, M.P. Dale, Nature, 1985,317: 157.
    
    [14] Q. S. Huo, R. Xu, S. Li, et al. Chem. Commun., 1992, 12: 875.
    
    [15] R. Althoff, K. Unger, F. Schüth. Microporous Mater, 1994,2: 557.
    
    [16] E.M. Flanigen, D.W. Breck, Abstracts. 137~(th) National Meeting of the American Chemical Society. Cleveland, OH; ACS: Washington. DC 1960: Abstr. 33M.
    
    [17] R.M. Barrer, J.W. Buynham, F.W. Bultitude, et al. J. Chem. Soc. 1959, 195.
    
    [18] W.F. Holderich. Pure, Appl. Chem., 1986, 58: 1383.
    
    [19] A. Corma, M.J. Climent, H. Garcia, et al. J. Appl. Catal., 1989,49: 109.
    
    [20] A. Taramasso, G. Perego, B. Notari, U.S. Patent. 4410501, 1983.
    
    [21] A. Esposito, M. Taramasso, C, Neri, F. Bunonuomo, U.K. Patent. 2116974, 1985.
    
    [22] L. Moscou. In Introduction to Zeolites Science and Practice: van Bekkum. H., et al., Eds,; Elsevier: Amsterdam. The Netherlands. 1991: p 1.
    
    [23] L. Vidal, C. Marichal, V. Gramlich, et al. Chem. Mater., 1999. 11:2728.
    
    [24] S. Mintova, T. Bein, Microporous Mesoporous Mater. 2001, 50: 159.
    
    [25] S. Mintova, S.Y. Mo, T. Bein, Chem. Mater. 2001, 13: 901.
    
    [26] N. Wang, Z,K, Zhang, G.D. Li, J.S. Chen, Nature, 2000,408:51.
    
    [27] Z.K. Tang, L. Zhang, N. Wang, X.X. Zhang, G.H. Wen, G.D. Li, J.N. Wang, C.T. Chan, P. Sheng, Science, 2001,292:2462.
    
    [28] A. Monnier, F. Schuth, Q. Huo, et al., Science, 1993,261: 1299.
    
    [29] Q. Huo, D.I. Margolese, U. Clesia, et al., Nature, 1994,368: 317.
    
    [30] Q. Huo, D.I. Margolese, U. Clesia, et al., Chem. Mater., 1994,6: 1176.
    
    [31] S. Inagaki, Y. Fukushima, K. Kuroda, Chem. Commun., 1993, 680.
    
    [32] P.T. Tanev, T.J. Pinnavaia, Science, 1995, 267: 865.
    
    [33] S.A. Bagshaw, E, Prouzet, T.J. Pinnavaia, Science, 1995, 269: 1242.
    
    [34] C.Y. Chen, S.L. Burkett, H.X. Li, et al. Microporous Mater., 1993, 2: 27.
    
    [35] D.M. Antonelli, J.Y. Ying,Angew. Chem. Int. Ed, 1995,34,2014.
    
    [36] Y Wei, D. Jin, T. Ding, et al., Adv. Mater., 1998, 3(4): 313.
    
    [37] Z.Y. Yuan, B.L. Su, J. Mater. Chem., 2006, 16: 663.
    
    [38] M. Kruk, M.J. Ryoo, S.H. Joo. J. Phys. Chem. B., 2000, 104: 7960.
    
    [39] R, Ryoo, et al., Adv. Mater., 2001, 13: 167.
    
    [40] R, Ryoo, et al., Nature., 2001,412: 169.
    
    [41] R, Ryoo, et al., J. Am. Chem. Soc, 2000, 122: 10712.
    
    [42] J. Chen, Z.L. Tao, S.L. Li, J. Am. Chem. Soc, 2004, 126:3060.
    
    [43] F.S. Cai, G.Y. Zhang, J. Chen, et al. Angew. Chem. Int. Ed., 2004,43:4212.
    
    [44] M. Smaihi, S. Kallus, J.D.F. Ramsay. Stud. Surf. Sci. Catal., 2001, 135: 189(02-9-18).
    [45] P. Yang, D.Y. Zhao, D.I. Margolese, et al. Nature, 1998,396: 152.
    
    [46] V. Tohver, P.V. Braun, M.U. Pralle, et al. Chem. Mater., 1997,9: 1495.
    
    [47] GS. Attard, C.G. Goltner, J.M. Corker, et al. Angew. Chem. Int. Ed., 1997,36: 1315.
    
    [48] R. Ryoo, S.H. Joo, S. Jun. J. Phys. Chem. B, 1999, 103: 7743.
    
    [49] S. Jun, S.H. Joo, R. Ryoo, et al. J. Am. Chem. Soc, 2000,122 : 10712.
    
    [50] S. Kaskel, D. Farrusseng, K. Schlichte. Chem. Commun., 2000,2481.
    
    [51] S. Inagaki, A. Koiwai, N. Suzuki, et al. Bull. Chem. Soc. Jpn., 1996,69 : 1449.
    
    [52] T. Yanagisawa, T, Shimizu, K. Kuroda, et al. Bull. Chem. Soc. Jpn., 1990,63 :988.
    
    [53] T. Kimura, T. Kamata, M. Fuziwara, et al. Angew. Chem. Int. Ed., 2000,39: 3855.
    
    [54] S.Y. Choi, M. Mamak, N. Coombs, et al. Nano. Letters, 2004,4(7): 1231.
    
    [55] B. Ye, M. Trudeau, D. Antonelli. Adv. Mater., 2001, 13(1): 29.
    
    [56] B.O. Skadtchenko, M. Tredeau, C.W. Kwon, et al. Chem. Mater., 2004,16(15): 2884.
    
    [57] M. Vettraino, X. He, M. Trudeau, et al. Adv. Funct. Mater., 2002,12(3): 174.
    
    [58] D.A. Kron, B.T. Holland, R. Wipson, et al. Langmuir, 1999, 15: 8300.
    
    [59] A. Stein, R.C. Schroden, Curr. Opin. Solid. State. Mater. Sci., 2001,65: 553.
    
    [60] J.-L. Blin, A. Leonard, Z.Y. Yuan, et al. Angew. Chem. Int. Ed., 2003,42: 2872.
    
    [61] A. Imhof, DJ. Pine. Nature, 1997, 389: 948.
    [62] 杨振忠,齐凯,容建华等. 科学通报, 2001,46: 1349.
    
    [63] G.S. Shao, X.J. Zhang, Z.Y. Yuan. Appl. Catal. B-environmental, 2008,82:208.
    
    [64] M.A. Carreon, PhD Thesis, University of Cincinnati, 2003.
    
    [65] H. Mguez, V. Kitaev, GA. Ozin, Appl. Phys. Lett., 2004, 84(8): 1239.
    
    [66] W. Sean, J. David, V. Kitaev, et al., J. Am. Chem. Soc, 2003, 125(50): 15589.
    
    [67] A. Blanco, E. Chomski, S. Gabtchak, et al., Nature., 2000,405(6785): 437.
    
    [68] B. Abdennour, B. Daniel, J. Catal, 2001,202(1): 34.
    
    [69] P. Thormhlen, M. Skoglundh, E. Fridell. J. Catal., 1999,188: 300.
    
    [70] A. Wolf, F. Schuth. Appl. Catal. A: General., 2002, 226: 1.
    
    [71] H.C. Wu, L.C. Liu, S.M. Yang, et al. Appl. Catal. A: General, 2001,211: 159.
    
    [72] Y. Yuan, A.P. Kozlova, K. Asakura. J. Catal., 1997,170: 191.
    
    [73] R.J.H. Grisel, B.E. Nieuwenhuys. J. Catal., 2001,199:48.
    
    [74] L. David, Trimm, Z.I. Onsan. Catal. Rev., 2001,43: 31.
    
    [75] G. Ertl, P. Rau. Surf. Sci., 1969, 15: 443.
    
    [76] J.S. Close, J.M. White. J. Catal, 1975,36: 185.
    
    [77] C. Stampfl, M. Scheffler. Surf. Sci, 1999,433-435: 119.
    
    [78] C. Laberty, CM. Alvarez, C. Drouet. J. Catal, 2001, 198: 266.
    
    [79] GG. Jernigan, GA. Somorjai. J. Catal, 1994, 147: 567.
    
    [80] J. Jonas. J. Catal, 2000, 194 : 55.
    
    [81] M. Femandez-Garcia, A. Martines-Arias, L.N. Sanlamanca. 1999, 187 :474.
    
    [82] Y. Lizuka, T. Tode, T. Takao. J. Catal, 1999, 187: 50.
    
    [83] M. Haruta, S. Tsubota, T. Kobayashi, et al. J. Catal, 1993, 144 : 175.
    
    [84] J.Y Luo, M. Meng, X. Li, et al. J. Catal, 2008,254: 310.
    
    [85] D.L. Doering, H. Pappa, J.T. Dicknson. J. Catal, 1982, 73: 91.
    
    [86] K. Nagase, Y. Zheng, Y. Kodama, et al. J. Catal, 1999, 187(1): 123.
    
    [87] T.A. Nijhuis, M. Makkee, A.D. Van Langeveld, et al. Appl. Catal. A: General, 1997, 164 (1-2) 237.
    
    [88] G.G. Xie, Z.C. Jiang, T.F. Bai, et al. Chinese Chem. Lett, 1998,9 (6): 579.
    
    [89] 贾明君,张文祥,陶玉国,等.高等学校化学学报,1999,20(4):637.
    
    [90] H.K. Lin, H.C. Chiu, H. Tsai, et al. Catal. Lett., 2003,88 (3-4): 169.
    
    [91] H.K. Lin, C.B. Wang, H.C. Chiu, et al. Catal. Lett., 2003, 86 (1-3): 63.
    
    [92] C.S. Pan, D.S. Zhang, L.Y. Shi. J. Solid. State. Chem, 2008, 181: 1298.
    
    [93] S. Ali, T. Peter, S. Magnus, et al. J. Catal, 2008,253:253.
    
    [94] 林培琰,唐靓,陈伟,等.分子催化., 1996, 10:245.
    
    [95] Y.F. Shen, L. Steven, Suib, et al. J. Catal, 1996, 161:115.
    
    [96] G.G. Xia, Y.G. Yin, W.S. Willis, et al. J. Catal, 1999, 185: 91.
    
    [97] Y. Yuan, K. Asakura, H. Wan, et al. Catal. Lett., 1996,42: 15.
    
    [98]Y.Yuan,A.P. Kozlova,K.Asakura,et al. J. Catal, 1997, 170: 191.
    
    [99] G. C. Bond, D.T. Thompson. Catalsis Reviews-Science and Engineering, 1999,41(3-4): 319.
    
    [100] P.M. Moran, S. Castillo, R. Gomez. React. Kinet. Catal. Lett, 2002,76(2): 375.
    
    [101] F. Boccuzzi, A. Chiorino, M. Manzoli, et al. J. Catal, 2001,202(2): 256.
    
    [102] Z. Ma, S. Brown, S.H. Overbury, et al. Appl. Catal. A: General, 2007,327: 226.
    
    [103] Z. Ma, S. Brown, J.Y. Howe, et al. J. Phys. Chem. C., 2008, 112: 9448.
    
    [104] A.K. Tripathi, V.S. Kamble, N.M. Gupta. J. Catal, 1999, 187(2): 332.
    
    [105] A.P. Kozlova, S. Sugiyama, A.I. Kozlov, et al. J. Catal, 1998, 176(2): 426.
    
    [106] G. Smit. Croatica Chemica. Acta, 2003,76(3): 269.
    
    [107] J. Lin, B. Wan. Appl. Catal. B: Environmental, 2003, 41(1-2): 83.
    
    [108] D.H. Wang, Z.P. Hao, D.Y Cheng, et al. J. Mole. Catal. A, 2003, 200(1-2): 229.
    
    [109] H.C. Liu, A.I. Kozlov,A.P. Kozlova, et al. Phy. Chem. Chem. Phy, 1999, 1(11): 2851.
    
    [110] C.K. Costello, M.C. Kung, Y. Wang, et al. Appl. Catal. A: General, 2002,232(1-2): 159.
    
    [11] S.J. Lee, A. Gavriilidis. J. Catal,2002,206(2): 305.
    
    [112] Q. Xu, K.C.C. Kharas, A.K. Datye. Catal. Lett, 2003, 85(3-4): 229.
    
    [113] S. Arrii, F. Morfin, A. Renouprez, et al. J. Am. Chem. Soc, 2004, 126(4): 1199.
    
    [114] H.S. Roh, H.S. Potdar, K.W. Jun, et al. Catal. Lett, 2004,93(3-4): 203.
    
    [115] S. Ozkara, A.E. Aksoylu. Appl. Catal.A: General, 2003, 251(1): 75.
    
    [ 116] B.W. Wojciechowski, S.P. Asprey. Appl. Catal. A: General, 2000, 190( 1 -2): 1.
    
    [117] F.J. Gracia, L. Bollmann, E.E. Wolf, et al. J. Catal, 2003, 220(2): 382.
    
    [ 118] A.N. Akin, G. Kilaz, A.I. (?)sli, et al. Chem. Eng. Sci., 2001, 56(3): 881.
    
    [119] M.F. Luo, Z.Y. Hou, X.X. Yuan, et al. Catal. Lett, 1998, 50(3-4): 205.
    
    [120] M. Fernandez-Garcia, A. Martinez-Arias, L.N. Salamanca, et al. J. Catal, 1999, 187(2): 474.
    
    [121] G.L. Dong, J.G. Wang, Y.B. Gao,et al. Catal.Lett, 1999, 58(1): 37.
    
    [122] K. Kili, L. Hilaire, N.F. Le. Phys. Chem. Chem. Phys, 1999, 1(7): 1623.
    
    [123] S. Bernal, J.J. Calvino, G.A. Cifredo, et al. Chem. Mater, 2002, 14(3): 1405.
    
    [124] K.S Song, S.K. Kang, S.D. Kim. Catal. Lett, 1997,49(1-2): 65.
    
    [125] J.L. Margitfalvi, I. Borbath, M. Hegedus, et al. Catal. Today, 2002, 73(3-4): 343.
    
    [126] R. Lin, W.P. Liu, Y.J. Zhong, et al. Appl. Catal. A: General, 2001,220(1-2): 165.
    
    [127] G.A. El-Shobaky, M.A. Shouman, S.A. El-Khouly. Mater. Lett, 2004, 58(1-2): 184.
    
    [128] I. Manuel, C. Thomas, G Djega-Mariadassou. Catal. Lett, 2001,77(4): 193.
    
    [129] H. Tanaka, S. Ito, S. Kameoka, et al. Appl. Catal. A: General, 2003, 250(2): 255.
    [130] Y. Yasuda, H. Mizusawa, T. Kamimura. J. Phy. Chem. B 2002,106(26): 6706.
    
    [131] K. Nagase, Y. Zheng, J. Kakuta, et al. J. Catal., 1999, 187: 123.
    
    [132] L. Dong, Y.S. Jin, Y. Chen. Science in Chian, Series B, 1996,26(6): 561.
    
    [133] M.F. Luo, J.M. Ma, J.Q. Lu, et al. J. Catal., 2007,246 :52.
    
    [134] R. Lin, M.F. Luo, Y.J. zhong, et al. Appl. Catal. A: General., 2003,255:331.
    
    [135] M.E. Manriquez, T. Lopez, R. Gomez. J. Sol-gel Sci. and Tech., 2003,26(1-3): 853.
    
    [136] G. Sedmak, S. Ho(?)evar, J. Levec. J. Catal., 2003,213(2): 135.
    
    [137] A. Matinez-Arias, R. Cataluna, J.C. Conesa, et al. J. Phy. Chem. B, 1998, 102(5): 809.
    
    [138] P.W. Park, J.S. Ledford. Appl. Catal. B: Environmental., 1998,15(3-4): 221.
    
    [139] R. Veda, M. Sachin, C. Satyanarayana. Appl. Catal. B: Environmental., 2008,84: 21.
    
    [140] H.K. Lin, H.C. Chiu, C.B. Wang. Catal. Lett., 2003. 88: 169.
    
    [141] H.K. Lin, C.B. Wang, H.C. Chiu. Catal. Lett., 2003, 86: 63.
    
    [142] M. Kang, M.W. Song, C.H. Lee. Appl. Catal. A: General., 2003,251(1): 143.
    
    [143] M. Kang, M.W. Song, K.L. Kim. React. Kinet. Catal. Lett., 2003,79(1): 3.
    
    [144] S. Colonna, S. de Rossi, P. Porta, et al. J. Mole, Catal. A, 2002, 180: 161.
    
    [145] S. Colonna, S. de Rossi, P. Porta, et al. J. Mole. Catal. A, 2002,187: 269.
    
    [146] G.J. Hutchings, A.A. Mizaei, S. Taylor, et al. Appl. Catal. A: General., 1998,166(1): 143.
    
    [147] G.H. Xie, Z.C. Jiang, H.Q. Wang, et al. Chinese Chem. Lett., 1998, 9(6): 579.
    
    [148]N.A.M. Deraz. Colloid. Surface. A, 2003,218: 213.
    
    [149] R. Cracium. Catal Lett., 1998,55(1): 25.
    [1] J. Kaspar, P. Fornasiero, M. Graziani. Catal. Today., 1999, 50(2): 285.
    [2] N. Kakuta, S. Ikawa, T. Eguchi, et al. J.Alloys and Compd., 2006,408-412: 1078.
    [3] M. H. Bocanegra-Bernal and S. D. de la Torre, J. Mater. Sci., 2002,37: 4947.
    [4] B. C. H. Steele, Nature, 1999,400: 619.
    [5] R. Ramamoorthy, P. K. Dutta, S. A. Akbar. J. Mater. Sci., 2003, 38:4271.
    [6] J. R. Jurado, J. Mater. Sci., 2001,36: 1133.
    [7] J. Nawrocki, M. P. Rigney, A. Mccormick et al. J. Chromatogr. A, 1993,657: 229.
    [8] C. Piconi and G. Maccauro. Biomaterials, 1999,20: 1.
    [9] R. X. Li, S. Yabe, M. Yamashita, et al. Mater. Chem. Phys., 2002,75: 39.
    [10] C. E. Hori, H. Permana, K.Y.S. Ng, et al. Appl. Catal. B: Environmental., 1998,16(1): 105.
    [11] A. Trovarelli, F. Zamar, J. Llorca, et al. J. Catal., 1997, 169(2): 490.
    [12] A. S. Deshpande, N. Pinna, P. Beato, et al. Chem. Mater., 2004, 16: 2599.
    [13] L.X. Yin, Y.Q. Wang, G.S. Pang, et al. J. Colloid Interface Sci., 2002,246(1): 78.
    [14] M. Thammachart, V. Meeyoo, T. Risksomboon, et al. Catal. Today, 2001, 68(123): 53.
    [15] 古映莹,冯圣生,李金林,等.无机化学学报,2006,22(9):1623.
    [16] M. Hirano, T. Miwa, M. Inagaki., J. Am. Ceram. Soc, 2001, 84: 1728.
    [17] S. T. Aruna, K. C. Patil. Nano Structured Materials, 1998, 10(6): 955.
    [18] W. J. Stark, M. Maciejewski, L. Madler, et al. J. Catal, 2003, 220(1): 35.
    [19] J. A. Rodriguez, J. C. Hanson, J. Y. Kim, et al. J. Phys. Chem. B, 2003, 107: 3535.
    [20] J. R. Kim, W. J. Myeong, S. K. Ihm. Appl. Catal. B: Environmental., 2007, 71: 57.
    [21] 冯长根,张江山,王亚军.中国稀土学报,2004,22(4):551.
    [22] 翟彦青,刘源,王丽.内蒙古工业大学学报,2001,20(4):245.
    [23] M.Yashima, T. Mitsuhashi, H. Trakashibawt al. J. Am. Ceram. Soc, 1995,78(8): 2225.
    [24] S. Meriani. Mater. Sci. Eng. A, 1985, 71: 365.
    [25] M.Yashima, K. Morimoto, N. Ishizawa, et al. J. Am. Ceram. Soc, 1993, 76: 2865.
    [26] P. Fornasiero, G. Balducci, R. Di Monte, et al. J. Catal., 1996, 164(1): 173.
    [27] G. Colon, F. Valdivieso, M. Pijolat, et al. Catal. Today, 1999, 50: 271.
    [28] R. Di Monte, J. Kaspar. Catal. Today., 2005, 100: 27.
    [29] M. Ozawa, K. Matuda, S. Suzuki. J. Alloys Comp., 2000, 303-304: 56.
    [30] S.P. Wang, X.C. Zheng, X.Y. Wang, et al. Catal. Lett., 2005,105:163.
    
    [31] Z.Y. Yuan, B.L. Su. Chem. Phys. Lett., 2003,381: 710.
    
    [32] T.Z. Ren, Z.Y. Yuan, B.L. Su. Chem. Phys. Lett, 2003,374: 170.
    
    [33] R. Lin, M.F. Luo, Y.J. Zhong, et al. Appl. Catal. A: General., 2003,255:331.
    
    [34] P. Ratnasamy, D. Srinivas, C.V.V. Satyanarayana, et al. J. Catal., 2004,221:455.
    
    [35] G. Avgouropoulos, T. Ioannides. Appl. Catal. A: General., 2003,244:155.
    
    [36] A.E. Nelson, K.H. Schulz. Appl. Surf. Sci. 2003,210:206.
    
    [37] R.Lin, M.F. Luo, Y.L. Xie, et al. React. Kinect. Catal. Lett., 2004,81(1): 65.
    
    [38] X.Y. Jiang, G.L. Lu, R.X. Zhou, et al. Appl. Surf. Sci., 2001,173(3-4): 208.
    
    [39] R.X. Zhou, T.M. Yu, X.Y. Jiang, et al. Appl. Surf. Sci., 1999,148:263.
    
    [40] K. Otsuka, Y. Wang, M. Nakamura. Appl. Catal. A:General., 1999,183: 317.
    
    [41] M. Boaro, C. De Leitenburg, G. Dolcetti, et al. J. Catal., 2000,193: 338.
    
    [42] 叶青,徐柏庆.催化学报,2006,27(2): 151.
    [1] U. Schwetmann, R. M. Cronell, Iron Oxides in the Laboratory; VCH, New York, 1991.
    [2] S. S. Lin, M. D. Gurol. Environ. Sci. Technol., 1998, 32 : 1417.
    [3] J. Chen, L. N. Xu, W. Y. Li, et al. Adv. Mater., 2005,17: 582.
    [4] Y. Wang, S. R. Wang, Y. Q. Zhao, et al. Sens. Actuator. B, 2007, 125: 79.
    [5] Y. Wang, F. H. Kong, B. L. Zhu, et al. Mater. Sci. Eng. B, 2007, 140: 98.
    [6] Y. H. Zheng, Y. Cheng, Y. S. Wang, et al. J. Phys. Chem. B, 2006,110: 3093.
    [7] A.K. Tripathi, VS. Kamble, N.M. Gupta. J. Catal., 1999, 187(2): 332.
    [8] A.P. Kozlova, S. Sugiyama, A.I. Kozlov, et al. J. Catal., 1998,176(2): 426.
    [9] T. Cheng, Z.Y. Fang, Q.X. Hu, et al. Catal. Commun., 2007, 8 : 1167.
    [10] G. Smit. Croatica Chemica. Acta, 2003, 76(3): 269.
    [11] H. G. El-Shobaky, Y. M. Fahmy, Mater. Res. Bull., 2006,41: 1701.
    [12] W. M. Shaheena, A.A. Ali, Int. J. Inorg. Mater., 2001,3: 1073.
    [13] E. Boellaard, F. Th. van de Scheur, A. M. van de Kraan, et al. Appl. Catal. A : General., 1998,171 : 333.
    
    [14] Z.Y. Yuan, B.L. Su. Chem. Phys. Lett., 2003,381: 710.
    
    [15] T.Z. Ren, Z.Y. Yuan, B.L. Su. Chem. Phys. Lett, 2003,374: 170.
    
    [16] M. Khoudiakov, M. C. Gupta, S. Deevi. Appl. Catal. A: General., 2005,291: 151.
    
    [17] G. Munteanu, L. Ilieva, D. Andreeva. Thermochim. Acta., 1997,291: 171.
    
    [18] G. Avgouropoulos, T. Ioannides. Appl. Catal. A: General., 2003,244: 155.
    
    [19] M. Sorescu, R. A. Brand, D. Mihaila-Tarabasanu, et al. J. Appl. Phys., 1999, 85 : 5546.
    
    [20] L. X. Yin, Y. Q. Wang, G. S. Pang, et al. J. Colloid Interface Sci., 2002,246: 78.
    
    [21] J. T. Hu, T. W. Ddom and C. M. Lieber, Acc. Chem. Res. 1999,32:435.
    
    [22] D. D. D. Ma, C. S. Lee, F. C. K. Au, et al. Science, 2003,299: 1874.
    
    [23] A.P. Alivisatos, P.F. Barbara, A.W. Castleman, et al. Adv. Mater., 1998,10: 1297.
    
    [24] Y. Xia, P. Yang, Y. Sun, et al. Adv. Mater., 2003, 15 : 353.
    
    [25] X. Duan, Y. Huang, Y. Cui, et al. Nature, 2001,409 : 66.
    
    [26] S. Liang, F. Teng, G. Bulgan, R. Zong et al. J. Phys. Chem. C, 2008,112 : 5307.
    
    [27] J. Chen, L. Xu, W. Li et al. Adv. Mater., 2005, 17 : 582.
    
    [28] Z. Y. Yuan, T. Z. Ren G. Du, et al. Chem. Phys. Lett., 2004, 389: 83.
    
    [29] K. Woo, H. J. Lee, J. -P. Ann, et al. Adv. Mater., 2003, 15: 1761.
    
    [30] X. Wang, X. Chen, L. Gao, et al. J. Mater. Chem., 2004, 14: 905.
    
    [31] B. Tang, G. Wang, L. Zhuo, et al. Inorg. Chem., 2006,45: 5196.
    
    [32] A. Vantomme, Z. Y. Yuan, G Du, ea al. Langmuir, 2005, 21: 1132.
    
    [33] P. X. Huang, F. Wu, B. L. Zhu, et al. J. Phys. Chem. B, 2005,109: 19169.
    
    [34] D. Zhang, H. Fu, L. Shi, et al. Inorg. Chem., 2007,46: 2446.
    
    [35] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 2001, 291: 1947.
    
    [36] C. Guo, M. Cao, C. Hu, Inorg. Chem. Commun., 2004,7: 929.
    
    [37] M. H. Huang, S. Mao, H. Feick, et al. Science, 2001,292: 1897.
    
    [38] M. Haruta, N. Yamada, T. Kobayashi, et al. J. Catal., 1989, 115: 301.
    
    [39] M. Haruta, S. Tsubota, T. Kobayashi, et al. J. Catal., 1993, 144: 175.
    
    [40] G. J. Hutchings, M. S. Hall, A. F. Carley, et al. J. Catal., 2006,242: 71.
    
    [41] S. Al-Sayari, A. F. Carley, S. H. Taylor, et al. Topics in Catal., 2007,44: 123.
    
    [42] Z. Zhong, J. Ho, J. Teo, et al. Chem, Mater., 2007, 19:4776.
    
    [43] J.L. Cao, Y. Wang, X.L. Yu, et al. Appl. Catal. B: Environmental., 2008,79: 26.
    
    [24] G. Avgouropoulos, T. Ioannides. Appl. Catal. A: General., 2003, 244: 155.
    
    [45] K. Nagase, Y. Zheng, Y. Kodama, et al. J. Catal., 1999, 187: 123.
    
    [46] T.J. Huang, D.H. Tsai. Catal. Lett., 2003, 87: 173.
    
    [47] B. K Cho. J. Catal., 1991, 131: 74.
    
    [48] Z.Y. Pu, X.S. Liu, A.P. Jia, et al. J. Phys. Chem. C., 2008, 112: 15045.
    
    [49] K. Min, M.W. Song, C.H. Lee. Appl. Catal. A: General., 2003, 251: 143.
    [1] A. Fujishima, K. Honda. Nature, 1972,238: 37.
    [2] H. Hiroshima, H. Imai, V. Balek. J. Non-Cryst. Solids, 2001,285:96.
    [3] D.M. Antonelli, J.Y. Ying. Angew. Chem. Int. Edn. Engl., 1995,34(18): 2014.
    [4] S. Cabrera, J.E. Haskouri, C. Guillem, et al. Solid. State. Sci., 2000,2(4): 405.
    [5] M.M. Yusuf, H. Imai, H. Hirashima. J. Non-Cryst. Solids, 2001,285(1-3): 90.
    [6] H. Yoshitake, T. Sugihara, T. Tatsumi. Chem. Mater, 2002,14(3): 1023.
    [7] Q Dai, L.Y. Shi, Y.G Luo, et al. J. Photochem. Photobiola A: Chem., 2002, 148(1-3): 295.
    [8] YD. Wang, C.L. Ma, X.D. Sun, et al. Appl. Catal. A: General., 2003,246(1): 161.
    [9] W. Ho, J.C. Yu, S. Lee. Chem. Commun., 2006, 1115.
    [10] Z.Y. Yuan, B.L. Su. J. Mater. Chem., 2006, 16(7): 663.
    [11] J.L. Blin, A. Leonard, Z.Y. Yuan, et al. Angew. Chem. Int. Ed, 2003,42: 2872.
    [12] J. Huang, S.R. Wang, Y.Q. Zhao, et al. Catal. Commun., 2006,7(12): 1029.
    [13] V. Idakiev, T. Tabakova, A. Naydenov, et al. Appl. Catal. B: Environmental., 2006,63: 178.
    [14] Z.Y. Yuan, B.L. Su. Chem. Phys. Lett., 2003, 381: 710.
    [15] T.Z. Ren, Z.Y. Yuan, B.L. Su. Chem. Phys. Lett, 2003,374: 170.
    [16] G Avgouropoulos, T. loannides. Appl. Catal. A: General., 2003,244: 155.
    [17] U.R. Pillai, S. Deevi, Appl. Catal. B, 2006,64, 146.
    [18] K. Nagase, Y. Zheng, Y. Kodama, and J. Kakuta, J. Catal., 1999, 187,123.
    [19] E. Galan. Clay. Miner., 1996,31,: 443.
    [20] R.L. Frost, Z. Ding. Thermochim. Acta., 2003, 397: 119.
    [21] H. Chen, A. Wang. J. Colloid Interface Sci, 2007, 307: 309.
    [22] J. Huang, Y. Liu, Y. Liu, X. Wang. J. Am. Oil Chem. Soc, 2007, 84: 687.
    [23] D. Zhao, J. Zhao, N. Liu. Mater. Charact, 2007,58: 249.
    [24] D.M.A. Melo, J.A.C. Ruiz, M.A.F. Melo, et al. J. Alloy Compd, 2002,344: 352.
    [25] S. Miao, Z. Liu, Z. Zhang, et al. J. Phys. Chem. C, 2007, 111:2185.
    [26] D. Zhao, J. Zhou, N. Liu. Mater. Sci. Eng. A, 2006,431: 256.
    [27] D.M.A. Melo, J.A.C. Ruiz, M.A.F. Melo, et al. Microporous Mesoporous Mater, 2000, 38: 345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700