用户名: 密码: 验证码:
废旧印刷线路板热解油利用及轻质化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会,科技飞速发展,日新月异。各种家电设备、电子产品更新换代的周期越来越短,我们在享受最新科技成果给我们带来的便利同时,也不得不面对越来越多各类报废电子电器产品的处理处置问题。印刷线路板是各种电子电器产品中的重要零部件之一,也是现代城市中最典型的固体废弃物。废线路板具有种类繁多、数量巨大、增长迅速的特点。其主要成分为高分子有机树脂、铜等贵重金属、玻璃纤维。如果能将其中的组分尽数利用,不仅能带来巨大的经济效益,还能够切实减轻环境压力。在诸多废线路板处理工艺中,热解法处理废线路板能够将线路板中树脂、玻纤和铜完全剥离,对于后续各组分分别回收利用提供了很大的便利。但是,相较高价的铜和回收利用难度较低的玻璃纤维来说,废线路板热解油因为成分复杂,含有卤素阻燃剂等原因,回收利用难度较大,到目前为止,都没有学者提出比较好的利用方案。
     本论文对将废线路板真空热解来制取热解油全组分利用工艺进行了研究,首先确定了废线路板制取热解油的最佳工艺条件。并利用大型分析仪器对热解油的成分进行分析。在了解了热解油成分的基础上,对热解油进行分馏,并探讨热解油较轻的液体组分合成热固性酚醛树脂的工艺。对于常温下呈固体的热解油重组分作为沥青改性剂利用的可行性。最后,本文还对热解过程中利用分子筛催化剂对热解油进行轻质化处理进行了系统研究。
     首先,本文研究了废线路板制取热解油的最佳工艺。研究结果表明:在热解终温为550℃,升温速率为10℃/min,热解压力为20KPa,恒温时间为60min,物料尺寸为40mm×40mm时,有利于提高废线路板热解油的产率,降低固体和液体的产率。在该工艺条件下,液相产物可以达到18.6%,而固相产物达到76.1%,气相产物占5.3%。
     接下来,将热解油进行常压实沸点蒸馏,并利用元素分析仪、气质联用仪、红外光谱分析仪对热解油各馏分进行测试。结果表明:热解油液体馏分主要集中在120℃-300℃温度段;各馏分以碳氢化合物为主,碳氢比在0.8上下,并含有少量S、N元素;热解油中含量最多的物质是苯酚、3-甲基、4-乙基苯酚,4-异戊基苯酚,4-异丙基苯酚,4、4,-亚乙基苯酚等物质,这类物质占到各馏分含量的60%以上;在红外图谱中,我们也看到了相应的羟基及苯环相关的峰。
     在利用热解油轻组分合成热固性酚醛树脂的研究中,先利用L9(34)正交试验确定最佳工艺条件为:每38.5gWPCB轻组分、40g甲醛溶液、lOg NaOH、第一阶段温度60℃、第一阶段反应时间3h、第二阶段温度95℃、第二阶段反应时间3h。通过红外光谱、热重分析和力学性能测试发现:轻组分合成的热固性酚醛树脂出现CH2、CHOH等特征峰;轻组分酚醛树脂的固化分解温度为464.2℃,最终剩余质量为64.71%;轻组分酚醛树脂的拉伸强度能达到39.6Mpa,拉伸模量为8.8Gpa,与普通的热固性酚醛树脂的相关指标相仿。
     在热解油重馏分改性沥青的研究中,我们发现热解油重馏分能够大幅度提升沥青的高温稳定性和路用性能。研究结果表明:以4%作为沥青中HFPO的最佳添加量时,改性沥青的软化点为53.1℃,针入度为72.4dmm,15℃下延度为43.3cm,在软化点指标上优于HFPO+SBR改性沥青和SBR改性沥青;重组分改性沥青混合料在油石比为5.0%时,马歇尔稳定度达到19.50,动稳定度可以达到10161次/mm,均高于HFPO+SBR沥青混合料和SBR改性沥青混合料。将重组分回收利用无论是从经济角度还是环境角度都是很有意义的。
     利用分子筛催化剂对热解油进行轻质化,可以提高热解油的回收利用价值。该部分使用HZSM-5、USY、A12O3三种分子筛催化剂对废线路板进行催化热解。实验结果表明:HZSM-5热解液体产率最高;氧化铝将废线路板粉末分解最彻底;USY对三相产物产率影响较小。600℃时,A1203对热解油的轻质化效果最好,200℃以下轻组分含量最高,可达到56%;HZSM-5催化使热解油重组分含量减少了9%;USY轻质化效果不明显。在催化热解过程中,A1203能提高苯酚含量、并有一定的脱溴效果;HZSM-5和USY仅在一定程度上提高苯酚含量,未见明显脱溴效果。A1203能够减少热解油中的C15双环芳烃物质,使产物主要成分为C6和C9物质;而HZSM-5和USY对碳分布影响不大。
     本论文研究成果填补了废线路板热解油的资源化利用的空白,为进一步推广废线路板热解处理工艺的工业化提供了理论指导。
In the nowadays of accelerating technology, product replacement begin to speed up. We have to face the problem on how to treat the waste electrical and electronic equipment (WEEE), although we are enjoying the convenient from the latest technology. Printed circuit boards are the one of the most important components. The increasing amount of waste electrical and electronic equipment is leading to a large amount of waste printed circuit boards (WPCBs). WPCB are also become the typical waste solid in modern cities. WPCB are characterized by wide range and enormous amount. WPCB consist of resins, copper, glass fiber, etc. If all of comonents are utilized, it can not only bring the significant economic benefits, but also protect the environment. Among the different type of methods in recycling WPCB, yrolysis has the advantage that all of the pyrolysis products (pyrolytic oil(PO), metals and glass fiber) can potentially be recovered and recycled. Compared with copper and glass fiber, PO is difficult in recycling due to its complexity of the components and halogen in fire retardant. Therefore, there is no mature method in recycling the PO from the pyrolysis of WPCB.
     In this paper, the new method of recycling PO from WPCB was provided. Firstly, the optimal technological condition of preparing PO was determined. Then the PO was distillated into several fractions. All the liquid fractions were analyzed by element analyzer (EA), gas chromatoraph-mass spectrum (GC-MS), fourier transform-infrared spectroscopy (FT-IR). After that, the resource utilization on light fraction of PO (LFPO) and heavy fraction of PO (HFPO) were discussed. Finally, the effect on the light of PO in catalytic pyrolysis of WPCB was investigated.
     From the experiment of pyrolysis, the productivity of PO was18.6%while the optimal technological conditions were the particle size of40mm×40mm, the pyrolysis temperature of550℃, the heating rate of10℃/min, the pyrolysis pressure of20kPa and the constant temperature time of60min. and the productivity of solid and gas were76.1%and5.3%.
     After the true boiling point distillation (TBP) was carried. The major component was in120℃-300℃. All the fraction were analyzed by EA, GC-MS, FT-IR. The results showed that all the fractions consisted of over50%of C and6%of H. The C/H ratio of each fraction was0.8. Phenol and its substitutes were more than60%of pyrolytic oil. The spectrogram of the fractions of PO appeared characteristic peak such as CH2, CH-OH. Besides, less than10%of Br, which existed in bromophenolic compounds, was analysed in the pyrolytic oil.
     Through the orthogonal experiment, the thermosetting phenolic resin was synthetized by using LFPO. The results showed that the optimal technological conditions were LFPO of38.5g, formaldehyde of40g. NaOH of lOg of the catalyst, the reaction temperature of60℃for3h,and then ramp to95℃for3h. The thermosetting phenolic resin was observed by FT-IR and thermogravimetry (TG-DTG). The results indicated that the peaks such as CH2. CH-OH were appeared. The product begins to solidify and decompose at464.2℃, the remaining quality is64.71%at last, which indicated that the product has a good heat resistance. In the test of The tensile strength of the phenolic resin was39.6Mpa and its tensile modulus is8.8Gpa, which indicated that the phenolic resin has a good mechanical properties.
     In the field of using HFPO into modifying the asphalt, the The HFPO was tested as an asphalt modifier. Three asphalt modifiers were tested:HFPO; styrene-butadiene rubber (SBR); and HFPO+SBR (1:1). The physical properties and road performance of the three modified asphalts were measured and evaluated. The results have shown that when the amount of modifier was less than10%. the HFPO modified asphalt had the highest softening point of the three. HFPO+SBR modified asphalt did well in the test of penetration. SBR modified asphalt was good at the test of ductility. The dynamic stability (DS) and water resistance of the asphalt mixture with the HFPO modified asphalt was10161cycles/mm and87.2%, respectively. The DS was much larger than for the HFPO+SBR and SBR modified asphalt mixtures. These results indicate that using HFPO as an asphalt modifier has significant benefits not only for road engineering but also for resource recycling.
     In the research on the catalytic pyrolysis of WPCB, HZSM-5, USY, A12O3was used as there type of catalysts. The results showed that the productivity of liquid was the highest when using HZSM-5as catalyst. The resins of WPCB could decompose completely. USY had little effect on the productivity of PO. When the reaction temperature of catalytic pyrolysis was600℃, A12O3showed the best performance in the light of PO. The fraction (<200℃) was56%; HFPO was decreased by9%by the addition of HZSM-5; but USY didn't show significant effect to the light of PO. A12O3had a dehalogen performance and in catalytic pyrolysis of WPCB. The results indicate that A12O3has a good performance in the light of PO and dehalogen. HZSM-5only do well in the light of PO. USY had little effect on the light of PO.
     This research can not only fill the gap of recycling of PO from WPCB, but also provide the theoretical guidance for popularization of pyrolysis process of WPCB.
引文
[1]UNEP. Recycling From E-waste to Resources[R],2009.7.
    [2]姜宾延,吴彩斌,等.电子垃圾的危害及其机械处理技术现状[J].再生资源研究,2005,(3):23-26.
    [3]刘小丽,杨建新,王如松.中国主要电子废物产生量估算[J].中国人口·资源与环境,2005,15(5):113-117.
    [4]Yua J. L., Williams E., Ju M.,et al. Managing e-waste in China:Polieies, Pilot Projects and alternative approaches [J].Resources, Conservation and Recycling,2010, 54:991-999.
    [5]Shinkuma T., Managi S. On the effectiveness of a lieense seheme for E-waste recycling: The challenge of China and India. Environmental Impact Assessment Review,2010, 30:262-267.
    [6]杨玉芬等.废印刷线路板中贵稀金属回收现状[J].稀有金属,2004,28(4):8.
    [7]李玉文等.国内外电子废弃物环境管理与处置技术研究[J].环境科学动态,2004,3.
    [8]王卓雅等.电子废弃物资源化现状及处理技术[J].能源环境保护,2004,18(5):10.
    [9]王建中.电子垃圾,等待挖掘的金矿[J].中国投资,2006,7:113-115.
    [10]Gockmann K. Recycling of Copper[J]. Cim Bulletin,1992,85(958):150-156.
    [11]刘子卫.印刷线路板制造业废弃物之回收与处理.工业污染防治报导(台湾),1995,8(85):1-3.
    [12]Brodersen K.,Tartler D.,Danzer B.Scrap of electronics A challenge to recyclingactivities.IEEE International Symposium on Electronics&the Environment, 1994,174-176.
    [13]Linton J. Electronic products at their end-of-life:option and obstacles.J.Electron. Manuf, 2000,9:29-40.
    [14]Legarth J. B. Environmental decision making for recycling options.Resources, Conservation and Recycling,1997,19:109-135.
    [15]Lehner T., Integrated recycling of non-ferrous metals at Boliden Ltd, Ronnskar Smelter [J], IEEE International Symposium on Electronics & the Environment,1998,42-47.
    [16]周全法,朱雯.废电脑及其配件中会的回收[J].中国资源综合利用,2003,(7):315-35.
    [17]丘波.电子废弃物回收拆解业工人健康调查[J].环境与健康杂志,2005,22(6):419-421.
    [18]The Basel Action Network (BAN), Silicon Valley Toxics Coalition (SVTC). Exporting harm:The High-tech Trashing of Asia [R],2002,2.
    [19]Test of Basel Convention. http://www.basel.int/text/documents.html
    [20]Winter De, Courtney k. From Here to Elernity:recycling Hi-tech Junk[J]. Waste Age, 2001,32(3):186-190.
    [21]Jirang Cui, et al, Mechanical Recycling of Waste Electric and Electric and Electronic Equipment:a review[J] Journal of Hazardous Materials,2003, (B99):246.
    [22]Rao Nikhil U., Yuan Chris Y., Zhang Hong C.. An economic model for end-of-life management of printed circuit boards [C]. IEEE International Symposium on Electronics and the Environment, Proceedings of the 2004 IEEE International Symposium on Electronics and the Environment,2004,57-62.
    [23]Balabanovich A. I., Hornung A., Merz D., et al. The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins[J]. Polymer Degradation and Stability,2004,85 (1).
    [24]祝大同.亚洲印制电路板业的现状与发展[J].电子工艺技术,1997,18(5):175-178.
    [25]闻芹堂,刘梅生.我国印制电路板配套用化工材料的现状及发展趋势[J].江苏化工,1998,26(4):4-6.
    [26]张友良.回收利用废电子电器利国利民[J].电子电器科技,2000,7:14-15.
    [27]李金惠,温雪峰,刘彤宙,等.我国电子电器废弃物处理政策、技术及设施[J].家电科技,2005,(1):31-34.
    [28]国家环境保护总局.国家环境保护总局关于报废电子电器产品环境管理情况的通报[Z].北京:国家环境保护总局,2002.
    [29]Lu H. Z., Li J., Guo J., et al. Movement behavior in electrostatic separation:Recycling of metal materials from waste printed circuit board [J]. Journal of Materials Processing Technology,2008,197(1-3):101-108.
    [30]Veit Hugo M, Salami Anderson P.. Diehl Taiana R.,et al. Study of the recycling of printed circuit board SCRAP by density and electrostatic separation processes[C]. REWAS'04-Global Symposium on Recycling. Waste Treatment and Clean Technology, REWAS'04-Global Symposium on Recycling, Waste Treatment and Clean Technology-Proceedings,2005:2775-2776.
    [31]Veit H.M., Diehl T.R., Salami A.P., et al. Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap[J]. Waste Management,2005, 25(l):67-74.
    [32]Eswaraiah C, Kavitha T., Vidyasagar, S. et al. Classification of metals and plastics from printed circuit boards (PCB) using air classifier[J].Chemical Engineering and Processing:Process Intensification,2008,47(4):565-576.
    [33]Veit Hugo M., Salami Anderson P., Diehl Taiana R.,et al. Study of the recycling of printed circuit board SCRAP by density and electrostatic separation processes[C]. REWAS'04-Global Symposium on Recycling, Waste Treatment and Clean Technology. REWAS'04-Global Symposium on Recycling, Waste Treatment and Clean Technology-Proceedings,2005:2775-2776.
    [34]白庆中,王晖,韩洁,等.世界废弃印刷电路板的机械处理技术现状[J].环境污染治理技术与设备,2001,2(1):84-89.
    [35]Zhang S. L., Eric Forssberg. Intelligent Liberation and Classification of electronic scrap [J].Powder Technology,1999,105:295-301.
    [36]Yokoymaa S, Ijim. Recycling of Printed Wiring Board Waste [M]. Proceedings of 1993 IEEE/Tsukuba International Work shop on Advanced Robotics,1993:55-58.
    [37]Melchiorre M.. Jakob R. Electronic Scrap Recycling [J]. Microelectronics Journal. IEEE,1996, (28):8-10.
    [38]Li J. Z., Puneet S., Gao Z., et al. Printed Circuit Board Recycling State-of-the-Art Survey [C]. IEEE Transactions on Electronics Packaging Manufacturing.2004, USA:33-42.
    [39]Zhang S., Forssberg E. Mechanical separation-oriented characterization of electronic scrap [J]. Resources, conservation and Recycling,1997, (21):247-269.
    [40]Eswaraiah C., Kavitha T., Vidyasagar, S. et al. Classification of metals and plastics from printed circuit boards (PCB) using air classifier[J].Chemical Engineering and Processing:Process Intensification,2008,47(4):565-576.
    [41]Xue M. Q., Xu Z. M. Computer simulation of the pneumatic separator in the pneumatic-electrostatic separation system for recycling waste printed circuit boards with electronic components. Environmental science & technology,2013,47(9):4598-4604.
    [42]Melchiorre M., Jakob R. Nerartiges Verfahren zur Aufbereitung von Elektronikschrott-Ein B eitrag zurwirtschaftlichen Rohstofgewinnung [J]. G alvanotechnik,1996,87(12):4136-4140.
    [43]Hennie K., Bob S.开采废弃电子产品[J].产业与环境,1995,17(3):7-11.
    [44]Jim Y. Recycling of printed wiring board waste, Proceedings of 1993 IEEE/Tsukuba [J]. International Work Shop on Advanced Robotics,IEEE,1993:55-58.
    [45]郭廷杰.译.日本《家电再生法》实施状况简介[J].再生资源研究,2002,(3):7-9.
    [46]Mou P., Wa L. Y. D., Xiang D., Gao J. G, Duan G. H. A physical process for recycling and reusing waste printed circuit boards [C], Proceedings of the 2004 IEEE International Symposium on Electronics and the Environment, May 10-13,2004, Scottsdale,AZ,United States:237-242.
    [47]胡利晓,温雪峰,刘建国,李金惠,聂永丰,俞子达.废印刷电路板的静电分选实验研究[J].环境污染与防治,2005,27(5):326-329.
    [48]马俊伟,王真真,杨志峰,聂永丰,白庆中.电选法回收利用废印刷线路板[J].环境污染治理技术与设备,2005(7):63-66.
    [49]周翠红,路迈西.废旧电路板的组成与解离特性研究[J].环境污染治理技术与设备[J],2005,6(4):28-31.
    [50]路迈西,刘文礼,刘红缨,周翠红,孙志健.废旧印刷电(线)路板的破碎解离特性研究[C].第七届全国颗粒制备与处理学术暨应用研讨会论文集,2004.
    [51]Jung W. H., Tortorella N., Beatty C. L. McCarthy S.P. Grinding and separation of the cellular phone housing[C].Life-Cycle Analysis Tools for "Green" Materials and Process Selection. Symposium (Materials Research Society Symposium Proceedings Vol.895), 2006,151-156.
    [52]温雪峰,李金惠,邹亮,等.废印刷线路板的常温粉碎特性研究[J].矿冶,2005,14(4):57-61+78.
    [53]Veit Hugo Marcelo, Bernardes Andrea Moura, Ferreira Jane Zoppas, et al. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy[J]. Journal of Hazardous Materials,2006,137(3):1704-1709.
    [54]温雪峰,范英宏,赵跃民,等.用静电选的方法从废弃电路板中回收金属富集体的研究[J].环境工程,2004,22(2):78-80.
    [55]Melchiorre M., Jakob R., Haepp H.-J.Neuartiges Verfahren zur Aufbereitung von Elektronikschrott-Ein Beitrag zur wirtschaftlichen Rohstoffgewinnung (Novel procedure for processing of electronic scrap-a cost-effective means for recovery of primary materials) [J]. Galvanotechnik,1996,87(12):4136-4140.
    [56]Plieth W. Strategies for classifying & separation of complex mixes of waste solids, e.g. electronics scrap [J]. Galvanotechnik,1994,85 (4):1251-1256.
    [57]Liang G. B., Tang J. H., Liu W. P., Zhou Q. F. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). Journal of Hazardous Materials,2013,250:238-245.
    [58]Li J., Lu H. Z., Guo J., et al. Recycle technology for recovering resources and products from waste printed circuit boards[J]. Environmental Science and Technology,2007, 41(6):1995-2000.
    [59]Hahladakis J. N., Stylianos M., Gidarakos E. Assessment of released heavy metals from electrical and electronic equipment (EEE) existing in shipwrecks through laboratory-scale simulation reactor. Journal of Hazardous Materials,2013,250: 256-264.
    [60]Yokoyama S, Iji M. Recycling of printed wiring board waste. In:Proceedings of 1993 IEEE/Tsukuba. International Work Shop on Advanced Robotics, USA:IEEE,1993, 55-58.
    [61]柴晓兰,曹亦俊,王春彦,等.机械处理废弃印刷线路板[J].中国资源综合利用,2003,(2):23-26.
    [62]温雪峰,李金惠,朱芬芬,等.我国废弃线路板的物理处理技术评述[J].矿冶,2005,14(3):58-61.
    [63]Guo J., Rao Q. L., Xu Z. M. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound [J]. Journal of Hazardous Materials, 2008,153(1-2):728-734.
    [64]Mou P., Xiang D., Duan G. H. Products made from nonmetallic materials Reclaimed from Waste Printed Circuit Boards [J]. Tsinghua Science and Technology,2007, 12(3):276-283.
    [65]赵明.阻燃性酚醛树脂印刷线路板粉碎处理中热解污染的试验研究[J].矿冶,2006,15(4):78-83.
    [66]叶璀玲,万玲娟.废弃印刷线路板热解试验气体产物分析[J].中国资源综合利用,2004,6:7-9.
    [67]Sheng Peter P., Etsell Thomas H. Recovery of gold from computer circuit board scrap using aqua regia[J].Waste Management and Research,2007,25 (4):380-383.
    [68]Oishi T., Koyama K., Alam S., et al. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions [J]. Hydrometallurgy,2007,89(1-2):82-88.
    [69]王远明,余佳平,刘乐.溶剂溶解法印刷电子线路版的二次资源回收利用[C].上海市化学化工学会2007年度学术年会论文摘要集,2007.
    [70]Koyama K., Tanaka M., Jae-chun Lee. Copper leaching behavior from waste printed circuit board in ammoniacal alkaline solution [J].Materials Transactions,2006, 47(7):1788-1792.
    [71]Kim Eun-Young, Kim Min-Seuk, Lee Jae-Chun, et al. Leaching of copper from waste printed circuit boards using electrogenerated chlorine in hydrochloric acid solution[C]. TMS Annual Meeting, v 2006, EPD Congress 2006-Proceedings of Sessions and Symposia sponsored by the Extraction and Processing Division of The Minerals, Metals and Materials Society held during the 2006 TMS Annual Meeting,2006,929-933.
    [72]Scott K., Chen X., Atkinson J. W., Todd M. Armstrong. Electrochemical recycling of tin, lead and copper from stripping solution in the manufacture of circuit boards [J]. Resources, Conservation and Recycling,1997,20(1):43-55.
    [73]Madkour L.H. Electride position of lead and its dioxide from Egyptial carbonate ore residuum [J]. Bull. Electrchem,1996,12(2):234-236.
    [74]Sokirko A.X., Kharkats Y. I. A possible mechanism for the increase in limiting current of copper electrode position from nitrate solutions[J]. Soviet Electrochem,1990, 26(l):36-40.
    [75]胡天觉,曾光明,袁兴中.从家用电器废物中回收贵金属[J].中国资源综合利用,2001,(7):12-15.
    [76]周全法,朱雯.废电脑及其配件中金的回收[J].中国资源综合利用,2003,(7):315-35.
    [77]Gloe K., Muehl P., Knothe M. Recovery of precious metals from electronic scrap, in particular from waste products of the thick-layer technique [J]. Hydrometalllurgy, 1990, (25):99-110.
    [78]Ginn R, Barnce BA. Anal Chem,1986, (66):527-571.
    [79]Oishi T., Koyama K., Alam S., et al. Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions [J]. Hydrometallurgy,2007,89(1-2):82-88.
    [80]Koyama K., Tanaka M., Jae-chun Lee. Copper leaching behavior from waste printed circuit board in ammoniacal alkaline solution [J].Materials Transactions,2006, 47(7):1788-1792.
    [81]Brandl H., Bosshard R., Wegmann M. Computer-munching microbes:metal leaching from electronics crap by bacteria and fungi [J]. Hydrometallurgy,2001, 59(2-3):319-326.
    [82]Bosecker K.. Microbial recycling of mineral waste products[J]. Acta Biotechnol,1987, (7):487-497.
    [83]Hahn M.S., Willscher S., Stranbe G. Copper leaching from industrial wastes by heterotrophic microorganisms [C], in:A.E.Torma, J.E.W ey, V.L.Lakshamamam (Eds.), Biohydrometal-lurgical Technology. The Minerals, Metals & Material Society,Warrendale,1993:99-108.
    [84]杨显万,陈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003,(14).
    [85]K. Bosecker. Microbial recycling of mineral waste products[J]. Acta Biotechnol,1987, (7):487-497.
    [86]Hahn M.S., Willscher S., Stranbe G. Copper leaching from industrial wastes by heterotrophic microorganisms [C], in:A.E.Torma, J.E.W ey, V.L.Lakshamamam (Eds.), Biohydrometal-lurgical Technology. The Minerals, Metals & Material Society, Warrendale,1993:99-108.
    [87]Willscher S., Katzschner M., Jentzsch K., et al. Microbial leaching of metals from printed circuit boards[J].Biohydrometallurgy:From the Single Cell to the Environment, 2007,99-102.
    [88]Brandl H., Lehmann S., Faramarzi M.A., Mobilization of silver, gold, and platinum from solid materials by HCN-forming microorganisms[J]. Biohydrometallurgy:From the Single Cell to the Environment,2007,50-53.
    [90]Choi Moon-Sung, Cho Kyung-Suk, Kim Dong-Su, et al. Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans [J]. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering,2004,39(11-12):2973-2982.
    [91]周培国,郑正,彭晓成,等.氧化亚铁硫杆菌浸出线路板中铜的研究[J].环境污染治理技术与设备,2006,7(2):126-128.
    [92]周培国,郑正,彭晓成,等.氧化亚铁硫杆菌浸出线路板中铜及过程中铁的变化研究[J].环境污染与防治,2007,29(2):119-122.
    [93]温雪峰.物理法回收废弃电路板中金属富集体的研究[D].江苏:中国矿业大学,2004.
    [94]Chien Y. C, Wang H. P., Lin K. S., et al. Oxidation of Printed circuit board waste in supercritical water [J]. Water Research,2000,34(17):4279-4283.
    [95]潘君齐,刘光复,刘志峰等.废弃印刷线路板超临界C02回收实验研究[J].西安交通大学学报,2007,41(5):625-627.
    [96]刘志峰,胡张喜,孔祥明,等.基于超临界技术的印刷线路板资源化方法研究[J].环境工程学报,2007,(12):114-119.
    [97]潘君齐,刘志峰,张洪潮,等.超临界流体废弃线路板回收工艺[J].合肥工业大学学报:自然科学版,2007,30(10):1287-1291.
    [98]Hong-Chao Zhang, Xi Ouyang, Abadi A. An environmentally benign process model development for printed circuit board recycling [C]. IEEE International Symposium on Electronics and the Environment, v 2006, Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment-Conference Record,2006,212-217.
    [99]Masuda Y., Miyabayashi R., Yamaguchi H., Japan Kokai Tokyo Koho [P]. JP 6311627 [8811626] (CI.C22B11/02),1988.
    [100]Salibury H.B., Duchene L.J., Bilrey J. H. Report of Inestgation, R 18561 [J]. Washington, D C..U. S. Bureau of Mines,1981.
    [101]Y. Masuda, R. Miyabayashi, H. Yamaguchi. Japan Kokai Tokyo Koho [P]. JP 6311627 [8811627] (CI.C22B 11/02),1988.
    [102]Tange L,Drohmann D. Waste electrical and electronic equipment plastic with brominated flame retardants from legislation to separate treatment thermal processes[J]. Polymer Degradation and Stability,2005,88:35-40.
    [103]Sum Elaine Y. L. The recovery of metals from electronic scrap [J]. Journal of Metals, 1991, (43):53-68.
    [109]Hoffmann J. E. Recovering precious metals from electronic scrap [J]. Journal of Metals,1992, (44):43-48.
    [104]Andrea B., Isrun B., Diosnel R., et al. Recycling of printed circuit boards by melting with oxidising/reducing top blowing process[C]. TMS Annual Meeting, Extraction and Processing Division,1997,363-375.
    [105]Mattila H., Virtanen T., Ruuskanen J. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans in flue gas from co-combustion of mixed plastics with coal and bark [J].Chemosphere,1992,25(11):1599-1609.
    [106]The High-Tech Trashing of Asia, February 25,2002, Prepared by:The Basel Action Network (BAN),Silicon Valley Toxics Coalition (SVTC), http://www.ban.org/E-waste/technotrashfinalcomp.pdf
    [107]Anna O.W.Leung, William J. Luksemburg, Anthony S.Wong, Ming H.Wong, Spatial distribution of polybrominated diphepyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China [J]. Environmental Science and Technology,2007, (41):2730-2737.
    [108]Jae-Chun Lee, Jin-Ki Jeong, Eui-Hyuk Kwon, et al. Effect of particle size on the extraction of metallic components from oxidized PCB in high frequency induction furnace [J]. Materials Science Forum,2005, (486-487):317-320.
    [109]Sung-Hwan Jang, Jeong-Whan Han, Jin-Ki Jeong, et al. Effect of slag compositions on the extraction of metallic components from the used PCB [J]. Materials Science Forum,2006, (510-511):634-637.
    [110]Byung-Su Kim, Jae-chun Lee, Seung-Pil Seo, et al. A process for extracting precious metals from spent printed circuit boards and automobile catalysts [J]. JOM,2004, 56(12):55-58.
    [111]Antrekowitsch, H.,Potesser, M.,Spruzina, W., et al. Metallurgical recycling of electronic scrap[C]. TMS Annual Meeting, v 2006, EPD Congress 2006-Proceedings of Sessions and Symposia sponsored by the Extraction and Processing Division of The Minerals, Metals and Materials Society held during the 2006 TMS Annual Meeting, 2006,899-908.
    [112]Les emballages plastiques:de la fabrication a la valorization CCercle National du Recyclage Avril,1999.
    [113]Tange L., Drohmann D. Waste Electrical and Electronic Equipment Plastics with Bromintaed Flame Retardants from Legislation to Separate Treatment Thermal Processes[J]. Polymer Degradation and Stability,2005,88:35-40.
    [114]Philippe Dessain, Muriel Guigui. Les modes de valorization des dechets plastiquesnovembre,1996.
    [115]Valorisation des dechets en composites thermodurcissables. RECYCOMP, octobre, 2003.
    [116]苏杨,周宏春.发展循环经济的几个基本问题[J].经济理论与经济管理,2004.
    [117]吴自强,许士洪,刘志宏.废旧塑料的综合利用[J].现代化工,2001,21(2):9-12. Guillermina Burilloa, Roger L. Cloughb, Tibor Czvkovszkyc. Polymer recycling-.Potential Application of Radiation Technology[J]. Radiation Physics and Chemistry,2002,64:41-51.
    [118]Kazuhiko Takuma, Yoshio Uemichi, Akimi Ayame. Product Distribution from Catalytic Degradion of Polyethylene over H-gallosilicate[J]. Applied Catalysis A:General,2000,192:273-280.
    [119]张向和,蒋良伟,汪志勇.废弃塑料生产涂料的工艺研究[J].环境工程,1998,16(1):44-46.
    [120]Recyclage Chimique des Matieres Plastiques Rapport Final. ADEME,2002.
    [121]Grause, G, Furusawa, M., Okuwaki, A., Yoshioka, T.,2008. Pyrolysis of tetrabromobisphenol-A containing paper laminated printed circuit boards. Chemosphere,71 (5).872-878.
    [122]Long, L.S., Sun, S.Y., Zhong, S.. Dai, W.C., Liu, J.Y., Song, W.F.,2010. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards. Journal of Hazardous Materials,177 (1-3),626-632.
    [123]徐敏,李光明,贺文智,等.废弃印刷线路板热解回收研究进展[J].化工进展,2006,25(3):297-300.
    [124]台湾经济部工业局,财团法人台湾绿色生产力基金会.印刷电路板业资源化应用技术手册[M].台湾:经济部工业局馆,2003.
    [125]孙路石.废弃印刷电路板的热解机理及产物回收利用的试验研究[D].武汉:华中科技大学,2004.
    [126]Peng Shao-hong, ChenLie-qiang, Cai Ming-zhao, et al. Forming and scavenging of hydrogen bromide during pyrolysis of waste printed circuit boards [J]. Journal of South China University of Technology (Natural Science),2006,34 (10):15-19+24.
    [127]Quan, C, Li, A., Gao, N.,2009. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Manage,29 (8),2353-2360.
    [128]Hall W.J., Williams P.T.. Separation and recovery of materials from scrap printed circuit boards[J]. Resources, Conservation & Recycling,2007,51 (3):691-709.
    [129]Chien Yi-Chi, Wang H. Paul. Liquefaction of printed circuit board wastes with product oil recycling [J]. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering,2000,35(4):635-644.
    [130]Blazso M., CzegenyZs., Csoma Cs.. Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,2002,64 (2):249-261.
    [131]Peng Shao-hong, Chen Lie-qiang, Cai Ming-zhao, et al. Distribution of heavy metals during pyrolysis of waste printed circuit boards [J]. Journal of Coal Science and Engineering,2006,12 (1):105-109.
    [132]Hornung A., DonnerS., Balabanovich A., et al. Polypropylene as a reductive agent for dehalogenation of brominated organic compounds [J]. Journal of Cleaner Production,2005,13(5):525-530.
    [133]Hall William J., Williams Paul T. Processing waste printed circuit boards for material recovery [J]. Circuit World,2007,33 (4):43-50.
    [134]Lai Yi-Chieh, Lee Wen-Jhy, Li Hsing-Wang, et al. Inhibition of polybrominated dibenzo-p-dioxin and dibenzofuran formation from the pyrolysis of printed circuit boards[J]. Environmental Science and Technology,2007,41 (3):957-962.
    [135]Vasile Cornelia, Brebu Mihai Adrian, Karayildirim Tamer, et al. Feedstock recycling from plastics and thermosets fractions of used computers. Ⅱ. Pyrolysis oil upgrading [J]. Fuel,2007,86 (4):477-485.
    [136]孙路石,陆继东,曾丽,等.印刷线路板热分解动力学特性[J].华中科技大学学报(自然科学版),2001,29(12):40-42.
    [137]彭科,奚波,姚强.印刷电路板基材的热解实验研究[J].环境污染治理技术与设备,2004,5(5):34-37.
    [138]熊祖鸿,李海滨,吴创之,等.印刷线路板废弃物的热解与动力学实验研究[J].环境污染治理技术与设备,2006,7(10):47-50.
    [139]Chien Yi-Chi, Wang H. Paul, Lin Kuen-Song, et al. Fate of bromine in pyrolysis of printed circuit board wastes[J]. Chemosphere,2000,40(4):383-387.
    [140]Luda M P, Balabanovich A I, Camino G. Thermal decomposition of fire retardant brominted epoxy resins [J]. J. Anal. Appl. Pyrolysis,2002,65(1):25-40.
    [141]Blazso M., CzegenyZs., Csoma Cs.. Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,2002,64 (2):249-261.
    [142]Hornung H, Dormer S, Balabanovich A, et al. Polypropylene as a reductive agent for dehalogenation of brominated organic compounds [J]. Journal of Cleaner Production, 2005,13(5):525-530.
    [143]Gan Ge, Chen Lie-Qiang, Peng Shao-Hong. et al. Vacuum pyrolysis of waste print circuit board[J]. Journal of Coal Science and Engineering,2005,11 (1):67-70.
    [144]甘舸,陈烈强,蔡明招,等.线路板废渣的真空热解动力学[J].华南理工大学学报(自然科学版),2006,34(3):20-22+33.
    [145]Sun J., Wang W. L., Liu Z., Ma Q. L., Zhao C, Ma C. Y., Kinetic Study of the Pyrolysis of Waste Printed Circuit Boards Subject to Conventional and Microwave Heating [J]. energies,2012,5(9):3295-3306.
    [146]陈烈强,彭绍洪,甘舸,等.废旧电子电气设备的资源化与无害化技术[J].环境科学与技术,2005,28(3):90-92.
    [147]Chaala A, Roy C. Production of coke from scrap tire vacuum pyrolysis oil [J]. Fuel Processing Technology,1996, (3):227-239.
    [148]Miranda R, Yang J, Roy C, Vasile C. Vacuum pyrolysis of PVC (Ⅰ):Kinetic study [J]. Polymer Degradation Stability,1999, (64):127-144.
    [149]Roy C, Chaala A. Vacuum pyrolysis of automobile shredder residues [J]. Resources Conservation Recycling,2001, (32):1-27.
    [150]Iji M,Jkuta Y.Pyrolysis-Based Material Recovery from Molding Resin for Electronic arts [J]. Journal of Environmental Engineering,1998,124(9):821-828.
    [151]彭绍洪,陈烈强,甘舸,等.废旧电路板真空热解[J].化工学报,2006,57(11):2720-2726.
    [152]杨帆,孙水裕,刘静勇,等.废线路板热解油各馏分的成分分析[J].功能材料,2013,44(2):249-252+257.
    [153]Lopez-Urionabarrenechea A., de Marco I., Caballero B.M., et al. Catalytic stepwise pyrolysis of packaging plastic waste [J]. Journal of Analytical and Applied Pyrolysis, 2012,96.
    [154]Balabanovich A.I., Hornung A., Merz D., et al. The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins[J]. Polymer Degradation and Stability,2004,85(1).
    [155]Lopez-Urionabarrenechea A., de Marco I., Caballero B.M., et al. Catalytic pyrolysis of plastic wastes with two different types of catalysts:ZSM-5 zeolite and Red Mud[J]. Applied Catalysis B-Environmental,2011,104:3-4.
    [156]由世俊,郑万冬,张欢,等.生物质炭催化裂解生物质热解焦油技术研究[J].煤气与热力,2012,32(7):24-27.
    [157]田喜强,田军,董艳萍,等.负载钻介孔分子筛催化热解甲醇制备碳纳米管[J].材料导报:纳米与新材料专辑,2012,26(1):63-65.
    [158]Kar Y, Sen N. Catalytic pyrolysis of the oily seeds of Styrax officinalis L for bio-fuels and valuable industrial chemicals[J]. Environmental Progress & Sustainable Energy, 2012,31(4):619-627.
    [159]Girisuta B, Kalogiannis K G, Dussan K, et al. An integrated process for the production of platform chemicals and diesel miscible fuels by acid-catalyzed hydrolysis and downstream upgrading of the acid hydrolysis residues with thermal and catalytic pyrolysis[J]. Bioresource Technology,2012,126(1):92-100.
    [160]Li X. Y., Su L., Wang Y. J., et al. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons [J]. Frontiers of Environmental Science & Engineering in China,2012,6(3):295-303.
    [161]Huang W. W., Gong F. Y., Fan M. H., et al. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6 wt.% lanthanum[J]. Bioresource Technology,2012,121(1):248-255.
    [162]孙立梅,李明远,彭勃,等.水溶性酚醛树脂的合成与结构表征[J].石油学报(石油加工),2008,24(1):63-68.
    [163]黄发荣,焦杨声.酚醛树脂及其应用[M].北京:化学工业出版社,2003.
    [164]孙路石,陆继东,王世杰,等.溴化环氧树脂印刷线路板热解产物的分析[J].华中科技大学学报(自然科学版),2003,31(8):50-52.
    [165]刘兰华,王莉.侯凯军,等.催化裂化汽油色谱模拟蒸馏方法的改进[J].炼油与化工,2009,20(1):49-51.
    [166]彭绍洪,陈烈强,蔡明招,等.用废旧电路板热解油制备酚醛树脂[J].化工环保,2008,28(3):262-265.
    [167]邝代治,张志坚,冯泳兰,等.羟基在苯酚亲电取代反应中的定位作用[J].化学教学,2010,(3):1-3.
    [168]许杰.国内外石油萘生产技术进展[J].化学工业与工程技术,2002,23(2):30-34.
    [169]Dung N.A., Klaewkla R., Wongkasemjit S., et al. Light olefins and light oil production from catalytic pyrolysis of waste tire [J]. Journal of Analytical and Applied Pyrolysis, 2009,86(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700