用户名: 密码: 验证码:
高分辨SAR成像CBP与PFA算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达在聚束模式下可以得到很高的分辨率,因此在地形测绘,地质研究,动目标检测等许多方面得到广泛应用。本文主要介绍了目前应用比较广泛的两种聚束模式成像算法,CBP算法(Convolution Backprojection algorithm)和PFA算法(Polar Format Algorithm)。CBP算法是基于时间域的成像算法,而PFA算法是基于二维频率域的成像算法,两者各有优缺点。本文在对标准CBP算法进行详细分析的基础上,对CBP算法在特定条件下进行了简化,去除了对成像结果影响不大的卷积函数,仿真结果验证了该方法的有效性。然后,论文阐述了PFA算法的原理,用PFA算法对实测数据进行了成像,分析了PFA算法的效率。最后详细比较了这两种算法的性能。
     第一章简要回顾了SAR的发展历史,介绍了CBP算法和PFA算法的发展情况,概括描述了这两种算法各自的优点和缺点,然后对全文的主要内容进行了简要描述。
     第二章从聚束模式SAR成像模型出发,介绍了聚束模式SAR成像的关键技术,并对成像过程中存在的难点进行了详细分析。
     第三章详细分析了标准CBP算法,分析了考虑波前弯曲的CBP算法,并对CBP算法的卷积函数进行了分析。最后分析了CBP算法各处理步骤的时间复杂度。
     第四章详细阐述了PFA算法的原理,分析了PFA算法的局限性,对实际数据进行了处理,并详细分析了PFA算法的时间复杂度。
     第五章对CBP算法和PFA算法进行了详细比较,包括时间复杂度和成像结果的比较,并分析了二者之间的联系。
     第六章结束语,对全文进行了总结,并提出了下阶段需要解决的问题。
Spotlight synthetic aperture radar (SAR) offers finer azimuth resolution than that achievable in stripmap mode using the same physical antenna. It is widely used in the field of terrain mapping, the research of geology, moving targets detection and so on .This paper focuses on the CBP algorithm and the PFA algorithm. The CBP algorithm is based on the time domain, and the PFA algorithm is operating in the two-dimensional frequent domain. Based on the study of the traditional CBP algorithm, we try to simplify the traditional CBP algorithm by deleting the convolution function in some special situation. Then we analyze the PFA algorithm in detail, and analyze the computational cost for each step of this algorithm. Finally, we compare the performance of these two algorithms.
     Chapter 1 depicts the history of the development of SAR, including the history of the CBP algorithm and the PFA algorithm. Then we briefly outline the contents of this thesis.
     Chapter 2 introduces the key technology of the spotlight SAR, including the matched filter, the wavefront curvature , and so on.
     Chapter 3 discusses the CBP algorithm, including the curvature of the wavefront and the effect of the convolution function. Then we study the computational cost for each step about the CBP algorithm.
     Chapter 4 depicts the PFA algorithm, including the two-dimensional interpolation and its defect. At last, we analyze its computational cost.
     Chapter 5 studies the differences between the CBP algorithm and the PFA algorithm, including the effect of imaging and computational cost.
     Chapter 6, we conclude the work of this paper, and point out the future work..
引文
[1] Carl A. Wiley. Synthetic Aperture Radar, IEEE Trans. On AES, May 1985, 21(3): 440-443.
    [2]保铮,邢孟道,王彤,雷达成像技术,北京,电子工业出版社,2005。
    [3]禹卫东,合成孔径雷达信号处理研究,[博士论文],南京航空航天大学,1997。
    [4] Carrara W.G., Goodman R. S., Majewski R. M., Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Norwood, MA, Artech House, 1995.
    [5] Desai M.D., Jenkins W.K., Convolution backprojection image reconstruction for spotlight-mode synthetic aperture radar. IEEE Tran’s. on Image Processing, 1992, 1(4):505-517.
    [6]张澄波,合成孔径雷达,北京科学出版社,1989。
    [7] Munson D.C., O’Brien J D., Jenkins W K., a tomographic formulation of spotlight-mode synthetic aperture radar. Processing of the IEEE, 1983, 72(8):917-925.
    [8]袁运能,孙进平等,聚束SAR的快速卷积反投影成像算法。电子学报,June,2002, 30(6):864-867。
    [9] M.D.Desai and W.K.Jenkins, convolution backprojection image reconstruction for synthetic aperture radar. presented at IEEE Int. Conf. on Circuits and Systems, Tokyo, Japan, May,1985.
    [10] M.D.Desai, a new method of synthetic aperture radar image reconstruction using modified convolution backprojection algorithm. Ph.D. dissertation, Univ. of Illinois,1985.
    [11] D.F.Davis, tomographic image processing of inverse synthetic aperture radar data. Tech.Rep. NWC TP 7181, Naval Weapons Center, China Lake, CA Sept.1991.
    [12] J.L.Bauk and W.K.Jenkins, convolution backprojection image reconstruction for bistatic synthetic aperture radar with correction for wavefront curvature and propagation attenuation. in Proc. 1989 SPIE technical symp. on aerospace sensing, Orlando, FL,Mar.1989, 1101:11-18.
    [13] J.L.Bauk and W.K.Jenkins, convolution backprojection image reconstruction for bistatic synthetic aperture radar. in Proc. IEEE int.Symp. on circuits and systems, Portland ,OR, May 1989, 1512-1515.
    [14] A.Baog, Y.Bresler, and E.Michielssen, a multilevel domain decomposition algorithm for fast reprojection of tomographic images. IEEE Trans. Image Processing.
    [15] A.Brandt and J.Dym, Fast computation of multiple line integrals. SLAM J.Sci.Comput., 1999, 20:1417-1429.
    [16]武昕伟,朱兆达,基于聚束照射SAR成像算法的条带SAR数据。南京航空航天大学学报,2002,34(5):466-469
    [17] Yeo T S, Tan N L, Lu Y H, et al., A Stripmap to Spotlight Data Converting Algorithm. IEEE Geoscience and Remote Sensing Symposium proceedings, 1998, 1168-1170.
    [18] Charles V.Jakowatz, Jr, Daniel E.Wahl, Paul H.Eichel, et al, Spotlight mode Synthetic Aperture Radar: A signal Processing Approach. Kluwer Academic Pulishers, Norwell Mass,1996, 260-278.
    [19] Donald R.Wehner, High Resolution Radar. Artech House,1987,135-143.
    [20] Walker J.L. Range-Doppler imaging of Rotation Objects. IEEE Trans. on AES, Jan.1980, 16(1):23-51.
    [21] William M.Brown, Ronald J.Fredricks, Range Doppler imaging with Motion through Resolution Cells.IEEE Trans. on AES, Jan.1969, 5(1):42-68.
    [22] R.Lanari, A new Method for the compensation of the SAR range cell migration based on the chirp Z-Transform. IEEE Transactions on Geoscience and Remote Sensing, September 1995, 33(5):1296-1299.
    [23] D.Zhu, Y.Li, Z.Zhu, A keystone transform without interpolation for SAR ground moving target imaging. IEEE Geoscience and Remote Sensing Letters, accepted.
    [24] D.Zhu, Z.Zhu, range resampling in the polar format algorithm for spotlight SAR image formation using the chirp z-transform. IEEE Transactions on Signal Processing, accepted.
    [25] Jung Ah Lee, Munson, D.C.,Jr., Effect of a Nonplanar Wavefront in Spotlight Mode Synthetic Aperture Radar imaging Processing. ICIP-94, IEEE International Conference, 1994, 1(1):481-485.
    [26]肖靖,聚束SAR极坐标格式算法研究,硕士学位论文,南京航空航天大学,2004。
    [27]肖靖,朱岱寅,朱兆达,极坐标格式算法及其在条带SAR成像中的应用,雷达科学与技术, 2002, 1(4):228-231。
    [28]李勇,朱岱寅,机载斜视SAR信号处理算法论证和仿真报告,技术总结报告,南京航空航天大学,2004年4月。
    [29] Ali F.Yegulalp, Fast Backprojectional Algorithm for SAR. Radar Conference, the Record of the 1999 IEEE, 1999, 60-65.
    [30] Stacy N J S. Range Cell Migration in Spotlight Polar Format Algorithm. IEEE Geoscienceand Remote Sensing Symposium Processings. 2000, 2275-2277.
    [31]程玉平,PFA算法与RMA算法成像机理的比较,现代雷达,1999,21(2):355-359.
    [32] G.Franceschetti and R.Lanari, Synthetic Aperture Radar Processing, CRC Press,1999.
    [33] R.Lanari and G.Fornaro, A Short Discussion on the Exact compensation of the SAR Range Dependent Range Cell Migration Effect, IEEE Transactions on Geoscience and Remote Sensing, November 1997, 35(6):1446-1452.
    [34] R.Bamler, A comparison of range Doppler and wavenumber domain SAR focusing algorithm. IEEE Transactions on Geoscience and Remote Sensing, July 1992, 30(4):706-713.
    [35] A.Papoulis, the Fourier Integral and Its Applications. New York:McGraw-Hill,1962,Chaper 7.
    [36] G.Franceschetti, and G.Schirinzi, A SAR processor based on two dimensional FFT codes. IEEE Transaction on Aerospace and Electronic systems, March, 1990, 26(2):356-366.
    [37] R.Lanari, M.Tesauro, E.Sansosti, G.Fornaro, Spotlight SAR Data Focusing Based on a Two Step Processing Approach. IEEE Transactions on Geoscience and Remote Sensing, Sept.2001, 39(9):1993-2004.
    [38] A.Moreira, J.Mittermayer, and R.Scheiber, Extended chirp scaling algorithm for air and spaceborne SAR data processing in stripmap and ScanSAR imaging modes. IEEE Transactions on Geoscience and Remote Sensing, September, 1996 34(5):1123-1136.
    [39] D.C.Munson, Jr. and W.E.Higgins, Faster algorithms for computer-aided tomography and spotlight mode synthetic radar. in proc., 16th IEEE Asilomar cof. Circuits, Syst., compu., Garden Grove, CA, 1982:426-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700