用户名: 密码: 验证码:
多孔复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作主要以多孔材料为主体,利用多种合成方法制备具有敏感特性或催化性能的复合材料。
     首先,我们采用真空气相沉积的方法将单质硫组装到含有一价锌离子的微孔硅铝磷酸盐分子筛SAPO-CHA中。在一价锌的强还原作用和分子筛的孔道限制作用下,最终得到了一种含有Zn~(2+),·S_3~-的微孔复合体系。被限制在分子筛笼中的·S_3~-自由基对水分子有独特的响应,所以这种复合材料可以作为一种有效的微量水检测计。无论是在气相还是在有机溶剂中,当环境中有微量水存在时,这种含有·S_3~-自由基的复合材料的颜色会发生明显的变化,随着水含量的增加,它的颜色从深蓝色逐渐变为淡黄色,并且这种复合材料可以循环使用。这种水敏感的复合材料具有灵敏度高,检测范围宽,选择性好以及循环次数多的优点,并且在无专业设备的辅助下,仅依靠肉眼就可以判断待测体系的水含量,是一种理想的微量水敏感材料。
     然后,我们将O_2和H_2O两种无机小分子物质作为探针分子,通过气相扩散的方法将它们引入到含有一价锌离子的微孔复合分子筛中,研究其与体系中Zn~+的相互作用。结果显示Zn~+具有很强的还原性,可以在常温常压下将O_2和H_2O还原,分别生成O_2~-离子和H_2。进一步的结果显示,CO可以在Zn~+和O_2、H_2O的共同作用下,于低温且无其它催化剂的情况下转化为CO_2。
     其次,我们采用结构反向复制的方法,以传统的介孔分子筛为模板制备了介孔ZnO以及Au掺杂的介孔In_2O_3,并分别研究了基于这两种材料的气敏元件对甲醇和三乙胺的敏感性能。
     最后,我们以阴离子表面活性剂为模板,通过一步法合成了一种金属离子功能化的介孔二氧化硅催化剂Fe-SiO_2。该材料具有规则的介孔孔道以及螺旋的柱状结构,并且在傅式烷基化反应中显示了很好的活性。
With the advance of science and technology, the limited performance provided by the single-component system can not meet the needs of practical applications. Composite materials which are investigated extensively in the past two decades, always demonstrate superior performances and novel features showing well prospects for development. Among all the inorganic hosts, the porous materials represented by zeolite molecular sieves are particularly ideal host materials due to their versatile structures and stable performance. The zeolite based composite materials have shown great application potential in a variety of areas such as catalysis, drug delivery and energy storage. Therefore, the studies on the assembly of the inorganic porous materials and the functional development of the composite materials have great significance to the scientific research and practical application.
     In this thesis,we focus on the preparation of composite materials on the basis of porous host materials through various synthetic approaches. All the prepared composite materials exhibit either enhanced sensing property or superior catalysis performance. And this thesis is divided into five parts.
     In the introduction of Chapter One, we briefly review the current development status and prospect of the porous materials-based host-guest composite materials. In particular, the assembly of metal ions or metal ion clusters with special valence confined in the microporous molecular sieves, the application of porous materials in sensing realm, and the state of the art of porous composite catalyst are introduced in detail. Also the significance and achievement of this thesis is summarized.
     In Chapter Two, elemental sulfur is introduced into microporous silicoaluminophosphate molecular sieves SAPO-CHA which consist of univalent zinc in its microporous through chemical vapor deposition route. As is known, the unstable univalent zinc displays strongly reductive, due to the tendency of losing its single electron in the 4s orbital to become the stable Zn~(2+). After introduced into the Zn~+-containing microporous SAPO-CHA, the elemental sulfur is reduced, while Zn~+ is oxidized to Zn~(2+). In this process, the single electron transfers from the univalent zinc to elemental sulfur, resulting in the microporous SAPO-CHA with occluded zinc and trisulfur anionic radicals (·S_3~-) composite system. The signals in the ESR and Raman spectra confirm the presence of the chromogenic·S_3~-, which show an intense blue color, in accordance with the UV/vis spectrum. This·S_3~--containing composite material displays unusual sensing performance to trace amounts of water either in air or in an organic solvent. When the composite material is exposed to water, its color changes obviously from ultramarine blue to primrose yellow according to the water contents. Moreover, this color variation can be observed on the basis of visualization without the need of specialized equipments. Under appropriate thermal and vacuum conditions, the used composite materials are able to be recycled by the extraction of adsorbed water molecules. The high sensitivity, broad detection range, excellent selectivity and superior recyclability render the composite material an ideal sensing material for detecting trace amounts of water.
     In Chapter Three, we use several kinds of small molecules, such as O_2, H_2O and CO, as probe molecules introduced into the Zn~+-containing microporous SAPO-CHA through chemical vapor diffusion to further study the special property of the univalent zinc. The mechanism of the reaction between the univalent zinc and small molecules and the relevant functions are investigated in detail. The Zn~+-containing microporous SAPO-CHA is exposed to the oxygen atmosphere. The ESR spectrum indicates that the single electron in the 4s orbital of univalent zinc tends to transfer to the anti-bonding orbital of oxygen molecules, resulting in a relatively stable O_2- ion which is the necessary intermediate in many catalytic reactions. In addition, this electron transfer process is reversible, that is, the single electron is able to move back to the zinc atom under appropriate thermal and vacuum conditions for the release of the oxygen molecules from the molecular sieves. When exposure to water, the Zn~+-containing microporous SAPO-CHA reacts with water immediately under ambient conditions with the release of H_2. In the comparative experiments, whether the pristine or the Zn~(2+) ion-exchanged SAPO-CHA has no reactivity with water. Therefore, the univalent zinc is considered to be responsible for the moderate reactivity of the composite materials. In a coexistent atmosphere of both water vapor and oxygen, the Zn~+-containing microporous SAPO-CHA shows interesting catalytic performance for the oxidation of carbon monoxide. At a relatively low temperature, carbon monoxide is able to be converted to carbon dioxide by this composited material.
     In Chapter Four, a series of mesoporous semiconductor metal oxide are prepared using the mesoporous molecular sieves as the template through an inverse duplication approach, and their sensing performance are investigated detailedly. Using the mesoporous silica SBA-15, we prepared the pristine and Au loaded In_2O_3 with different loadings. The X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy have been performed, and the results indicate that the prepared materials consist of periodically ordered, uniformly mesoporous structures with crystalline pore walls, and the Au nanocrystals successfully dispersed in the mesopores. The gas-sensing properties of the mesoporous Au-In_2O_3 to triethylamine are investigated for the first time. Comparing with the pristine mesoporous In_2O_3, the Au loaded composite materials hold enhanced sensing properties. The sensor based on the 0.5 wt.% Au-loaded In_2O_3 shows a sensitivity of 31 to 20 ppm triethylamine, four times higher than that of the pristine In_2O_3, at 140 oC. Furthermore, the mesoporous ZnO is prepared through the inverse duplication of the template mesoporous carbon CMK-3 by the incipient wetness technique and the gas-sensing performance is investigated. Unlike the reported ZnO sensor previously, the mesoporous ZnO we prepared shows the highest sensitivity to methanol but not ethanol. At the optimized temperature of 120 oC, the sensitivity of the sensor fabricated from the mesoporous ZnO to methanol is 3.5 times higher than that to ethanol. Therefore, the sensor presents successful discrimination between methanol and ethanol.
     Due to their low cost of manufacture, anionic surfactant shows great application potential in the preparation of novel mesoporous catalysts through a templating route. In chapter five, a new kind of metal ions functionalized and anionic-surfactant-templated mesoporous silica is prepared through a one-step approach. The sodium dodecyl sulfate and ferric nitrate are used as the template and iron source, respectively. Through the one-step route, the Fe3+ ions were introduced into the mesoporous framework and highly dispersed in the mesopores. The prepared composite material has a twisted hexagonal rod-like morphology. And the catalytic performance is assessed through Friedel-Crafts benzylation of benzene by benzyl chloride. Under an optimized reaction condition, the catalyst with 20 wt.% Fe_2O_3 loading showed a 100% yield and selectivity of diphenylmethane within 90 s, which is superior to that of the analogous Fe-mesoporous catalyst.
引文
[1] Hull D., An Introduction to Composite Materials [M], Cambridge University Press, 1981.
    [2]徐如人,庞文琴等,分子筛与多孔化学材料化学[M],科学出版社,2004.
    [3] Breck D.W., Zeolite Molecular Sieves [M], John Wiley & Sons. Inc.,1974.
    [4] Barrer R.M., Synthesis and Reactions of Mordenite [J], J.Chem.Soc. 1948, 10:2158-2163.
    [5] Wilson S.T., Brent M.L., Messina C.A., Cannan T.R., Flanigen E.M., Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids [J], J. Am. Chem. Soc., 1982, 104:1146-1147.
    [6] McCusker L.B., Baerlocher C., Zeolite Structure, in Introduction to Zeolite Science and Practice, Srudies in Surface and Catalysis [J], Srudies in Surface and Catalysis, 2001, 137:37-56.
    [7] Feuerstein M., Lobo R.F., Characterization of Li cation in zeolite LiX by solid-state NMR spectroscopy and neutron diffraction [J], Chem. Mater., 1998, 10:2197-2204.
    [8] Costenoble M.L., Mortier W.J., Location of cations in synthetic zeolites X and Y. Part 4. exchange limiting factors for Ca2+ in zeolite Y [J], J. Chem. Soc., Faraday Trans.Ι, 1976, 72:1877-1883.
    [9] Vitale G., Mellot C.F., Bull L.M., Cheetham A.K., Neutron diffraction and computational study of zeolite NaX: influence of cations on its complex with benzene [J], J. Phys. Chem. B, 1997, 101:4559-4564.
    [10] Kim Y., Han Y.W., Seff K., Crystal structure of fully dehydrated fully Ti+-exchanged zeolite X, Zeolites [J], Zeolites, 1997, 18:325-333.
    [11] Shibata W., Seff K., Seff K., Terahertz laser vibration-rotation-tunneling spectroscopy of the water tetramer [J], J. Phys. Chem. B, 1997, 101:9022-9026.
    [12] Porcher F., Souhassou M., Dusausoy Y., Lecomete C., The crystal structure of a low silica dehydrated NaX zeolite [J], Eur. J. Mineral, 1999, 11:333-343.
    [13] Olson D.H., The crystal structure of dehydrated NaX [J], Zeolites, 1995, 15:439-443.
    [14] Davis M.E., Lobo R.F., Zeolite and molecular sieve synthesis [J], Chem. Mater.,1992, 4:756-768.
    [15] Marcilly C., Present status and future trends in catalysis for refining and petrochemicals [J], J. Catal., 2003, 216:47-62.
    [16] Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S., Ordered mesoporous molecular sieves synthesiszed by a liquid-crytal template mechanism [J], Nature, 1992, 359:710-712.
    [17] Soler-illia G.J.D., Sanchez C., Lebeau B., Patarin J., Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures [J], Chem. Rev., 2002, 102:4093-4138.
    [18] Ulagappan N., Rao C.N.R., Mesoporous phases based on SnO2 and TiO2, [J], Chem. Commun., 1996, 7:1685-1686.
    [19] Yada M., Takenaka H., Machida M., Kijima T., Mesostructured gallium oxides templated by dodecyl sulfate assemblies [J], J. Chem. Soc. Dalton Trans., 1998:1547-1550.
    [20] Che S.A., Liu Z., Ohsuna T., Sakamoto K., Terasaki O., Tatsumi T., Synthesis and characterization of chiral mesoporous silica [J], Nature, 2004, 429:281-284.
    [21] Che S.A., Garcia-Bennett A.E., Yokoi T., Sakamoto K., Kunieda H., Terasaki O., Tatsumi T., A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure [J], Nat. Mater., 2003, 2:801-805.
    [22] Ryoo R., Joo S.H., Jun S., Synthesisi of highly ordered carbon molecular sieves via template-mediated structural transformation [J], J. Phys. Chem. B, 1999, 103:7743-7746.
    [23] Ryoo R., Joo S.H., Kruk M., Jaroniec M., Ordered Mesoporous Carbons [J], Adv. Mater., 2001, 13:677-681
    [24] Jun S., Joo S.H., Ryoo R., Kruk M., Jaroniec M., Liu Z., Oshuna T., Terasaki O., Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure [J], J. Am. Chem. Soc., 2000, 122:10712-10713.
    [25] Joo S.H., Choi S.J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J], Nature, 2001, 412:169-172.
    [26] Velev O.D., Jede T.A., Lobo R.F., Lenhoff A.M., Porous silica via colloidal crystallization [J], Nature, 1997, 389:447-448.
    [27] Caruso F., Caruso R.A., Mohwald H., Nanoengineering of inorganic and hybridhollow spheres by colloidal templating [J], Science, 1998, 282:1111-1114.
    [28] Imhof A., Pine D.J., Generalized synthesis of large-pore mesoporous metal oxides with semicrystalline frame works [J], Nature, 1998, 396:152-155.
    [29] Davis S.A., Burkett S.L., Mann S., Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases [J], Nature, 1997, 385:420-423.
    [30] Ogasawara W., Shenton W., Davis S.A., Mann S., Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix, Chemistry of Materials [J], Chem. Mater., 2000, 12:2835-2837.
    [31] Lukens W.W., Yang P.D., Stucky G.D., Synthesis of mesocellular silica foams with tunable window and cell dimensions [J], Chem. Mater., 2001, 13:28-34.
    [32] Johnson S.A., Ollivier P.J., Mallouk T.E., Ordered mesoporous polymers of tunable pore size from colloidal silica templateds [J], Science, 1999, 283:963-965.
    [33] Everett D.H., in IUPAC Mannul of Symbols and Terminology [C], Pure Appl. Chem., 1972, 31:578.
    [34] Taguchi A., Schuth F., Ordered mesoporous materials in catalysis [J], Micro. Meso. Mater., 2005, 77:1-45.
    [35] Mokaya R., Al Content Dependent Hydrothermal Stability of Directly Synthesized Aluminosilicate MCM-41 [J], J. Phys. Chem. B., 2000, 104:8279-8286.
    [36] Zhao X.S., Lu G.Q., J. Phys. Chem. B., Modification of MCM241 by surface silylation with trimethylchlorosilane and adsorption study [J], 1998, 102:1556-1561.
    [37] Mercier L., Pinnavaia T.J., Adv. Mater., Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation [J], 1997, 9:500-503.
    [38] Dai S., Burleigh M.C., Shin Y., Morrow C.C., Barnes C.E., Xue Z., Imprint Coating: A Novel Synthesis of Selective Functionalized Ordered Mesoporous Sorbents [J], Angew. Chem. Int. Ed., 1999, 38:1235-1239.
    [39]魏坤,稀土纳米介孔固体的自组装形成机理研究及材料表征[D],湖南大学, 2003.
    [40] Victor F., Stone J., Davis R.J., Chem. Mater., Synthesis, Characterization, and Photocatalytic Activity of Titania and Niobia Mesoporous Molecular Sieves [J], 1998, 10:1468-1474.
    [41] Sun Y., Zhu L., Lu H., et al, Proceedings of the 13th International ZeoliteConference [M], Montpellier, Elsevier, 2001.
    [42]楚文玲,杨向光,硅钨杂多酸在中孔全硅分子筛HMS上的固载及其催化性能[J],催化学报, 1997, 3, 225-229.
    [43] Junges U., Schuth F., Schmid G., Uchida Y., Schlogl R.,Ber. Bunsen-Ges., Monte Carlo Simulation Study of Short Poly(ethylene oxide) Chains at Different Concentrations [J], J. Phys. Chem. B, 1997, 101:1631.
    [44] Zhou W., Thomas J.M., Shephard D.S., Johnson B.F.G., Ozkaya D., Maschweyer T., Bell R.G., Ge Q., Ordering of ruthenium cluster carbonyls in mesoporous silica [J], Science, 1998, 280:705-708.
    [45] Srdanov V.I., Alxneit I., Stucky G.D., Reaves C.M., DenBaars S.P., Optical Properties of GaAs Confined in the Pores of MCM-41 [J], J. Phys. Chem. B, 1998, 102:3341-3344.
    [46] Hirai T., Okubo H., Komasawa I., Size-Selective Incorporation of CdS Nanoparticles into Mesoporous Silica [J], J. Phys. Chem. B, 1999, 103, 4228-4230.
    [47]刘丰祎,符连社,林君,张洪杰,王淑彬,徐庆红,丁红,邹永存,新型无机-有机杂化中孔发光材料(phen)-2Eu/MCM-41的合成与表征[J],应用化学, 2001, 5:380-383.
    [48]陈道远,等,常德师范学院学报(自然科学版), 2000, 3:42.
    [49] Zhao X.S., Lu G.Q., Modification of MCM241 by surface silylation with trimethylchlorosilane and adsorption study [J], J. Phys. Chem. B, 1998, 102:1556-1561.
    [50] Breck D.W., Zeolite Molecular Sieves [M], Wiley, New York, 1974.
    [51] Rabo J.A., Pichert P.E., In: Actes Deuxieme Congres International de Catalyse Paris, Technip [C], Paris, 1960, 2055.
    [52] Bowes C.L., Malek A., Ozin G.A., Chemical vapor deposition topotaxy in porous hosts [J], Chem Vapor Deposit, 1996, 2:97.
    [53] Steele M.R., Macdonald P.M., Ozin G.A., Tpotactic metal organic chemical vapor deposition in zeolite Y: structure and properties of CH3MY from MOCVD reactions of (CH3)MHY, where M = Zn, Cd [J], J. Am. Chem. Soc., 1993, 115:7285-7292.
    [54] Ozin G.A., Steele M.R., Holmes A., Intrazeolite topotactic MOCVD. 3-Dimensional structure-controlled synthesis ofⅡ-Ⅵsemiconductor nanoclusters [J], J., Chem. Mater., 1994, 6:999-1010.
    [55] MacDougall J.E., Echert H., Stucky G.D., et al, Synthesis and characterization of groupⅢ-Ⅴsemiconductor clusters: gallium phosphide GaP in zeolite Y [J] ,J. Am. Chem. Soc., 1989, 111:8006-8007.
    [56] Herron N., Wang Y., Eddy M.M., Stucky G.D., Cox D.E., Moller K., Bein T., Structure and optical properties of CdS superclusters in zeolite hosts [J], J. Am. Chem. Soc., 1989, 111:530-540.
    [57] Hirono T., Kawana A., Yamada T., Photoinduced effects in a mordenite-AgI inclusion compound [J], J Appl. Phys., 1987, 62:1984.
    [58] Stein A., Ozin G.A., Stucky G.D., Silver Sodalites– A Chemistry Approach Towards Reversible Optical Data Storage [J], J. Photogr. Sci. Technol. Jpn., 1990, 53:322.
    [59] Ozin G.A., Godber J., Stein A., U. S. Patent 4 [P], 1990, 942:119.
    [60] Tang Z.K., Loy M.M., Chen J.S., Xu R.R., Adsorption spectra of Se and HgI2 chains in channels of AlPO4-5 single crystal [J], Appl. Phys. Lett., 1997, 70:34.
    [61] Agger J.R., Anderson M.W., Pemble M.E., et al, Growth of quantum-confined indium phosphide inside MCM-41 [J], J. Phys. Chem. B, 1998, 102:3345-3353.
    [62] Parise J.B., MacDougall J.E., Herron N., Farlee R., Sleight A.W., Wang Y., Bein T., Moller K., Moroney L.M., Characterization of Se-loaded molecular sieves A, X, Y, AlPO4-5 single crystal [J], Inorg. Chem., 1988, 27:221-228.
    [63] Tamura K., Hosokawa S., Endo H., et al, The isolated Se chains in the channels of mordenite crystal [J], J. Phys. Soc. Jpn., 1986, 55:528-533.
    [64] Tang Z.K., Loy M.M.T., Goto T., Chen J. Xu R., Polarized Raman spectra of Se chains isolated in channels of AlPO4-5 single crystal [J], Solid State Commun., 1997, 101:333-336.
    [65] Pereira C., Kokotailo G.T., Gorte R.J., Acetylene polymerization in a H-ZSM-5 zeolite [J], J. Phys. Chem., 1991, 95:705-709.
    [66] Cox S.D., Stucky G.D., Polymerization of methylacetylene in hydrogen zeolites [J], J. Phys. Chem, 1991, 95:710-720.
    [67] Bein T., Enzel P., Polypyrrole chains in zeolite channels [J], Angew. Chem., 1989, 101:1737-1738.
    [68] Enzel P., Bein T., Intrazeolite synthesis of polythiophene chains [J], J. Chem. Soc. Chem. Commun., 1989, 18:1326-1328.
    [69] De Vos D.E., Jacobs P.A., Zeolite-based supramolecular assemblies, In: vanBekkum H., Flanigen E.M., Jacobs P.A., et al, Ed. Introduction to Zeolite Science and Practic [M], Amsterdam, Elsevier, 2001, 957.
    [70] Iijima S., Helical microtubules of graphitic carbon [J], Nature, 1991, 354:56-58.
    [71] Tang Z.K., Sun H.D., Wang J.N., Chen J.S., Li G.D., Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal [J], Appl. Phys. Lett., 1998, 73:2287.
    [72] Sun H.D., Tang Z.K., Chen J., Li G., Synthesis and Raman characterization of mono-sized single-wall carbon nanotubes in one-dimensional channels of AlPO4-5 crystals [J], Appl. Phys. A, 1999, 69:381-384.
    [73] Wang N., Tang Z.K., Li G.D., Chen J.S., Single-walled 4 ? carbon nanotube arrays [J], Nature, 2000, 408:50-51.
    [74] Li Z.M., Tang Z.K., Liu H.J., Wang N., Chan C.T., Saito R., Okada S., Li G.D., Chen J.S., Polarized absorption spectra of single-walled 4 ? carbon nanotubes aligned in channels of an AlPO4-5 single crystal [J], Phys. Rev. Lett., 2001, 87:127401-1.
    [75] Tang Y., Wang Y.J., Wang X.D., Yang W.L., Gao Z., Generating the narrowest single-walled carbon nanotubes in the channels of AlPO4-5 single crystals [J], Stud. Surf. Sci. Catal., 2001, 135:296.
    [76] Tang Z.K., Zhang L.Y., Wang N., Zhang X.X., Wen G.H., Li G.D., Wang J.N., Chan C.T., Sheng P., Superconductivity in 4 angstrom single-walled carbon nanotubes [J], Science, 2001, 292:2462-2465.
    [77] Li G.D., Tang Z.K., Wang N., Chen J.S., Structural study of the 0.4 nm single-walled carbon nanotubes aligned in channels of AlPO4-5 crystal [J], Carbon, 2002, 40:917-921.
    [78] Chen J.S., Li Q.H., Ding H., Pang W., Xu R., Infrared study on the dehydroxylation of C60-loaded MCM-41 [J], Langmuir, 1997, 13:2050-2054.
    [79] Chen M.S., Goodman D.W., The Structure of Catalytically Active Au on Titania [J], Science, 2004, 306:252-255.
    [80] Stiehl J.D., Kim T.S., McClur S.M., Mullins C.B., Reaction of CO with molecularly chemisorbed oxygen on TiO2-supported gold nanoclusters [J], J. Am. Chem. Soc., 2004, 126:13574-13575.
    [81] Russo N., Fino D., Saracco G., Specchia V., Supported gold catalysts for CO oxidation [J], Catal. Today, 2006, 117:214-219.
    [82] Diezi S., Ferri D., Vargas A., Mallat T., Baiker A., The Origin of Chemo- andEnantioselectivity in the Hydrogenation of Diketones on Platinum [J], J. Am. Chem. Soc., 2006, 128:4048-4057.
    [83] Siani A., Captain B., Alexeev O.S., Stafyla E., Hungria A.B., Midgley P.A., Thomas J.M., Adams R.D., Amiridis M.D., Improved CO Oxidation Activity in the Presence and Absence of Hydrogen over Cluster-Derived PtFe/SiO2 Catalysts [J], Langmuir, 2006, 22:5160-5167.
    [84] Kampers F.W.H., Engelen C.W.R., van Hoof J.H.C., Koningsberger D.C., Influence of preparation method on the metal cluster size of platinum/ZSM-5 catalysts as studied with EXAFS [J], J. Phys. Chem., 1990, 94:8574-8678.
    [85] Ahn D.H., Lee J.S., Nomura M., Sachtler W.M.H., Moretti G., Woo S.I., Ryoo R., Characterization of zeolite-supported Pt-Cu bimetallic catalyst by xenon-129 NMR and EXAFS [J], J. Catal. 1992, 133:191-201.
    [86] Ryoo R., Cho S.J., Pak C., Kim J.G., Ihm S.K., Lee J.Y., Application of the xenon-adsorption method for the study of metal cluster formation and growth on Y zeolite [J], J. Am. Chem. Soc., 1992, 114:76-82.
    [87] Cho S.J., Jung S.M., Shul Y.G., Ryoo R., Formation and growth of a ruthenium cluster in a Y zeolite supercage probed by xenon-129 NMR spectroscopy and xenon adsorption measurements [J], J. Phys. Chem., 1992, 96:9922-9927.
    [88] Ryoo R., Cho S.J., Pak C., Lee J.Y., Clustering of Platinum Atoms into Nanoscale Particle and Network on NaY Zeolite [J], Catal. Lett., 1993, 20:107-115.
    [89] Moiler K., Koningsberger D.C., Bein T., Stabilization of metal ensembles at room temperature: palladium clusters in zeolites [J], J. Phys. Chem., 1989, 93:6116-6120.
    [90] Rades T., Pak C., Polisset-Thfoin M., Ryoo R., Fraissard J., Characterization of Bimetallic NaY-Supported Pt-Pd Catalyst by EXAFS, TEM and TPR [J], Catal. Lett., 1994, 29:91-103.
    [91] Joo S.H., Seong J.C., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J], Nature, 412:169-172.
    [92] Li W., Liang C., Zhou W., Qiu J., Zhou Z., Sun G., Xin Q., Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells [J], J. Phys. Chem. B, 2003, 107:6292-6299.
    [93] Martens L.R.M., Grobet P.J., Jacobs P.A., Preparation and catalytic properties ofionic sodium clusters in zeolites [J], Nature, 1985, 315:568-570.
    [94] Bogomolov V.N., Lutsenko E.L., Petranovskii V.P., Kholodkevich S.V., Absorption spectra of three-dimensionally-ordered system of 12A particles [J], JETP Lett., 1976, 23:482-484.
    [95] Bogomolov V.N., Kholodkevich S.V., Romanov S.G., Agroskin L.S., The absorption spectra of single selenium and tellurium chains in dielectric matrix channels [J], Solid State Commun., 1983, 47:181-182.
    [96] Poborchii V.V., Lidner G.G., Sato M., Selenium dimers and linear chains in one-dimensional cancrinite nanochannels: Structure, dynamics, and optical properties [J], J. Chem. Phys., 2002, 116:2609-2617.
    [97] Simoncic P., Armbruster T., Se incorporated into zeolite mordenite-Na: a single-crystal X-ray study [J], Microporous Mesoporous Mater., 2004, 71:185-198.
    [98] Ben Taarit Y., Naccache C., Che M., Tench A., ESR studies of 17O?2 and SO?2 generated from Na3+4 centres in NaY zeolites [J], Chem. Phys. Lett., 1973, 24:41-44.
    [99] Rabo J.A., Angell C.L., Kasai P. H. and Schomaker V., Studies of cations in zeolites: adsorption of carbon monoxide; formation of Ni ions and Na3+4 centres [J], Discussions of the Faraday Society, 1966, 41:328-349.
    [100] Goldbach A., Saboungi M.L., Selenium/Zeolite Y Nanocomposites [J], Acc. Chem. Res., 2005, 38:705-712.
    [101] James D., Scott S.M., Ali Z., O’Hare W.T., Chemical Sensors for Electronic Nose Systems[J], Microchim. Acta, 2005, 149:1-17.
    [102] Citterio D., Minamihashi K., Kuniyoshi Y., Hisamoto H., Sasaki S., Suzuki K., Optical Determination of Low-Level Water Concentrations in Organic Solvents Using Fluorescent Acridinyl Dyes and Dye-Immobilized Polymer Membranes[J], Anal. Chem., 2001, 73:5339-5345.
    [103] Gupta T., van der Boom M.E., Optical Sensing of Parts per Million Levels of Water in Organic Solvents Using Redox-Active Osmium Chromophore-Based Monolayers[J], J. Am. Chem. Soc., 2006, 128:8400-8401.
    [104] Shirakawa H., Louis E.J., MacDiarrmid A.G., Chiang C.K., Heeger A.J., J. Chem. Soc. Chem. Commun., 1977, 578-580.
    [105] Rahman M.A., Won M.S., Kwon N.H., Yoon J.H., Park D.S., Shim Y.B., Water Analysis by Solid Phase Microextraction Based on Physical Chemical Properties of the Coating[J], Anal. Chem., 2008, 80:5307-5311.
    [106] Seiyama T., Kato A., Fujiishi K., Nagatani M., A New Detector for Gaseous Components Using Semiconductive Thin Films.[J], Anal. Chem., 1962, 34:1502-1503.
    [107] Wan Q., Li Q.H., Chen Y.J., Wang T.H., He X.L., Li J.P., Lin C.L., Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors[J], Appl Phys Lett, 2004, 84:3654-3656.
    [108] Xu H.Y., Liu X.L., Cui D.L., Li M., Jiang M.H., A novel method for improving the performance of ZnO gas sensors [J], Sens. Actuators B, 2006, 114:301-307.
    [109] Kohl D., J. Phys. D., Function and applications of gas sensors [J], Appl. Phys., 2001, 34:125-149.
    [110] Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B., Schlenker J.L., A new family of mesoporous molecular sieves prepared with liquid crystal templates[J], J. Am. Chem. Soc., 1992, 114:10834-10843.
    [111] Severin K.G., Abdel-Fattah T.M., Pinnavaia T.J., Supramolecular assembly of mesostructured tin oxide [J], Chem. Commun., 1998, 1471-1472.
    [112] Wagner T., Kohl C.D., Froba M., Tiemann M., Gas sensing properties of ordered mesoporous SnO2 [J], 2006, 6:318-323.
    [113] Penza M., Tagliente M.A., Mirenghi L., Gerardi C., Martucci C., Cassano G., Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor, Sens. Actuators B [J], Sens. Actuators B, 1998, 50:9-18.
    [114] Chen L., Tsang S.C., An doped WO3-based powder sensor for the detection of NO gas in air [J], Sens. Actuators B, 2003, 89:68-75.
    [115] Yang B., Li H., Blackford M., Luca V., Novel low density mesoporous WO3 films prepared by electrodeposition [J], Curr. Appl. Phys., 2006, 6:436-439.
    [116] Yamazoe N., Shimizu Y., Humidity sensors: Principles and applications [J], 1986, 10:3-4.
    [117] Seiyama T., Yamazoe N., Arai H., Ceramic humidity sensors, 1983, 4:85-96.
    [118] Chen Z., Lu C., Humidity sensors: A review of materials and mechanisms [J].Sens. Lett., 2005, 3:274-295.
    [119] Lee C.Y., Lee G.B., Humidity sensors: A review [J], Sens. Lett., 2005, 3:1-15.
    [120] Chakraborty S., Nemoto K., Hara K., Lai P.T., Moisture sensitive field effect transistors using gate structure [J], Smart. Mater. Structure, 1999, 8:274-277.
    [121] Thorp J.M.,The dielectric behaviour of vapours adsorbed on porous solids [J], Trans. Faraday Soc., 1959, 55:442-454.
    [122] Nahar R.K., Khanna V.K., Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor [J], Sens. Actuators B, 1998, 46:35-41.
    [123] Dickey E.C., Varghese O.K., Ong K.G., Gong D., Paulose M., Grimes C.A., Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films [J], Sensors, 2002, 2:91-110.
    [124] Wu R., Sun Y., Chen H., Chem. Sens. (Suppl. B), 2004, 20:372.
    [125] Traversa E., Gnappi G., Montenero A., Gusmano G., Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors [J], Sens. Actuators B, 1996, 31:59-70.
    [126] Grimes C.A., Kouzoudis D., Dickey E., Qian D., Anderson M.A., Shahidain R., Lindsey M., Green L., Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity [J], J. Appl. Phys., 2000, 87:5341-5343.
    [127] Lin J., Heurich M., Obermeier E., Manufacture and examination of various spin-on glass films with respect to their humidity-sensitive properties [J], Sens. Actuators B, 1993, 13:104-106.
    [128] D’Apuzzo M., Aronne A., Esposito S., Pernice P., SOL-GEL SYNTHESIS OF HUMIDITY-SENSITIVE P2O5-SiO2 AMORPHOUS FILMS [J], J. Sol-Gel Sci. Technol., 2000, 17:247-254.
    [129] Robbie K., Brett M.J., J. Vac. Sculptured thin films and glancing angle deposition: Growth mechanics and applications [J], Sci. Technol. A, 1997, 15:1460-1465.
    [130] Boyle J.F., Jones K.A., The effects of water vapor and surface temperature on the conductivity of. Sn02 gas sensor [J], J. Electronic Mater., 1977, 6: 717-733.
    [131] Kuse T., Takahashi S., Transitional behavior of tin oxide semiconductor under a step-like humidity change [J], Sens. Actuators B, 2000, 67:36-42.
    [132] Vaivars G., Kleperis J., Zubkans J., Vitins G., Liberts G., Lusis A., Influence of thin film coatings on the gas sensitivity properties of narrow laser cut gap in In2O3 on glass substrate [J], Sens. Actuators B, 1996, 33:173-177.
    [133] Tahar R.B.H., Ban T., Ohya Y., Takahashi Y., Humidity-sensing characteristics of divalent-metal doped indium oxide thin films [J], J. Am. Ceram. Soc., 1998,81:321-327.
    [134] Arshak K., Twomey K., Thin films of In2O3/SiO for Humidity Sensing Applications [J], Sensors, 2002, 2:205-218.
    [135] Wang W., Virkar A.V., A conductimetric humidity sensor based on proton conducting perovksite oxides [J], Sens. Actuators B, 2004, 98:282-290.
    [136] Viviani M., Buscaglia M.T., Buscaglia V., Leoni M., Nanni P., Heterojunction gas sensors for environmental NO2 and CO2 monitoring [J], J. Euro. Ceram. Soc., 2001, 21:1981-1984.
    [137] Sakai Y., Sadaoka Y., Matsuguchi M., Humidity sensors based on polymer thin films [J], Sens. Actuators B, 1996, 35:85-90.
    [138] Bakker E., Diamond D., Lewenstam A., Pretsch E., Ion sensors: current limits and new trends [J], Anal. Chim. Acta., 1999, 393:1-3.
    [139] Jose D.A., Kumar D.K., Ganguly B., Das A., Efficient and simple colorimetric fluoride ion sensor based on receptors having urea and thiourea binding sites [J], Org. Lett., 2004, 6:3445-3448.
    [140] Meyerhoff M.E., Fraticelli Y.M., Ion-selective electrodes[J]. Anal. Chem., 1982, 54:27-44.
    [141] Arnold M.A., Solsky R.L., Ion-selectivity electrodes [J], Anal. Chem., 1986, 58:84-101.
    [142] Solsky R. L., Ion-selectivity electrodes [J], Anal. Chem., 1988, 60:106-113.
    [143] Koryta J., Ion-selectivity electrodes [J], Ann. Rev. Mater. Sci., 1986, 16:13-27.
    [144] Zhang S., Wright G., Yang Y., Materials and techniques for electrochemical biosensor design and construction [J], Biosens. Bioelectron., 2000, 15:273-282.
    [145] Cooper M.A., Optical biosensors in drug discovery [J], Nature Revies Drug Discovery, 2002, 1:515-528.
    [146] Park C.O., Akbar S.A., Chemical and Bio-Ceramics [J], J. Mater. Sci., 2003, 38:4611-4637.
    [147] Pink H., Treitinger L., Vite L., Lipid variation of the green alga Fritschiella tuberosa during growth in axenic batch cultur [J], Jpn. J. Appl. Phys., 1980, 19:513-517.
    [148] Gurlo A., Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen [J], Chem. Phys. Chem., 2006, 7:2041-2052.
    [149] Waitz T., Wagner T., Sauerwald T., Kohl C.D., Tiemann M., OrderedMesoporous In2O3: Synthesis by Structure Replication and Application as a Methane Gas Sensor [J], Adv. Funct. Mater., 2009, 19:653-661.
    [150] Baik N.S., Sakai G., Miura N., Yanazoe N., Preparation of stabilized nanosized tin oxide particles by hydrothermal treatment [J], J. Am. Ceram. Soc., 2000, 83: 2983-2987.
    [151] Baik N.S., Sakai. G., Miura N., Yamazoe N., Hydrothermally treated sol solution of tin oxide for thin-film gas sensor [J], Sens. Actuators B, 2000, 63: 74-79.
    [152] Baik N.S., Sakai G., Shimanoe K., Miura N., Yamazoe N., Hydrothermal treatment of tin oxide sol solution for preparation of thin-film sensor with enhanced thermal stability and gas sensitivity [J], Sens. Actuators B, 2000, 65: 97-100.
    [153] Tiemann M., Porous metal oxides as gas sensors [J], Chem.A Euro. J. 2007, 13: 8376-8388.s
    [154] Yang P., Zhao D., Margolese D.I., Chmelka B.F., Stucky G.D., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J], Nature, 1998, 396: 152-155.
    [155] Yang P., Zhao D., Margolese D.I., Chmelka B.F., Stucky G.D., Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J], Chem. Mater., 1999, 11: 2813-2826.
    [156] Wang Y., Ma C., Sun X., Li H., Synthesis of mesoporous structured material based on tin oxide [J], Microporous Mesoporous Mater., 2001, 49: 171-178.
    [157] Wang Y.D., Ma C.L., Wu X.H., Sun X.D., Li H.D., Electrical and gas-sensing properties of mesostructured tin oxide-based H2 sensor [J], Sens. Actuators B, 2002, 85: 270-276.
    [158] Yang H., Zhao D., Synthesis of replica mesostructures by the nanocasting strategy [J], J. Mater. Chem., 2005, 15: 1217-1231.
    [159] Lu A.H., Schuth F., Nanocasting: A versatile strategy for creating nanostructured porous materials [J], Adv. Mater., 2006, 18: 1793-1805.
    [160] Wan Y., Yang H., Zhao D.,“Host?Guest”chemistry in the synthesis of ordered nonsiliceous mesoporous materials [J], Acc. Chem. Res., 2006, 39: 423-432.
    [161] Tian B., Liu X., Yang H., Xie S., Yu C., Tu B., Zhao D., General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica [J], Adv. Mater., 2003, 15: 1370-1374.
    [162] Yang H., Shi Q., Tian B., Lu Q., Gao F., Xie S., Fan J., Yu C., Tu B., Zhao D.,One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks [J], J. Am. Chem. Soc., 2003, 125: 4724-4725.
    [163] Tian B., Liu X., Solovyov L.A., Liu Z., Yang H., Zhang Z., Xie S., Zhang F., Tu B., Yu C., Terasaki O., Zhao D., Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures [J], J. Am. Chem. Soc., 2004, 126: 865-875.
    [164] Zhu K., He H., Xie S., Zhang X., Zhou W., Jin S., Yue B., Crystalline WO3 nanowires synthesized by templating method [J], Chem. Phys. Lett., 2003, 377: 317-321.
    [165] Yue B., Tang H.L., Kong Z.P., Zhu K., Dichinson C., Zhou W.Z., He H.Y., Preparation and characterization of three-dimensional mesoporous crystals of tungsten oxide [J], Chem. Phys. Lett., 2005, 407: 83-86.
    [166] Roddinyol E., Arbiol J., Perio F., Cornet A., Morante J.R., Tian B., Zhao D., Nanostructured metal oxides synthesized by hard template method for gas sensing applications [J], Sens. Actuators B, 2005, 109: 57-63.
    [167] Jiao F., Harrison A., Jumas J.C., Chadwick A.V., Kochelmann W., Bruce P.G., Ordered mesoporous Fe2O3 with crystalline walls [J], J. Am. Chem. Soc., 2006, 128: 5468-5474.
    [168] Jiao K., Zhang B., Yue B., Ren Y., Liu S., Yan S., Dickinson C., Zhou W., He H., Growth of porous single-crystal Cr2O3 in a 3-D mesopore system [J], Chem. Commun., 2005, 5618-5619.
    [169] Dickinson C., Zhou W., Hodgkins R.P., Shi Y., Zhao D., He H., Formation pechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica [J], Chem. Mater., 2006, 18: 3088-3095.
    [170] Laha S.C., Ryoo R., Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates [J], Chem. Commun., 2003, 2138-2139.
    [171] Shen W., Dong X., Zhu Y., Chen H., Shi J., Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property [J], Microporous Mesoporous Mater., 2005, 85: 157-162.
    [172] Wang Y., Yang C.M., Schmidt W., Spliethoff b., Bill E., Schuth F., Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting fromvinyl-functionalized cubic Ia3d mesoporous silica [J], Adv. Mater., 2005, 17: 53-56.
    [173] Jiao F., Shaju K.M., Bruce P.G., Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction [J], Angew. Chem. Int. Ed., 2005, 44: 6550-6553.
    [174] Smatt J.H., Spliethoff B., Rosenholm J.B., Linden M., Hierachically porous nanocrystalline cobalt oxide monoliths through nanocasting [J], Chem. Commun., 2004, 2188-2189.
    [175] Smatt J.H., Weidenthaler C., Rosenholm J.B., Linden M., Hierarchically porous metal oxide monoliths prepared by the nanocasting route [J], Chem. Mater., 2006, 18: 1443-1450.
    [176] Wang Y.M., Wu Z.Y., Wang H.J., Zhu J.H., Fabrication of metal oxides occluded in ordered mesoporous hosts via a solid-state grinding route: The influence of host-guest interactions [J], Adv. Funct. Mater., 2006, 16: 2374-2386.
    [172] Wang Y., Yang C.M., Schmidt W., Spliethoff b., Bill E., Schuth F., Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica [J], Adv. Mater., 2005, 17: 53-56.
    [178] Rumplecker A., Kleitz F., Salabas E.L., Schuth F., Hard templating pathways for the synthesis of nanostructured porous Co3O4 [J], Chem. Mater., 2007, 19: 485-496.
    [179] Wagner T., Roggenbuck J., Kohl C.D., Froba M., Tiemann M., Gas-Sensing properties of ordered mesoporous Co3O4 synthesized by replication of SBA-15 silica [M], Stud. Surf. Sci. Catal., 2007, 165: 347-350.
    [180] Imperor-Clerc M., Bazin D., Appay M.D., Beaunier P., Davidson A., Crystallization ofβ-MnO2 nanowires in the pores of SBA-15 silicas: In situ investigation using synchrotron radiation [J], Chem. Mater., 2004, 16: 1813-1821.
    [181] Matsushima S., Teraoka Y., Miura N., Yamazoe N., Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors [J], Jpn. J. Appl. Phys. Part 1, 1988, 27: 1798-1802.
    [182] Korotcenkov G., Brinzari V., Boris Y., Ivanov M., Schwank J., Morante J., Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis [J], Thin Solid Films, 2003, 436: 119-126.
    [183] Xu C., Tamaki J., Miura N., Yamazoe N., Grain size effects on gas sensitivity of porous SnO2-based elements [J], Sens. Actuators B, 1991, 3: 147-155.
    [184] Arai H., Tominaga H., Hydroformylation and hydrogenation of olefins over rhodium zeolite catalyst [J], J. Catal., 1982, 75: 188-189.
    [185] Zheng A., Jentys A., Lercher J.A., Xylene isomerization with surface-modified HZSM-5 zeolite catalysts: An in situ IR study [J], J. Catal., 2006, 241: 304-311.
    [186] Corma A., Fornes V., Martin-Aranda R.M., Garcia H., Prima. J., Zeolites as base catalysts: Condensation of aldehydes with derivatives of malonic esters [J], Appl. Catal., 1990, 59: 237-248.
    [187] Chang C.D., Silvestri A.J., The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts [J], J. Catal., 1977, 47: 249-259.
    [188] Yashima T., Wang Z.B., Kamo A., Yoneda T., Komatsu T., Isomerization of n-hexane over Platinum loaded zeolite catalysts [J], Catal. Today, 1996, 29: 279-283.
    [189] Corma A., Navarro M.T., Perez-Pariente J., Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons [J], J. Chem. Soc. Chem. Commun., 1994, 147-148.
    [190] Corma A., Camblor M.A., Esteve P., Martinez A., Perez-Pariente J., Activity of Ti-Beta Catalyst for the Selective Oxidation of Alkenes and Alkanes [J], J. Catal., 1994, 145: 151.
    [191] Sayari A., Danumah C., Moudrakovski I.L., Boron-modified MCM-41 mesoporous molecular sieves [J], Chem. Mater., 1995, 7: 813-815.
    [192] Cheng C.F., He H.Y., Zhow W.Z., Klinowski J., Goncalves J.A.S., Gladden L.F., Synthesis and characterization of the gallosilicate mesoporous molecular sieve MCM-41 [J], J. Phys. Chem., 1996, 100: 390-396.
    [193] Abeld-Fattah T.T., Pinnavaia T.J., Tin-substituted mesoporous silica molecular sieve (Sn-HMS): synthesis and properties as a heterogeneous catalyst for lactide ring-opening polymerization [J], Chem. Commun., 1996, 665-666.
    [194] Koyano K.A., Tatsumi T., Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure [J], Chem. Commun., 1996, 145-146.
    [195] Tuel A., Gontier S., Terssier R., Zirconium containing mesoporous silicas: new catalysts for oxidation reactions in the liquid phase [J], Chem. Commun., 1996, 651-652.
    [196] Chenite A., Le Page Y., Sayari A., Direct TEM imaging of tubules in calcined MCM-41 type mesoporous materials [J], Chem. Mater., 1995, 7: 1015-1019.
    [197] Zhang W.Z., Wang J.L., Tanev P.T., Pinnavaia T.J., Catalytic hydroxylation of benzene over transition-metal substituted hexagonal mesoporous silicas [J], Chem. Commun., 1996, 979-980.
    [198] Zhang Z.R., Synthesis of highly active tungsten-containing MCM-41 mesoporous molecular sieve catalyst [J], Chem. Commun,1998, 241-242.
    [199] Tian Z.R., Tong W., Wang J.Y., Duan N.G., Krishnan V.V., Suib S.L., Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts [J], Science, 1997, 276: 926-930.
    [200] Gray M.J., Jasper J.D., Wilkinson A.P., Hanson J.C., Synthesis and synchrotron microcrystal structure of an aluminophosphate with chiral layers containingΛtris(ethylenediamine)cobalt (III) [J], Chem. Mater., 1997, 9: 976-980.
    [201] Hartmann M., Poppl A., Kevan L., Ethylene dimerization and butene isomerization in nickel-containing MCM-41 and AlMCM-41 mesoporous molecular sieves: An electron spin resonance and gas chromatography study [J], J. Phy. Chem., 1996, 100: 9906-9910.
    [202] Corma A., Martinez A., Martinez-Soria V., Monton J.B., Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst [J], J. Catal., 1995, 153: 25-31.
    [203] Hoffmann F., Cornelius M., Morell J., Froba M., Silica-based mesoporous organic-inorganic hybrid materials [J], Angew. Chem. Int. Ed., 2006, 45: 3216-3251.
    [204] Corma A., Iborra S., Rodriguez I., Sanchez F., Immobilized proton sponge on inorganic carriers: The synergic effect of the support on catalytic activity [J], J. Catal., 2002, 211: 208-215.
    [205] Lim M.H., Blanford C.F., Stein A., Synthesis and characterization of a reactive vinyl-functionalized MCM-41: Probing the internal pore structure by a bromination reaction [J], J. Am. Chem. Soc., 1997, 119: 4090-4091.
    [206] Huo Q.S., Margolese D.I., Ciesla U., et al., Generalized synthesis of periodic surfactant inorganic composite-materials [J], Nature, 1994, 368: 317-321.
    [207] Zhao D., Luan Z.H., Kevan L., Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves [J], Chem. Commun., 1997, 1009-1010.
    [208] Feng P.Y., Xia Y., Feng J.L., Bu X.H., Stucky G.D., Synthesis and characterization of mesostructured aluminophosphates using the fluoride route [J],Chem. Commun., 1997, 949-950.
    [209] Yue W., Random C., Attidekou P.S., Su Z., Syntheses, Li insertion, and photoactivity of mesoporous crystalline TiO2 [J], Adv. Funct. Mater., 2009, 19: 2826-2833.
    [210] Anpo M., Takeuchi M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J], J. Catal., 2003, 216: 505-516.
    [211] Pillai U.R., Sahle-Demessie E., Mesoporous iron phosphate as an active, selective and recyclable catalyst for the synthesis of nopol by Prins condensation [J], Chem. Commun., 2004, 826-827.
    [212] Selvam P., Mohapatra S.K., Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate (FeHMA) molecular sieves: Synthesis, characterization, and catalytic properties [J], J. Catal., 2006, 238: 88-89.
    [1] Fischer K., A new method for the analytical determination of the water content of liquids and solids [J], Angew. Chem., 1935, 48: 394-396.
    [2] Liang C., Vacha P., Van der Linden W.E., Determination of water in organic solvents by flow-injection analysis with Karl Fischer reagent and a biamperometric detection system [J], Tanlata, 1998, 35: 59-61.
    [3] Bos M., Urea as the basic component in pyridine-free Karl Fisher reagent [J], Talanta, 1984, 31: 553-555.
    [4] Koupparls A., Malmstadt H.V., Determination of water by an automated stopped-flow analyzer with pyridine-free two-component Karl Fischer reagent [J], Anal. Chem., 1982, 54: 1914-1917.
    [5] Ludvik J., Hilgard S., Volke J., Determination of water in acetonitrile, propionitrile, dimethylformamide and tetrahydrofuran by infrared and near-infrared spectrometry [J], Analyst, 1988, 113: 1729-1732.
    [6] Karim M.R.O., Direct potentiometry of residual water in acetonitrile using the proton isoconcentration technique [J], Analyst, 1987, 112: 1369-1372.
    [7] Saraullo A., Martos P.A., Pawliszyn J., Water Analysis by Solid Phase Microextraction Based on Physical Chemical Properties of the Coating [J], Anal. Chem., 1997, 69: 1992-1998.
    [8] Lombardi D.R., Mann C.K., Vickers T., Determination of water in slurries by fiber-optic Raman spectroscopy [J], J. Appl. Spectrosc., 1995, 49: 220-223.
    [9] Gupta T., van der Boom M.E., Optical Sensing of Parts per Million Levels of Water in Organic Solvents Using Redox-Active Osmium Chromophore-Based Monolayers [J], J. Am. Chem. Soc., 2006, 128: 8400-8401.
    [10] Citterio D., Minamihashi K., Kuniyoshi Y., Hisamoto H., Sasaki S.I., Suzuki K., Optical Determination of Low-Level Water Concentrations in Organic Solvents Using Fluorescent Acridinyl Dyes and Dye-Immobilized Polymer Membranes [J], Anal. Chem., 2001, 73: 5339-5345.
    [11] Sisamoto H., Manabe Y., Yanai H., Tohma H., Yamada T., Suzuki K., Molecular Design, Characterization, and Application of Multiinformation Dyes for Multidimensional Optical Chemical Sensings. 2. Preparation of the Optical SensingMembranes for the Simultaneous Measurements of pH and Water Content in Organic Media [J], Anal. Chem., 1998, 70: 1255-1261.
    [12] Rahman M.A., Won M.S., Kwon N.H., Yoon J.H., Park D.S., Shim Y.B., Water Sensor for a Nonaqueous Solvent with Poly(1,5-diaminonapthalene) Nanofibers [J], Anal. Chem., 2008, 80: 5307-5311.
    [13] Tian Y., Li G.D., Chen J.S., Chemical Formation of Mononuclear Univalent Zinc in a Microporous Crystalline Silicoaluminophosphate [J], J. Am. Chem. Soc., 2003, 125: 6622-6623.
    [14] Tian Y., Li G.D., Chen J.S., STABILIZATION AND MAGNETIC PROPERTY OF MONONUCLEAR Zn+ SPECIES IN SAPO-CHA [J], Stud. Surf. Sci. Catal., 2004, 154: 1700-1707.
    [15] Smith L., Cheetham A.K., Morris R.E., Marchese L., Thomas J.M., Wright P.A., Chen J., Science, On the nature of water bound to a solid acid catalyst [J], 1996, 271: 799-802.
    [16] Arieli D., Vauhan D.E.W., Goldfarb D., New Synthesis and Insight into the Structure of Blue Ultramarine Pigments [J], J. Am. Chem. Soc., 2004, 126: 5776-5788.
    [17] Gobeltz-Hautecoeur N., Demotier A., Lede B., Lelieur J.P., Duhayon C., Occupancy of the Sodalite Cages in the Blue Ultramarine Pigments [J], Inorg. Chem., 2002, 41: 2848-2854.
    [18] Kowalak S., Jankowska A., Application of zeolites as matrices for pigments [J], Micropor. Mesopor. Mater., 2003, 61: 213-222.
    [19]姚凤仪,无机化学丛书(第五卷) [M],科学出版社, 1998.
    [20] Lede B., Demortier A., Gobeltz-Hautecoeur N., Lelieur J.P., Picquenard E., Duhayon C. Observation of the 3 Raman band of S3- inserted into sodalite cages [J], J. Raman Spectrosc., 2007, 38: 1461-1468.
    [21] Kowalak S., Jankowska A., Application of zeolites as matrices for pigments [J], Micropor. Mesopor. Mater., 2003, 61: 213-222.
    [22] Kowalak S., Jankowska A., Zeidler S., Wieckowski A.B., Sulfur radicals embedded in various cages of ultramarine analogs prepared from zeolites [J], J. Solid State. Chem., 2007, 180: 1119-1124.
    [23] Kowalak S., Jankowska A., Zeidler S., Ultramarine analogs synthesized from cancrinite [J], Micropor. Mesopor. Mater., 2006, 93: 111-118.
    [24] Chivers T., Ubiquitous trisulphur radical ion S3?·[J], Nature, 1974, 252, 32-33.
    [25] Cotton F.A., Wilkinson G.W., Gaus P.L., Basic Inorganic Chemistry, John Wiley & Sons, New York, 1995.
    [26] Wolfbeis O.S., Fiber-Optic Chemical Sensors and Biosensors [J], Anal. Chem., 2006, 78: 3859-3874.
    [27] Lee C.Y., Lee G.B., Humidity Sensors: A Review [J], Sensor Lett., 2005, 3: 1-15.
    [28] Chen Z., Lu C., Humidity Sensors: A Review of Materials and Mechanisms [J], Sensor Lett., 2005, 3: 274-295.
    [29] Yeo T.L., Sun T., Grattan K.T.V., Fibre-optic sensor technologies for humidity and moisture measurement [J], Sens. Actuator. A, 2008, 144: 280-295.
    [30] Prakash A.M., Wasowicz T., Larry K., Adsorbate Interactions of Paramagnetic Palladium(I) Species in Pd(II)-Exchanged Na?MCM-22 Zeolite [J], J. Phys. Chem. B., 1997, 101: 1985-1993.
    [31] Prakash A.M., Kevan L., Formation of Monovalent Nickel in NiNa?MCM-22 Zeolite and Its Interaction with Various Inorganic and Organic Adsorbates: Electron Spin Resonance Studies [J], J. Phys. Chem. B., 1996, 100: 19587-19594.
    [1] Clemmer D.E., Dalleska N.F., Armentrout P.B., Reaction of Zn+ with NO2. The gas-phase thermochemistry of ZnO [J], J. Chem. Phys., 1991, 95: 7263-7268.
    [2] Popescu F.F., Crecu V.V., EPR study of Zn+ in calcite [J], Solid State Commun., 1973, 13: 749-751.
    [3] Weis P., Kemper P.R., Bowers M.T., Mn+(H2)n and Zn+(H2)n Clusters: Influence of 3d and 4s Orbitals on Metal-Ligand Bonding [J], J. Phys. Chem. A., 1997, 101: 2809-2816.
    [4] Del Rio D., Galindo A., Resa I., Carmona E., Theoretical and Synthetic Studies on [Zn2( 5-C5Me5)2]: Analysis of the Zn-Zn Bonding Interaction [J], Angew. Chem. Int. Ed, 2005, 44: 1244-1247.
    [5] Tian Y., Li G.D., Chen J.S., Chemical Formation of Mononuclear Univalent Zinc in a Microporous Crystalline Silicoaluminophosphate [J], J. Am. Chem. Soc., 2003, 125: 6622-6623.
    [6] Prakash A.M., Kevan L., Formation of Monovalent Nickel in NiNa?MCM-22 Zeolite and Its Interaction with Various Inorganic and Organic Adsorbates: Electron Spin Resonance Studies [J], J. Phys. Chem., 1996, 100: 19587-19594.
    [7] Prakash A.M., Wasowicz T., Larry K., Adsorbate Interactions of Paramagnetic Palladium(I) Species in Pd(II)-Exchanged Na?MCM-22 Zeolite [J], J. Phys. Chem. B., 1997, 101: 1985-1993.
    [8] Bedilo A.F., Plotnikov M.A., Mezentseva N.V., Volodin A.M., Zhidomirov G.M., Rybkin I.M., Klabunde K.J., Superoxide radical anions on the surface of zirconia and sulfated zirconia: formation mechanisms, properties and structure [J], Phys. Chem. Chem. Phys., 2005, 7: 3509-3569.
    [9]詹瑞云,多相氧载体CoO-MgO和氧分子作用的ESR研究[J],波谱学杂志, 1995, 12: 613-620.
    [10] Jones R.D., Summerville D.A., Basolo F., Synthetic oxygen carriers related to biological systems [J], Chem. Rev., 1979, 79: 139-179.
    [11] Smith T.D., Pibrow J.R., Recent developments in the studies of molecular oxygen adducts of cobalt (II) compounds and related systems [J], Coord. Chem. Rev., 1981, 39: 295-383.
    [12] Liu H., Kozlov A.I., Kozlova A.P., Shido T., Asakura K., Iwasawa Y., Active Oxygen Species and Mechanism for Low-Temperature CO Oxidation Reaction on a TiO2-Supported Au Catalyst Prepared from Au(PPh3)(NO3) and As-Precipitated Titanium Hydroxide [J], J. Catal., 1999, 185: 252-264.
    [13] Binet C., Daturi M., Lavalley J.C., IR study of polycrystalline ceria properties in oxidised and reduced states [J], Catal. Today, 1999, 50: 207-225.
    [14] Stern M.K., Jensen M.P., Kramer K., Peroxynitrite Decomposition Catalysts [J], J. Am. Chem. Soc., 1996, 118: 8735-8736.
    [15] Su B., Hatay I., Trojanek A., Samec Z., Khoury T., Gros C.P., Barbe J.M., Daina A., Carrupt P.A., Girault H.H., Molecular Electrocatalysis for Oxygen Reduction by Cobalt Porphyrins Adsorbed at Liquid/Liquid Interfaces [J], J. Am. Chem. Soc., 2010, 132: 2655-2662.
    [16] Yu Y.B., Takei T., Ohashi H., He H., Zhang X.L., Haruta M., Pretreatments of Co3O4 at moderate temperature for CO oxidation at ?80°C [J], J. Catal., 2009, 267: 121-128.
    [17]李素英,负载型Pt/MOx催化剂的性质及CO氧化反应性能研究[D],吉林大学硕士学位论文, 2008.
    [1] Elosua C., Matias I.R., Bariain C., Arregui F.J., Volatile organic compound optical fiber sensors: a review [J], Sensors, 2006, 6: 1440-1465.
    [2] Nagle H.T., Schiffman S.S., The how and why of electronic noses [J], IEEE Spectrum., 1998, 22-34.
    [3] Tamaki J., High Sensitivity Semiconductor Gas Sensors [J], Sens. Lett., 2005, 3: 89-98.
    [4] Drake C., Deshpande S., Bera D., Seal S., Metallic nanostructured materials based sensors [J], Int. Mater. Rev., 2007, 52: 289-317.
    [5] Bendahan M., Boulmani R., Seguin J.L., Aguir K., Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O2 concentration in the sputtering gas, and working temperature [J], Sens. Actuator B, 2004, 100: 320-324.
    [6] Hoefer U., Frank J., Fleischer M., High temperature Ga2O3-gas sensors and SnO2-gas sensors: a comparison [J], Sens. Actuator B, 2001, 78: 6-11.
    [7] Morris D., Egdell R.G., Application of V-doped TiO 2 as a sensor for detection of SO 2 [J], J. Mater. Chem., 2001, 11: 3207-3210.
    [8] Tiemann M., Porous metal oxides as gas sensors [J], Chem. Eur. J., 2007, 13: 8376-8388.
    [9] Ramaseshan R., Sundarrajan S., Jose R., Ramakrishna S., Nanostructured ceramics by electrospinning [J], J. Appl. Phys., 2007, 111101-1.
    [10] Sahner K., Hagen G., Schonauer D., Rerb S., Moos R., Zeolites - Versatile materials for gas sensors [J], Solid State Ionics, 2008, 179: 2416-2423.
    [11] Waitz T., Wagner T., Sauerwald T., Kohl C.D., Tiemann M., Ordered Mesoporous In2O3: Synthesis by Structure Replication and Application as a Methane Gas Sensor [J], Adv. Funct. Mater., 2009, 19: 653-661.
    [12] Wang D., Chu X., Gong M., Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method [J], Sens. Actuator B, 2006, 117: 183-187.
    [13] Chu X., Jiang D., Guo Y., Zheng C., Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method [J], Sens Actuator B, 2006, 120: 177-181.
    [14] Niranjan R.S., Londhe M.S., Mandale A.B., Sainkar S.R., Prabhumirashi L.S., Vijayamohanan K., Mulla I.S., Trimethylamine sensing properties of thorium-incorporated tin oxide [J], Sens. Actuators B, 2002, 87: 406-413.
    [15] Lv Y., Li C., Guo L., Wang F., Xu Y., Chu X., Triethylamine gas sensor based on ZnO nanorods prepared by a simple solution route [J], Sens. Actuators B, 2009, 141: 85-88.
    [16] Chu X., Jiang D., Zheng C., The preparation and gas-sensing properties of NiFe2O4 nanocubes and nanorods [J], Sens. Actuators B, 2007, 123: 793-797.
    [17] Singh V.N., Metha B.R., Joshi R.K., Kruis F.E., Shivaprasad S.M., Enhanced gas sensing properties of In2O3:Ag composite nanoparticle layers; electronic interaction, size and surface induced effects [J], Sens. Actuators B, 2007, 125: 482-488.
    [18] Ohgi T., Sheng H.Y., Dong Z.C., Nejoh H., Fujita D., Charging effects in gold nanoclusters grown on octane- dithiol layers [J], Appl. Phys. Lett., 2001, 79: 2453-2455.
    [1] Ying J.Y., Mehnert C.P., Wong M.S., Synthesis and Applications of Supramolecular-Templated Mesoporous Materials [J], Angew. Chem. Int. Ed., 1999, 38: 56-77.
    [2] Wight A.P., Davis M.E., Design and Preparation of Organic?Inorganic Hybrid Catalysts [J], Chem. Rev., 2002, 102: 3589-3613.
    [3] De Vos D.E., Dam M., Sels B.F., Jacobs P.A., Ordered Mesoporous and Microporous Molecular Sieves Functionalized with Transition Metal Complexes as Catalysts for Selective Organic Transformations [J], Chem. Rev., 2002, 102: 3615-3640.
    [4] Tuel A., Gontier S., Synthesis and Characterization of Trivalent Metal Containing Mesoporous Silicas Obtained by a Neutral Templating Route [J], Chem. Mater., 1996, 8: 114-122.
    [5] He N., Bao S., Xu Q., Fe-containing mesoporous molecular sieves materials: very active Friedel-Crafts alkylation catalysts [J], Appl. Catal. A, 1998, 169: 29-36.
    [6] Vinu A., Murugesan V., Bohlmann W., Hartmann M., An Optimized Procedure for the Synthesis of AlSBA-15 with Large Pore Diameter and High Aluminum Content [J], J. Phys. Chem. B, 2004, 108: 11496-11505.
    [7] Vinu A., Usha Nandhini K., Murugesan V., Bohlmann W., Umamaheswari V., Poppl A., Hartmann M., Mesoporous FeAlMCM-41: an improved catalyst for the vapor phase tert-butylation of phenol [J], Appl. Catal. A, 2004, 265: 1-10.
    [8] Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures [J], J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [9] Luan Z., Hartmann M., Zhao D., Zhou W., Kevan L., Alumination and ion exchange of mesoporous SBA-15 molecular sieves [J], Chem. Mater., 1999, 11: 1621-1627.
    [10] Vinu A., Sawant D.P., Ariga K., Hossain K.Z., Halligudi S.B., Hartmann M., Nomura M., Direct Synthesis of Well-Ordered and Unusually Reactive FeSBA-15 Mesoporous Molecular Sieves [J], Chem. Mater., 2005, 17: 5339-5345.
    [11] Corma A., Fornes V., Navarro M.T., Perez-Pariente J., Acidity and stability of MCM-41 crystalline aluminosilicates [J], J. Catal., 1994, 148: 569-574.
    [12] Kumar M.S., Schwidder M., Grunert W., Bruckner A., On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach [J], J. Catal., 2004, 227: 384-397.
    [13] Sun Y., Walspurger S., Tessonnier J.P., Louis B., Sommer J., Highly dispersed iron oxide nanoclusters supported on ordered mesoporous SBA-15: A very active catalyst for Friedel–Crafts alkylations [J], Appl. Catal. A, 2006, 300: 1-7.
    [14] Weckhuysen B.M., Wang D., Rosynek M.P., Lunsford J.H., Catalytic Conversion of Methane into Aromatic Hydrocarbons over Iron Oxide Loaded ZSM-5 Zeolites [J], Angew. Chem. Int. Ed., 1997, 36: 2374-2376.
    [15] Olah G.A., Friedel-Crafts Chemistry, Wiley, New York, 1973.
    [16] Olah G.A., Prakash G.K.S., Sommer J. Superacids, Wiley-Interscience, New York, 1985.
    [17] Khadilkar B.M., Borkar S.D., Environmentally clean synthesis of diphenylmethanes using silica gel-supported ZnCl2 and FeCl3 [J], Chem. Technol. Biotechnol., 1998, 71: 209-212.
    [18] Commandeur R., Berger N., Jay P., Kervennal J. EP 00442986, 1991.
    [19] Bastock T.W., Clark J.H., Speciality Chemicals, Elsevier, London, 1991.
    [20] Choudhary V.R., Jana S.K., Mamman A.S., Benzylation of benzene by benzyl chloride over Fe-modified ZSM-5 and H-βzeolites and Fe2O3 or FeCl3 deposited on micro-, meso- and macro-porous supports [J], Micropor. Mesopor. Mater., 2002, 56: 65-71.
    [21] Choudhary V.R., Jana S.K., Kiran B.P., Alkylation of benzene by benzyl chloride over H-ZSM-5 zeolite with its framework Al completely or partially substituted by Fe or Ga [J], Catal. Lett., 1999, 59: 217-219.
    [22] Choudhary V.R., Jana S.K., Benzylation of benzene by benzyl chloride over Fe-, Zn-, Ga- and In-modified ZSM-5 type zeolite catalysts [J], Appl. Catal. A, 2002, 224: 51-62.
    [23] Luan Z., Hartmann M., Zhao D., Zhou W., Kevan L., Alumination and ion exchange of mesoporous SBA-15 molecular sieves [J], Chem. Mater., 1999, 11: 1621-1627.
    [24] Vinu A., Murugesan V., Hartmann M., Pore size engineering and mechanicalstability of the cubic mesoporous molecular sieve SBA-1 [J], Chem. Mater., 2003, 15: 1385-1393.
    [25] Yuan Z.Y., Liu S.Q., Chen T.H., Wang J.Z., Li H.X., Synthesis of iron-containing MCM-41 [J], J. Chem. Soc. Chem. Commun., 1995, 9: 973-974.
    [26] Echchahed B., Badiei A.R., Beland F., Bonnerviot L., Fe and Co modifications of siliceous MCM-41 and 48 using direct or post-synthesis methods [J], Stud. Surf. Sci. Catal., 1998, 117: 559-566.
    [27] Zhao W., Luo Y., Deng P., Li Q., Synthesis of Fe-MCM-48 and its catalytic performance in phenol hydroxylation [J], Catal. Lett., 2001, 73: 199-202.
    [28] He N.Y., Cao J.M., Bao S.L., Xu Q.H., Room-temperature synthesis of an Fe-containing mesoporous molecular sieve [J], Mater. Lett., 1997, 31: 133-136.
    [29] Iwamoto M., Abe T., Tachibana Y., Control of bandgap of iron oxide through its encapsulation into SiO2-based mesoporous materials [J], J. Mol. Catal. A, 2000, 155: 143-153.
    [30] Selvam P., Dapurkar S.E., Badamali S.K., Murugasan M., Kuwano H., Coexistence of paramagnetic and superparamagnetic Fe(III) in mesoporous MCM-41 silicates [J], Catal. Today, 2001, 68: 69-74.
    [31] Kohn R., Froba M., Nanoparticles of 3d transition metal oxides in mesoporous MCM-48 silica host structures: Synthesis and characterization [J], Catal. Today, 2001, 68: 227-236.
    [32] Diaz E., Ordonez S., Vega A., Auroux A., Coca J., Benzylation of benzene over Fe-modified ZSM-5 zeolites: Correlation between activity and adsorption properties [J], Appl. Catal. A, 2005, 295: 106-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700