用户名: 密码: 验证码:
岸基对海逆合成孔径雷达舰船目标成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆合成孔径雷达能对运动目标进行成像,是边海防系统的重要组成部分,对国防具有重要意义。在国内,逆合成孔径雷达对舰船目标的成像技术研究尚处于起步阶段。本文面向对近海中小舰船目标成像的军方具体需求,从目标特性、成像方法和海杂波对成像质量的影响三个方面对舰船成像进行了深入的研究。通过实测数据和仿真数据的处理,验证了所得到结论的正确性。
     在海浪作用下,舰船存在六个自由度的摇荡运动。本文从舰船的实际运动状态出发,建立了一个新的舰船目标回波模型,分析了舰船航速、摇摆运动和振荡运动对回波多普勒的影响,指出舰船摆动是岸基逆合成孔径雷达对近海目标成像的主要多普勒来源。然后将舰船耐波性理论引入舰船目标回波特性研究之中,讨论了舰船摆动成像的条件;结合成像投影平面的概念推导出描述回波多普勒与舰船主尺度参数、海面状态参数和舰船与雷达相对位置关系的表达式。并通过实测数据验证了这些结论。
     舰船是典型的非平稳目标,其回波多普勒随时间变化复杂,以至于传统的距离多普勒算法的成像质量大大下降,甚至影响成像结果的判读。因此,必须使用距离瞬时多普勒的成像方法改善成像质量。本文详细介绍了Cohen类时频分布,时频重排,S-Method,LWVD,S-distribution和自适应Chirplet分解等几种方法,并将它们应用于逆合成孔径雷达成像。对实测数据和仿真数据的处理结果验证了这些算法的有效性。
     在近距离,海杂波强度远大于系统噪声,是影响岸基逆合成孔径雷达成像质量的主要因素。在远距离则是接收机内部噪声占优。本文明确了高分辨雷达的信杂比和信噪比概念,通过实测数据与仿真杂波/噪声相叠加的方法详细地讨论了信杂/噪比对包络对齐,相位校正和距离多普勒算法成像质量的影响。仿真的结果说明,杂波对相位校正的影响较大,使图像散焦;而噪声降低了回波间的互相关系数,对包络对齐有较大影响。成像的质量随着信杂/噪比的增大而改善,当信杂/噪比大于25dB时,视觉上分辨不出杂波和噪声对成像效果的影响。
Inverse Synthetic Aperture Radar (ISAR), which can image the moving target, is an essential part for coastal surveillance system, and it has great meaning for national defense. The research on ISAR ship imaging is still in primary stage in our country. In order to meet the military requirement, an explicated research has conducted in this paper from three aspects: the characteristic of the radar echo reflected from ship target, the instantaneous imaging method and the impact of sea clutter over ISAR image. The results of measured and simulated data demonstrate the correctness of these conclusions.
     Driven by the sea wave, the crafts experience a complex motion with six degree of freedom. In this paper, we set a new target echo model based on the real navigation state of ship target, and carefully discuss the impact of each kind of motions, including velocity, the angular oscillations and the translational swings. The results show the angular oscillations provide the main part of rotational Doppler for coastal ISAR. With the help of sea keeping theory, the condition of angular oscillated imaging is discussed, and two formulas which reveal the relationship between the sizes of ship, the sea state, the position of ship and the echo Doppler frequency are proposed. The results of measured data show the validity of these conclusions.
     The echo Doppler reflected from ship target is time-varying due to its complex oscillation. The image retrieved by traditional RD arithmetic is always smeared. In order to improve the imaging quality, range-instantaneous Doppler (RID) must be implemented. In this paper, Cohen’s class, Reassignment, S-method, LWVD, S-distribution and adaptive chirplet decomposition method are applied into measured and simulated data imaging, and the results show the effectiveness of these method.
     Sea clutter is a main factor which limits the performance of marine radar in close distance, while the noise is in the far. In this paper, several groups of measured data of sea clutter are processed, and the clutter environment is analyzed. Then, the concepts of signal-noise-ratio (SNR) and signal-clutter-ratio (SCR) are illustrated for high resolution radar. The impact of sea clutter and noise over radar imaging is discussed by adding the simulated clutter and noise on the measured ISAR data. Then results show that the impact of sea clutter over phase compensation is severe and the impact of noise over range alignment is obvious. The quality of radar image is improved when SNR and SCR increase. When SNR and SCR are above 25dB, the impact of noise and clutter can be neglected.
引文
1 S. Musman, D. Kerr, C. Bachmann. Automatic Recognition of ISAR Ship Images. IEEE Trans on AES. 1996, 32(4): 1392~1404
    2 Atsuto Maki, Kazuhiro Fukui. Ship Identification in Sequential ISAR Imagery. Machine Vision and Applications. 2004, 15(3): 149~155
    3吴照宪.合成孔径雷达成像技术研究.中国科学院硕士学位论文. 2007:2~4
    4 C. C. Chen, H. C. Andrews. Target Motion Induced Radar Imaging. IEEE Trans on AES. 1980, 16(1): 2~14
    5郑泽星.舰船目标ISAR成像研究.哈尔滨工业大学硕士学位论文. 2007: 1~3
    6 M. J. Prickett, C. C. Chen. Principles of Inverse Synthetic Aperture Radar (ISAR) Imaging. EASCON Record. 1980:340~345
    7刑孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐.电子学报. 2001, 29(12A): 1807~1811
    8汪玲,朱兆达.一种基于最大修正峰度的ISAR距离对准算法.南京航空航天大学学报. 2006, 38(6):722~726
    9黄小红,邱兆坤,陈曾平.逆合成孔径雷达运动补偿中一种包络对齐新方法.信号处理. 2006, 22(2):230~232
    10许人灿,陈文彤,黄小红,陈曾平. ISAR成像中一种距离对准的新方法.信号处理. 2006, 22(3): 427~429
    11 Genyuan Wang, Zheng Bao. The Minimum Entropy Criterion of Range Alignment in ISAR Motion Compensation. Conf. Radar 97, Edinburgh, UK, 1997: 236~239
    12 K. K. Eerland. Application of Inverse Synthetic Aperture Radar on Aircraft. International Conference on Radar, Paris, 1984:618~623
    13保铮,邓文彪,杨军.散射“重心”跟踪的ISAR运动补偿方法.西安电子科技大学学报. 1990, 17(3):1~8
    14朱兆达,邱晓晖,佘志舜.用改进的多普勒中心跟踪法进行ISAR运动补偿.电子学报. 1997, 25(3): 65~69
    15黄源宝,郑义明,保铮.基于多特显点综合的SAR/ISAR自聚焦.西安电子科技大学学报(自然科学版). 2001, 28(1):105~109
    16保铮,叶炜. ISAR运动补偿聚焦方法的改进.电子学报. 1996,24(9):74~79
    17 Wei Ye, Tat Soon Yeo, Zheng Bao. Weighted Least-Squares Estimation of PhaseErrors for SAR/ISAR Autofocus. IEEE Trans. on GRS. 1999, 37(5): 2487~2494
    18 Stephen Simmons, Robin Evans. Maximum Likelihood Autofocusing of Radar Images. IEEE international radar conference. 1995: 410~415
    19刑孟道,保铮. ISAR机动目标的平动补偿和瞬时成像研究.电子学报. 2001, 29(6): 733~737
    20邱晓晖等. ISAR成像快速最小熵相位补偿方法.电子信息学报. 2004, 26(10): 1656~1660
    21 Christy A. Snarski. Rank One Phase Error Estimation for Rang-Doppler imaging. IEEE Trans. on AES. 1996, 32(2): 676~688
    22 I. S. Choi, B. L. Cho, H. T. Kim, ISAR Motion Compensation Using Evolutionary Adaptive Wavelet Transform. IEE Proc. Radar Sonar Navig. 2003, 150(4): 229~233
    23 Yuanxun Wang, Hao Ling. ISAR Motion Compensation via Adaptive Joint Time-Frequency Technique. IEEE Trans. on AES. 1998, 34(2): 670~677
    24 Zhenglin Jiang, Mengdao Xing, Zheng Bao. Correction of Migration through Resolution Cell in ISAR Imaging. Chinese Journal of Electronics. 2004, 13(2): 210~213
    25 D. R. Wehner. High resolution radar. Artech House, 1987.
    26 V. C. Chen, Shie Qian. Joint Time-Frequency Transform for Radar Range-Doppler imaging. IEEE Trans. on AES. 1998, 34(2): 486~499
    27刑孟道,保铮,冯大政.基于调幅-线性调频信号参数估计的机动目标成像方法.现代雷达. 2000, (6): 44~49
    28刑孟道,保铮.外场实测数据的舰船目标ISAR成像.电子与信息学报. 2001, 23(12): 1271~1276
    29 Genyuan Wang, Zheng Bao. Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets Based on Chirplet Decomposition. Optical Engineering. 1999, 38(9): 1534~1541
    30成萍,姜义成,许荣庆.基于自适应chirplet变换的ISAR瞬时成像的快速算法.电子与信息学报. 2005, 27(12): 1867~1871
    31王勇,姜义成.基于自适应Chirplet分解的舰船目标ISAR成像.电子与信息学报. 2006, 28(6): 982~984
    32王勇,姜义成.一种新的信号分解算法及其在机动目标ISAR成像中的应用.电子学报. 2007, 35(3): 445~449
    33刘爱芳,刘中,陆锦辉.基于Radon-ambiguity变换的ISAR成像算法.现代雷达. 2006, (6): 12~14
    34刘爱芳,朱晓华,刘中.基于修正离散Chirp-Fourier变换的ISAR成像算法.系统工程与电子技术. 2004, 26(11): 1543~1546
    35韩兴斌,胡卫东,郁文贤等.一种复杂运动目标的ISAR成像算法.电子学报. 2007, 35(6): 1159~1164
    36保铮,王根原,罗琳.逆合成孔径雷达的距离-瞬时多普勒成像方法.电子学报. 1998, 28(12): 79~83
    37王勇,姜义成.两种线性时频分布在机动目标ISAR成像中的应用.哈尔滨工业大学学报. 2006, 38(5): 702~704
    38王勇,姜义成.基于两种时频分布的ISAR成像方法.现代雷达. 2006, 28(1): 35~37
    39王勇,姜义成.基于LWVD的机动目标ISAR成像新方法.哈尔滨工业大学学报. 2008, 40(1): 35~38
    40王根原,保铮,孙晓兵.基于匀加速多普勒频率模型的ISAR成像.电子学报. 1997, 25(6): 58~61
    41王勇,成萍,姜义成.等变加速旋转目标ISAR成像距离-瞬时多普勒法.现代雷达. 2005, 27(5): 25~27
    42 F. Berizzi, E. Dalle Mese, M. Diani and M. Martorella. High-Resolution ISAR Imaging of Maneuvering Targets by Means of the Range Instantaneous Doppler Technique: Modeling and Performance Analysis. IEEE Trans. on Image Processing. 2001, 10(12): 1880~1890
    43 V. C. Chen, W. J. Miceli. Time-Varying Spectral Analysis for Radar Imaging of Manoeuvring Targets. IEE Proc. Radar, Sonar and Navigation. 1998, 145(5): 262~268
    44 V. C. Chen, Ronald Lipps. ISAR Imaging of Small Craft with Roll, Pitch and Yaw Analysis. IEEE International Radar Conference, Alexandria, VA, USA, 2000: 493~498
    45李积德.船舶耐波性.哈尔滨工程大学出版社. 2003
    46 Edward M. Lewandowski. The Dynamics of Marine Craft. World Scientific. 2004
    47朱军.舰船静力学.国防科技大学出版社. 2002
    48俞聿修.随机波浪及其工程应用.大连理工大学出版社. 1992
    49冯铁成.船舶操纵与摇荡.国防工业出版社. 1989
    50 Armin W. Doerry. Ship Dynamics for Maritime ISAR Imaging. Sandia report, Sandia National Laboratories. 2008
    51 Shie Qian. Introduction to Time-Frequency and Wavelet Transforms. China Machine Press. 2005
    52张贤达.非平稳信号分析与处理.国防工业出版社. 1998
    53 L. Cohen. Time-Frequency Distribution– A Review. Proceedings of IEEE. 1989, 77(7): 941~976
    54 L. Stankovic. A Method for Time-Frequency Analysis. IEEE Trans on SP. 1994, 42(1): 225~229
    55 S. Stankovic, L. Stankovic. An Architecture for the Realization of a System for Time-Frequency Signal Analysis. IEEE Trans. on Circuits and System. 1997, 44(7): 600~604
    56 F. Auger, P. Flandrin. Improving the Readability of Time-Frequency and Time-Scale Representations by Reassignment Method. IEEE Trans. on SP. 1995, 43(5): 1068~1089
    57 L. Stankovic. A Method for Improved Distribution Concentration in the Time-Frequency Analysis of Multicomponent Signals Using the L-Wigner Distribution. IEEE Trans. on SP. 1995, 43(5): 1262~1268
    58 L. Stankovic. A Multitime Definition of the Wigner Higher Order Distribution: L-Wigner Distribuiton. IEEE SP Letters. 1994, 1(7): 106~109
    59 L. Stankovic, S. Stankovic. An Analysis of Instantaneous Frequency Representation Using Time-Frequency Distributions– Generalized Wigner Distribution. IEEE Trans. on SP. 1995, 43(2): 549~552
    60 L. Stankovic. L-Class of Time-Frequency Distributions. IEEE SP Letters. 1996, 3(1): 22~25
    61 L. Stankovic. S-Class of Time-Frequency distribution. IEE Proc. Vis. Image Signal Process. 1997, 144(2):57~64
    62 L. Stankovic. On the Realization of the Highly Concentrated Time-Frequency Distributions. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Paris, 1996: 461~464
    63殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法.电子学报. 1997, 25(4): 52~58
    64 Yufeng Lu, R. Demirli, G. Cardoso, J. Saniie. A Sucessive Parameter Estimation Algorithm for Chirplet Signal Decomposition. IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control. 2006, 53(11): 2121~2131
    65 J. C. Wood, D. T. Barry. Linear Signal Synthesis Using the Radon-Wigner Transform. IEEE Trans. on SP. 1994, 42(8): 2105~2111
    66邹虹.多分量线性调频信号的时频分析.西安电子科技大学博士学位论文. 2000: 67~97
    67王勇.基于时频分析技术的机动目标ISAR成像方法研究.哈尔滨工业大学博士学位论文. 2008: 59~80
    68 Merrill I. Skolnik, Radar Handbook,王军等译.第二版.电子工业出版社, 2003: 508~518.
    69宋海娜,胡卫东,郁文贤,吴建辉.低入射余角下海杂波的建模与仿真.国防科技大学学报. 2000, 22(3): 29~33
    70 G. B. Goldstein. False-Alarm Regulation in Log-normal and Weibull clutter. IEEE Trans. on AES. 1973, 9(1): 84~92
    71 G. V. Trunk. Detection of Targets in Non-Gaussian Sea Clutter. IEEE Trans. on AES. 1970, 6(5): 620~628
    72 K. D. Ward. Compound Representation of High Resolution Sea Clutter. Electron. Letter. 1981, 17(16): 561~563
    73 K.J. Sangton, K.R. Gerlach. Coherent Detection of Radar Targets in a Non-Guassian Background. IEEE Trans. on AES. 1994, 30(2): 330~340
    74 Muralidhar Rangaswamy. Spherically Invariant Random Processes for Modeling Non-Gaussian Radar Clutter. 1993 Conference Record of the 27th Asilomar Conference on Signal, System and Computers, Pacific Grove, CA, USA, 1993: 1106~1110
    75 Muralidhar Rangaswamy. Computer Generation of Correlated Non-Gaussian Radar Clutter. IEEE Trans. on AES. 1995, 31(1): 106~116
    76 E. Conte, M. Longo, M. Lops. Modelling and Simulation of Non-Rayleigh Radar Clutter. IEE Proc. radar and signal processing. 1991, 138(2): 121~130
    77吕雁,史林,杨万海. SIRP法相干相关K分布雷达杂波的建模与仿真.现代雷达. 2003, (2): 13~16
    78 L. James Marier, Jr.. Correlated K-distributed Clutter Generation for Radar Detection and Track. IEEE Trans on AES, 1995, 31(2): 568~580

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700