用户名: 密码: 验证码:
提高热电材料β-FeSi_2转化率的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球环境污染和能源危机的日益严重,开发新型环保能源替代材料已越来越受到世界各国的重视。β-FeSi_2是一种半导体热电材料,可在高温环境中工作,具有在500~900℃温度范围内的高温热电转换功能;β-FeSi_2具有抗氧化性强、原料来源丰富、性能稳定、价格低廉等优点,选用低纯度的工业原料进行制备对其热电性能无明显影响;另外,在β-FeSi_2制备过程中掺杂微量的Cu、Co、B、Al等元素可以形成p型或者n型半导体,明显提高了β-FeSi_2的热电性能,避免由于半导体两只脚材料的热膨胀系数不同而引起的热电元器件制作上的困难。正是由于以上优点,β-FeSi_2已成为一种很有发展前途的热电材料。
     本文采用燃烧合成-热处理工艺合成热电材料β-FeSi_2,用简单的方法来快速制备高纯度的β-FeSi_2。使用该工艺可以提高β-FeSi_2的实际应用价值,为该材料的广泛推广应用、直接投入工业生产降低了成本。本文以Fe粉、Si粉、KNO_3为原料,通过球磨混料增加反应物的机械能,经过球磨工艺后的试样有利于燃烧合成反应的进行。本文从以下几个方面进行了研究:1.对比分析掺杂Cu和不掺杂Cu对最终合成产物β-FeSi_2的影响,总结掺杂形成p型或者n型半导体的机理;2.在配料阶段通过改变铁硅原子配比,研究不同的硅含量对合成产物β-FeSi_2转化率的影响;3.对于燃烧合成的中间产物α-Fe_2Si_5选用箱式电阻炉分别选取不同的保温温度、保温时间进行退火处理,之后进行XRD分析,总结相转变α-Fe_2Si_5→β-FeSi_2合理的热处理工艺。
     研究表明:1.掺杂0.5 at%的Cu在热处理过程中能显著提高共析反应(α→β+Si)的反应进程,完全地将α-Fe_2Si_5转变为β-FeSi_2,形成P型半导体,而未掺杂Cu的燃烧合成产物经过热处理工艺,XRD衍射图谱显示始终存在相转变不完全的α-Fe_2Si_5相;2.以不同的铁硅原子比例配制的原料经过燃烧合成-热处理工艺制备热电材料β-FeSi_2,对其转化率有较大的影响,在混料阶段按Fe:Si=1:3的原子比例制备β-FeSi_2,XRD分析表明,过量的Si单质提高了Si+ε→β的相转变过程,很大程度上能够消除ε相,增加β-FeSi_2的含量;3.当热处理条件为800℃、2h时完全消除了α-Fe_2Si_5相,β-FeSi_2峰值最强,产物颗粒尺寸明显减小,大尺寸颗粒消失,内部组织比较均匀。
As global environmental pollution and the growing energy crisis,the development of new environmentally friendly energy alternative materials have attracted more and more concern all over the world.β-FeSi_2 is a semiconductor thermoelectric materials that can work in high temperature environments,has high temperature thermoelectric conversion function in the temperatures range of 500~900℃.β-FeSi_2 have many advantages such as oxidation resistance, rich sources of raw materials, stable performance and prices, more over, there are not significantly affect on the preparaed thermoelectric performance when choose low purity of industrial raw material.In addition,doped with trace elements of Cu、Co、B、Al etc during the preparation ofβ-FeSi_2 formed p-type semiconductor or n-type semiconductor can improve the thermoelectric performance ofβ-FeSi_2 obviously and avoid the difficulty of making thermoelectricity components due to the different thermal expansion coefficient of the semiconductor two feet materials.Because of the above advantages,β-FeSi_2 has become a promising thermoelectric materials.
     In this paper,we synthesis the thermoelectric materialsβ-FeSi_2 by the way of combustion synthesis-heat treatment process, with simple way to prepare high purity ofβ-FeSi_2. This technology can improve the practical application value ofβ-FeSi_2 and reduce the cost of application of this materials widely and investment in industrial production directly. We take the powders of Fe、Si and KNO_3 as raw material,increase the mechanical energy through the ball mill mixing that be helpful for reactants the synthesis reaction. This paper study the following aspects:1.Comparative analysis the effects of doped copper and no-doped copper on final synthesis productsβ-FeSi_2, summarized the doped mechanism of formation p-type or n-type semiconductor. 2.Effect of different silicon content on the productivity of synthesis materialβ-FeSi_2 by change the atomic ratio of Fe to Si in the mixing stage. 3.For combustion synthesis intermediate productsα-Fe_2Si_5, we selected different insulation temperature and holding time to annealing treatment by box resistance furnace, then analyzed by means of X-ray diffraction(XRD), and summarized reasonable treatment parameters of phase transformation ofα-Fe_2Si_5→β-FeSi_2.
     The results show that 0.5 at% copper doped in heat-treatment process could accelerate eutectoid reaction precess (α→β+Si),the transformation fromα-Fe_2Si_5 phase toβ-FeSi_2 phase is completely and finally formed P-type semiconductor. In xrd spectrum of combustion products not doped Cu after heat-treatment,α-Fe_2Si_5 phase always be found.Thermoelectric materialβ-FeSi_2 was prepared by the method of combustion synthesis-heat treatment process, Samples ofβ-FeSi_2 were prepared in the mixing stage and the atomic ratio of Fe to Si was 1:3,the XRD analysis shows that the excessive content of silicon accelerated the phase transformation of Si+ε→β,andεphase was eliminated in a large extent,the content ofβ-FeSi_2 increased.When the heat treatment temperature was 800℃,α-Fe_2Si_5 phase eliminated absolutely in 2h,when the diffraction peak ofβ-FeSi_2 displayed the maximum value.Further more,the particle size of products reduced significantly,large-size particles disappeared,and the internal structure of products became more uniform.
引文
[1]周金金,张文丽.热电材料的现状及特点[J].河北理工大学学报.2009,31(02):77-79
    [2]况学成,郝恩奇.热电材料及其研究现状[J].中国陶瓷工业.2008,15(05):27-30
    [3]陈东勇,应鹏展,崔教林等.热电材料的研究现状及应用[J].材料导报.2008,22:280-282
    [4]唐兆官,赵新兵,朱铁军等.Ag-Bi—Sb-Te四元合金的热电性能[J].功能材料,2007,38(2):246
    [5]卫群,刘丹敏,张忻等.方钴矿热电材料的研究进展[J].稀有金属,2006,30(04):517-521
    [6] Nolas G.S,Kaeser M,Littleton R.Tet a1.Partially—filledskuttemdites:optimizing the thermoelectric properties.Materials Research Society Symposium Procedings,2001, 326:Z10
    [7] Li S W,Funahashi R,Matsubara I et a1.High tempera-ture properties of oxide Ca9 Co12O28 [J].J.Mater.Chem,1999,9:1659
    [8]张忻,张久兴,路清梅等.氧化物热电材料研究进展[J].材料导报,2004,18(02):26
    [9]朱文,杨君友,崔昆等.热电材料在发电和制冷方面的应用前景及研究进展[J].材料科学与工程.2002,20(04):585-588
    [10]于军,徐桂英.热电材料发展动态[J].材料导报.2005,19(03):28-31.
    [11]周芸,周兆,沈蓉.机械合金化制备β-FeSi_2热电材料的研究[J].粉末冶金技术,2004,22(04):228-231
    [12]李伟文,赵新兵,邬震泰等.含Sm和Cr的P型FeSi_2基热电材料的电学特性[J].有色金属,2002,54(02):5-7
    [13] Hiroshi Nagai.Effects of mechanical alloying and gringing on the preparation and thermoelectric properties of FeSi_2[J].Mater Trans JIM,1995,36(02):365-372
    [14] Minoru Umemoto.Preparation of thermoelectricβ-FeSi_2 doped with AL and Mn by mechanical alloying[J].Mater Trans JIM,1995,36(02):372-383
    [15] D Leong,M Harry,K J Recscn,K P Homewod.A Silicon/Iron-Disilicide Light-Emitting Diode Operating at a Wavelength of 1.5μm[J].Nature.1997,387(6634),686—688
    [16] C.M.Sun,H.K.Tsang,S.P.Wong,N.Ke,S.K.Hark.Correlation between impurities in Fe–Si amorphous layers synthesized by Fe implantation and photoluminescence property ofβ-FeSi_2 precipitates in Si[J].Journal of Luminescence.2008,(128):1841–1845
    [17] Ozvold M,Dubnicka M,Gasparik V.The Temperature Dependence of the Direct gap ofβ-FeSi_2 Films [J].SolidFilms.1997,295(1-2):147-150
    [18]闫万蟊,周士芸,桂放.β-FeSi_2的结构、光电特性及应用[J].安顺学院学报.2009,11(01): 247-250
    [19] K.Hattori,Y.Murata,A.N.Hattori,H.Daimon.Growth of Fe silicides on Si(111) surfaces from bcc-Fe to fine-polycrystal andβ-FeSi_2 phases[J].Vacuum.2009.31(06):1-5
    [20]马秋花,路朋献.β-FeSi_2基热电材料的研究进展[J].稀有金属快报.2006,25(07):1-5
    [21]李晓娜,聂东,董闯.碳掺杂β-FeSi_2薄膜的电子显微学研究[J].电子显微学报.2002.21(01):43-51
    [22]陈秀娟,王思谦,马淑芬等.燃烧合成铁硅金属间化合物[J].粉末冶金工业.2009,19(03):24-28
    [23] Birkholz U , Schelm J.Mechanism of electrical conduction inβ-FeSi_2[J] ,Phys.Stat.Sol.1968(27):413-425
    [24] Nishida I.Study of semiconductor-to-metal transitionin Mn-doped FeSi_2[J].Phys.Rev.1973,(07):2710-2713
    [25] Kojima T,Shkata M,Nishida L.Formation ofβ-FeSi_2 from the sintered eutectic alloy FeSi-Fe_2Si_5 doped with cobalt [J].Less-Common Metals.1990(159):299-305
    [26] Isamu Yamanchi , Takashi Okamoto , Hajime Ohata and Itsuo Ohnaka.β-phase Transformation and thermoelectric power in FeSi_2 and Fe_2Si_5 based alloys containing small amounts of Cu[J].Alloys and Compounds.1997(26):162-171
    [27] J.Derrien , J.Chevrier , V.L.Thanh , J.E.Mahan.Semiconducting Silicide-silicon Heterostructures:Growth Properties and Applications[J].Applied Surface Science.1992,58(02):382-393
    [28] ZhaoX B,Zhu T J,Hu S H,Zhou B C.Transport properties of rapid solidified Fe-Si-Mn-Cu thermoelectric alloys [J].Journal of Alloys and Compounds.2000,306:303-306
    [29] Takeshi Negase,Isamu Yamauchi,Itsuo Ohnaka.Effect of rapid solidification on Microstructure of various Fe 25.9-xSi70.5-x alloys [J].Alloys Comp.2003,(12):295-301
    [30] Zhu T J,Zhao X B.Transport Properties of P-Typeβ-FeSi_2 Semiconductor Prepared by Rapid Solidification [J].Functional Materials.2001,32(03):280-283
    [31] Jalrarez J , Hinarejos J , Gmichel E.Surface Characterization of Eptitaxial Semicongducting FeSi_2 Grown on Si(001)[J].Appl Phys Lett.1991,59 (1):99-101
    [32] Chen Haiyan,Zhao Xinbing Mueler Eckhard.Microstructures of FeSi_2 Based Therm oelectric Materials Prepared by Rapid Solidification and Hot Pressing[J].Journal of University of Science and Technology Beijing.2004,11(01):60-70
    [33] Nogi K,Kita T.Rapid Production of FeSi_2 by Sparking[J].P1asma Sintering Journal of Materials Science.2000,35:5845-5849
    [34]周幼华.脉冲激光沉淀法制备β-FeSi_2半导薄膜的研究[D].武汉:华中科技大学,2007:19-22
    [35] H.Udono,I.Kikuma.Electrical Properties of p-typeβ-FeSi_2 Single Crystals Grown from Ga and Zn Solvents[J].Thin Solid films.2004,461:188-192
    [36] H.Udono,S.Takaku,1.Kikuma.Crystal Growth of Beta-FeSi_2 by Temperature Gradient Solution Growth Method Using Zn Solvent[J].Journal of Crystal Growth.2002,239(03):1971-1975
    [37] H.Udono,I.Kikuma,T.Okuno,Y Masumoto,H.Tajima,S.Komuro.Optical Properties ofβ-FeSi_2 Single Crystals Grown from Solutions[J].Thin Solid films.2004,46(01):182-187
    [38] C.Gras,E.Gaffet,F.Bernard and J.C.Niepce.Enhancement of self-sustaining reaction by mechanical activation : case of an Fe-Sisystem[J].Materials Science and Engineering.1999,264 (1-2):94-107
    [39] C.Gras,N.Bernsten,F.Bernard and E.Gaffet.The mechanically activated combustion reaction in the Fe–Si system : in situ time-resolved synchrotron investigations[J].Intermetallics.2002,10(03):271-282
    [40] Ch.Gras,N.Zink,F.Bernard and E.Gaffet.Assisted self-sustaining combustion reaction in the Fe-Si system : Mechanicaland chemical activation[J].Materials Science and Engineering.2007,456(02): 270-277
    [41]祝红芳,沈鸿烈,尹玉刚等.β-FeSi_2薄膜的结构与光电特性[J].南昌大学学报(理科版).32 (03): 247-249
    [42] Liu Zhengxin,Wang Shinan,Otogawa N.A Thin-film Solar Cell of Highqualityβ-FeSi_2/Si Heterojunction Prepared by Sputtering[J].Solar Energy Materials and Solar Cells,2006,90:276 -282.
    [43] Leong D,Harry M,Reeson K J.A silicon/iron-di-silicide light emitting diode operating at a wavelength of 1.5μm[J].nature.1997,387:686-688
    [44]陈荔群,李成,赖虹凯.β-FeSi_2材料的生长、性质及其在光电子器件中的应用[J].中国材料科技与设备.2006(03):16-19
    [45] Cui J L.Optimization of P-Type Segmented FeSi_2/Bi2Te3 Thermoelectric Material Prepared by Spark Plasma Sintering[J].Materials Letters.2003,57:4074-4078
    [46] Ozvold M,Dubnicka M, Gasparik V.The Temperature Dependence of the Direct gap ofβ-FeSi_2 Films[J].Solid Films.1997,295(1-2):147-150
    [47]李伟文,赵新兵,周邦昌.β-FeSi_2热电材料的研究进展[J].材料导报.2002,16(05):14-16
    [48] Ito M,Nagai H,Oda E.Thermoelectric Properties ofβ-FeSi_2 with B4C and BN Dispersion by Mechanical Alloying[J].JournalofMaterialsScience.2002,37:2609-2614
    [49] Merzhanov A G. Inter.SHS. 1997,6(02):119
    [50]殷声.燃烧合成的发展现状[J].粉末冶金技术.2001,19(02):93-97
    [51]殷声主编,燃烧合成[M],北京:冶金工业出版杜.1999
    [52]殷声主编.自蔓延高温合成技术和材料.北京:冶金工业出版社,1995
    [53]梁丽萍,刘玉存,王建华.自蔓延高温合成的发展前景[J].2006,35(09):716-718
    [54] Cobb P C,Titanium.Carbide as a sintering agent for titanium boride[J].Material and Design.1998,11(03):378.
    [55]王月花,任尚坤.自蔓延高温合成新技术[J].2003.20(05):30-33
    [56]付正义,袁润章,Munir z A. TiC的SHS过程理论分析[J].硅酸盐学报,1993,21(06):547
    [57]王声宏.自蔓延高温合成(SHS)技术的最新进展[J].粉末冶金工业,2001,4(02):26-34.
    [58]陈志君,傅正义,王皓等.铁氧体材料研究进展[J].陶瓷科学与艺术,2003,(03):31-35.
    [59]高林辉.激光诱导自蔓延反应合成准晶和非晶材料[D].辽宁:辽宁工程技术大学,2002:35-48
    [60]张瑞珠,郭志猛.自蔓延高温合成(SHS)法固化核废料研究现状及发展[J],现代技术陶瓷,2003,(4):l9-22.
    [61]李伟文,赵新兵等.Co对重掺Sm的FeSi_2基热电材料电学性能的影响[J],中国有色金属学报,2002,12(05):103-106
    [62] T.Kojima,K.Masumoto,et al.Formation ofβ-FeSi_2 from the sintered eutectic alloy FeSi-Fe_2Si_5 doped with cobalt[J],Journal of the Less-Common Metals,1990,159:299-305
    [63] I.Nishida.Study of semiconductor to metal transition in Mn-doped FeSi_2[J].Physical Review.1973,7(06):2710-2713

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700