滞环控制方式实现LED恒流驱动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新一代光源—白光LED在如今的照明领域中拥有巨大的潜力。相比于传统光源,LED的优势明显,例如高发光效率、高响应速度、低功耗、小尺寸、长寿命等优点。LED广泛应用于背光、闪光灯、屏幕显示、信号指示及交通工具等各个方面。由于应用中对白光LED亮度均匀性的要求,以及白光LED自身的正向导通电压大、电学参数离散性大、容易受温度影响等特点,需要LED驱动电路来保证白光LED的正常工作。白光LED的迅速发展同时也推动了LED驱动电路的前进,如今,LED驱动集成电路已成为电源管理的重要组成部分。
     本文首先讨论了LED驱动的发展。目前,驱动LED的方式主要有恒压驱动和恒流驱动两种形式,由于LED的发光亮度主要受其驱动电流的影响,而恒流驱动方式可以消除温度和工艺等因素引起的正向电压变化所导致的电流变化,保证恒定的LED亮度,所以恒流驱动是非常普遍的方式。本文就着手于设计一种LED恒流驱动模式。
     关于恒流驱动模式,本文讨论了线性调整型、电容式开关型和电感式开关型三种驱动方案,通过对各种恒流调制原理的分析,指出滞环电流控制是一种具有自稳定性、系统结构简单的恒流调制方式。
     本文设计了一款降压型LED恒流驱动芯片的滞环控制电路。该芯片采用高边电流检测方案,运用滞环电流控制方法对驱动电流进行滞环控制,从而获得恒定的平均驱动电流。设计采用简单的设计理念实现恒流驱动,不需要复杂的电路分析,能实现精确的电流控制,且自身具有稳定性。内部电路主要模块包括电压调整器、带隙基准、两级折叠式运算放大器、比较器、输出驱动电路和功率开关管等。
     本文对于各个模块进行具体的设计与仿真,最后对整体电路的工作过程进行了分析和仿真,同时为确保设计合理性对系统的各种关键性能进行了验证,结果表明,该电路满足设计要求。芯片采用5V/18V/40V CDMOS工艺研制,电源电压范围为4.5V-28V,工作温度-40℃-+125℃,可为LED提供350mA左右驱动电流,通过调节外部检测电阻,可调节恒定LED驱动电流。外部提供DIM信号,通过DIM的占空比来调节LED的亮度。Hspice仿真结果显示:LED驱动电流为滞环变化的三角波,恒流精度约为6.3%。
In the lighting field, The new-generation photosourcen White-Light LED has great market potentials. Compared with the traditional lighting sources, the advantages of LEDs are obvious, such as high luminous efficiency, high response speed,low power consumption, small size, long life, and so on. LEDs have been widely applied to back lighting, flashlamp, screen display, the signal direction and transportation means. Considering characteristics of white LEDs and necessity of uniform brightness, white LEDs need to be driven by special power management circuits.The boom of white LED greatly promotes the development of integrated circuits for driving LED, which begins to play an important role in the market of power management.
     In the paper, the development of LED driving is introduced at first. At present, there are two driving mode for LED-constant voltage driving and constant current driving. Luminance is mainly controlled by LED driving current, but the constant current driving can eliminate the change of current in the LEDs caused by the voltage change with the changes of temperature and process, so that we can achieve a constant brightness of the LED and the control mode of constant-current driving is a common way. LED-constant current driving is presented in this paper.
     As for the control mode of constant-current driving, the hysteresis-current control technique has advantages of simple structure, Self-stabilization and practicality. Three kinds of methods for driving LED(linear regulation mode, capacitor switching mode, inductor switching mode) are discussed in this paper. Though the analysis of several modes of constant-current control, it is concluded that the hysteresis-current control mode is very suitable for driving LED due to its self-stability and simplicity.
     A chip which is used in the buck application to drive white LED with a constant current is proposed in this paper. Using high-side current sensing topology, it controls the driving current for LED to be averagely constant through hysteresis-current control technique. The chip realizes constant-current driving without complicated circuit design, provides the accurate control of current and self stabilization. The chip is mainly composed of a voltage regulator, a bandgap reference, a two-stage folded operational amplifier, a comparator, an output driving circuit and a power MOSFET.
     All the sub-circuit are designed and simulated, at last the synthetic circuit is simulated, the key parameters of the synthetic circuit are verified by Hspice, and the results of simulation meet the function requirement. It is designed and fabricated with a 0.5um 5V/18V/40V CDMOS process with input voltage ranged from 4.5V to 28V, with working temperature ranged from-40℃to+125℃. The chip can provide a driving current of 350mA for LED, it can provide an adjustable driving current through adjusting the outside current-sensing resistor. The duty cycle of the signal DIM can be adjusted to realize lightness regulation of LED. Hspice shows that LED driving current is hysteresis, and the Precision of constant current can be controlled within the range of 6.3%.
引文
[1]杨清德,康娅等.LED及其工程应用.人民邮电出版社,2007:8,10-12
    [2]崔元日,潘苏予.第四代照明光源-白光LED.灯与照明.2004,28(2):31-34
    [3]刘行仁,薛胜薜,黄德森.白光LED现状和问题.光源与照明.2003,3:4-8
    [4]Cheng, Y. K, Cheng, K.W.E. General Study For Using LED to Replace Traditional Lighting Devices. The 2th International conference on Power Electronics Systems and Applications.2006:172-177
    [5]尹长安,赵成久.白光LED的最新进展.发光学报.2000,21(4):380-382
    [6]叶钟良.第四代光源-白光LED.电子产品世界.2007(01):28-30
    [7]王晓明,郭伟玲,高国等.LED-新一代照明光源.现代显示.2005(07):15-19,41
    [8]吕慧敏,蔡永泉.节能高手-LED的应用.现代显示.2006,70(11):49-52
    [9]大谷义彦,夏晨.LED照明现状与未来展望.中国照明电器.2007(06):20-24
    [10]王占庆,石瑞林.发光二极管(LED).灯与照明.2005,29(03):52-55
    [11]汪敏,夏咸军.新型LED背光源技术及应用.光电子技术.2005,25(04):267-270
    [12]姜伟.最新的LED应用-白光LED.中国照明电器.2005,1:27-28
    [13]Philips Lumileds Lighting Company. Lux eon Ⅲ star Technical Datasheet [EB/01]. http://www.lumileds.com/pdfs/DS46.pdf.2006-4-3
    [14]Karl R Volk.白色LED的恒流驱动.电子产品世界.2003(09):57-58
    [15]Chia-Ming Lee. High-Brightness inverted InGaN-GaN multiple-quantum-well Light-Emitting Diodes without a transparent conductive layer. IEEE Electron Device Letters.2003,3 (24):156-158
    [16]平立.白光LED驱动综述.现代显示.2006,6:44-48
    [17]李震梅,董传岱.无源有机电致发光显示驱动电路的研究.电路与应用.2005,2:39-43
    [18]张赛,李冬梅.一种高效率白光LED驱动器的设计.微电子学.2007,37(03):428-431
    [19]颜重光.手机LCD背光驱动电荷泵的选择.电子产品世界.2002,8:37-380
    [20]王大鹏,陈昌龙.新型白光LED驱动电路.现代显示.2006(06):99-102
    [21]Vorperian V. Simplified analysis of PWM converters using model of PWM switch - Part Ⅰ:Continuous conduction mode. IEEE Trans. Aerospace Electron.Syst.1990 (26):490-496
    [22]戴显治.一种高效率的PFM控制策略.微电子学.2003,133(05):387-389
    [23]郭创,张宗麟,樊蓉.常规开关电源拓扑结构及典型应用电路.电子元件与材料.2003,22(08):38-41
    [24]华伟.通信开关电源的五种PWM反馈控制模式研究.通信电源技术.2001(02):8-11
    [25]Masksimovic D, Arbetter B. Feedforward Pulse-Width Modulator for Boost DC-DC Power Converters. Electronics Letters.1995,31 (07):513-514
    [26]Cheung Fai Lee, Philip K T Mok. A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current-Sensing Technique. IEEE J. Solid-State Circuits.2004,39 (01):3-14
    [27]Cheng-Chung Y, W.Chen-Yu, K.Tai-Haur.Current-Mode Converters with Adjustable-Slope Compensating Ramp in Circuits and Systems.IEEE Asia Pacific Conference on 2006
    [28]刘虹,沈天行.LED进入普通照明市场的预测及照明节电分析.照明工程学报.2005:16(3):19-22
    [29]方佩敏.白色LED驱动器的发展概况.今日电子.2005,9:54-59
    [30]谢治中.一种新型滞环电流控制电路的设计.电子器件.2008,31(6):1895-1898
    [31]Ronat Odile, Green Peter, Ragona Scott.Accurate Current Control to Drive High Power LED Strings. Proceedings of IEEE Applied Power Electronics Conference and Exposition.2006:376-380
    [32]周志敏,周纪海等.LED驱动电路设计与应用.人民邮电出版社,2006:94
    [33]虞志雄.脉宽调制型白光LED驱动芯片的设计.浙江大学研究生学位论文.2006.5:17
    [34]郑晓东.大功率照明白光LED恒流驱动电路设计与研究.浙江大学研究生学位论文.2008.6:35
    [35]毕查德.拉扎维,程贵灿译.模拟CMOS集成电路设计.西安交通大学出版社三版,2003:189-256
    [36]Phillip KT. Mok, Ka Nang Leung. Design Considerations of Recent Advanced Low-Voltage Low-Temperature-Coefficient CMOS Bandgap Voltage Reference. IEEE 2004 CUSTOM Integrated Circuits conference:635-642
    [37]Gabriel A. Rincon-Mora and Phillip Allen, A 1.1V Current-Mode and Piecewise-Linear Curvature-Corrected Band-gap Reference. IEEE J. Solid-State Circuits.1998,33(10):1551-1554
    [38]Bang-Sup Song, Paul R. Gray, A Precision Curvature-Compensated CMOS Band-gap Reference, IEEE J. Solid-State Circuits.1983,18(6):634-643
    [39]刘家洲.采用二阶温度补偿能隙基准电压的电压源.中国专利:02283465.6,2003
    [40]Tsivides Y P. Accurate analysis of temperature effects in Ic-VBE characteri-stics with application to bandgap reference sources. IEEE J. Solid-State Circuit-s.1980,15(6):1076-1084
    [41]连全文.共源共栅两级运放中两种补偿方法的比较.微电子学与计算机.2009,26(7):191-197
    [42]Zeki A, Kuntman H. Accurate and high output impedance current mirror suit-able for CMOS current output stage. Electronics Letters.1997,33(12): 1042-1043
    [43]Baker M.W. Sarpeshkar R.A. Low-power high-PSRR current-mode micropho-ne preamplifier. IEEE J. Solid-State Circuits.2003,38(10):1671-1678
    [44]Joseph N. Babanezhad. A Low-output-impedance fully differential OP Amp with large output swing and continuous-time common-mode feedback. IEEE J. Solid-State Circuits.1991,26(12):147-148
    [45]Paul c.Yu. Hae-Seung Lee.A. High-swing 2V CMOS Operational Amplifier with Replica-Amp gain enhancement. IEEE J. Solid-State Circuits.1993,28 (12):248-250
    [46]Chong-Gun Yu. Randall L Geiger. An Automatic offset compensation scheme with Ping-Pong control for CMOS Operational Amplifiers. IEEE J. Solid-State Circuits.1994,29(5):151-152
    [47]邵丙铣,郑国祥.MOS集成电路的分析与设计.复旦大学出版社,2002:42-45
    [48]Li N.C. Haviland G.L. Tuszynski A. A CMOS tapered buffer. IEEE J. Solid-State Circuits.1990,25(10):1005-1008
    [49]Jan M.Rabaey, Anantha Chandrakasan, Borivoje Nikolic.数字集成电路—设计透视.第2版(影印版).北京清华大学出版社,2004:207-209
    [50]谢治中.大功率照明LED恒流驱动芯片的研制.浙江大学研究生学位论文.2008.6:43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700