用户名: 密码: 验证码:
新型碳铜基纳米结构材料的设计合成及电分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米电极材料因具有杰出的优点(在酸碱溶液中稳定,在水溶液中宽的电位窗口,良好的生物相容性,低成本,高的电催化性能)已经成为电分析领域的研究热点。但是关于它的电催化本质还存在很大分歧,因此探讨其催化本质对于设计高性能碳基纳米电极材料具有重要的指导意义。铜纳米电极材料价格低廉,具有能够直接氧化碳水化合物却不造成电极表面污染等特点,是一类非常优秀的电极材料。本文旨在设计合成几种性能优异的新型碳和铜基纳米结构材料,并以其为电极修饰材料,用于灵敏度高、响应迅速、选择性好的电化传感器的研制,考察了这些传感器在医学和环境监测中的应用性能。
     论文的第一章不仅详细介绍了碳基、铜基纳米结构材料的合成方法及其在各领域中的应用,而且还对电化学传感器及其环境医学应用进行了简单介绍。论文的第二章以介孔二氧化硅为硬模板,设计并合成了3种不同比表面的纳米孔碳材料。利用氮气吸附、拉曼光谱和透射电镜等技术对这三种纳米孔碳材料进行了详细的结构形貌表征。采用循环伏安和微分脉冲伏安法对比研究了三种材料对抗坏血酸、多巴胺和尿酸的电催化氧化性能。实验结果表明,纳米孔碳材料的比表面越大,缺陷点位越多,催化活性越高。以比表面最高的纳米孔碳为电极材料,研制了同时检测抗坏血酸、多巴胺和尿酸的电化学生物传感器。该传感器灵敏度高,具有潜在的应用价值。在第三章中,以嵌段共聚物(F127)为软模板,合成了介孔碳纳米球。软模板法制备碳材料较硬模板法简单,所合成的介孔碳球的粒径为纳米级,便于制备均一的分散相,更利于分析底物在介孔孔道中的扩散,可望缩短分析物的响应时间,提高分析速度。软模板合成的介孔碳纳米球应用于电化学传感器的研制时,在抗坏血酸、多巴胺和尿酸的同时检测性能方面,获得了令人满意的结果。此外,我们还设计合成了和介孔碳纳米球粒径和孔径大小相似的介孔SiO_2纳米球以及粒径大小相似的碳纳米实心球,以探究介孔碳纳米球的高电催化活性的可能原因。通过对大小相同的三种纳米球材料的微结构形貌表征、电化学及电催化性能的对比,我们认为介孔碳纳米球的高电催化活性,主要归因于介孔碳球内纳米孔的特殊结构---纳米孔的石墨烯壁上含有更多的缺陷点位,这也是抗坏血酸、多巴胺、尿酸可同时检测的主要原因。论文的第四章通过直接高温碳化金属有机骨架化合物,一步获得了氮掺杂纳米碳材料。这种异质原子掺杂的碳纳米结构电极材料不仅能够同时区分抗坏血酸、多巴胺和尿酸的氧化峰,而且还能同时区分邻苯二酚和对苯二酚的氧化峰。以该新型氮掺杂碳纳米结构材料为电极材料,所制备的电化学传感器展现了优异的伏安同时检测性能,在生物医学和环境分析领域可能具有应用前景。在第五章中,我们合成了半有序的介孔碳纳米结构材料,其独特的微结构既展现了快速的电子传输性能,又具有很好的电催化性能。以半有序介孔碳为电极材料,所制备的电化学传感器呈现出了良好的亚硝酸盐检测性能。第六章以廉价的铜片为原料,采用一步液相合成法,获得了氢氧化铜纳米管阵列膜和氧化铜纳米花结构膜。将该氢氧化铜纳米管阵列膜直接做为工作电极,研究了其对葡萄糖电氧化的催化性能。和氧化铜纳米花结构膜的催化性能相比,氢氧化铜纳米管阵列膜具有更好的电催化性能,主要归因于氢氧化铜纳米管特殊的催化活性及其在导电基底表面上的有序排列,上述特点赋予该传感器以快速灵敏的电流响应。在论文第七章中,首先利用表面活性剂十二烷基苯磺酸钠非共价修饰石墨烯表面,获得了分散性良好的功能化石墨烯纳米复合材料;其次,利用功能化石墨烯所具有的良好分散性和高比表面性质,在功能化石墨烯表面电化学生长CuO/Cu复合纳米结构;最后,以表面负载CuO/Cu纳米结构的功能化石墨烯为电极材料,系统考察了果糖的电氧化及分析检测性能。
Carbon nanomaterials have attracted significant interests in the design of electrodes for electroanalysis because of their excellent properties such as electrochemical potential window in aqueous solution, biocompatibility, low-cost, and electrocatalytic activity for a variety of redox reactions, chemical stability in either acidic or basic solution. However, the fundamental reason for the electrochemical activity of carbon material is still controversial. Therefore, an understanding of the fundamental reasons for electrochemical activity of carbon material is vital to design high performance electrochemical devices. Copper-based nanomaterials, one kind of excellent electrode materials, is widely available, inexpensive and can oxidize carbohydrates directly without causing surface contamination. This paper aims at preparing various electrochemical sensors with high sensitivity, fast response and good selectivity by combining carbon-and copper-based nanaomaterials with electrochemical technique for detecting biomolecules and pollutants in the medical and environmental fields.
     In Chapter1, the synthesis and application of carbon-and copper-nanomaterials were chiefly introduced. The preparation and application of electrochemical sensors were also briefly introduced. In Chapter2, three templated nanoporous carbons (TNCs) materials with substantial different specific surface area were designed and synthesized by a nanocasting method, in which mesoporous silicates acted as the template. The structures and morphologies of these TNCs were characterized and analyzed in detail by Small-angle XRD diffraction (SAXRD), N2-sorption, Raman spectroscopy and Transmission electron microscope (TEM). The electrochemical properties of the TNCs electrodes were also investigated and compared by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). These experimental results indicated that the higher the specific surface area of TNCs is, the larger amount of edge-plane defect sites contains. The improved performance in simultaneous determination of ascorbic acid (AA), Dopamine (DA), and uric acid (UA) at TNC electrode materials with high specific surface area is anticipated. An electrochemical sensor for simultaneous determination of AA, DA and UA was thus achieved by designing TNCs electrode materials with large specific surface area and defect sites. In Chapter3, the highly ordered mesoporous carbon nanoparticles with spherical morphology were designed and synthesized by using commercial available triblock copolymer Pluronic F127as soft template. Compared with the hard template method, the synthesis route of soft template strategy is simple. In addition, the size of mesoporous carbon sphere is up to nanoscale, which makes it easy to prepare the dispersible phase nanomaterial from the corresponding powder. And its mesoporous structures can enable rapid diffusion of analytes across a large surface area and pore, resulting in reduced response time. Here, an excellent electrochemical sensor was successfully obtained based on the mesoporous carbon nanosphere. It can be used for simultaneous determination of AA, DA, UA in their mixture. In addition, mesoporous SiO2nanosphere with similar pore size and carbon nanosphere without pore were also designed and synthesized, in order to learn the nature of discrimination of AA, DA and UA by mesoporous carbon nanosphere electrode materials. Compared with mesoporous SiO2nanosphere and carbon nanosphere, the high electrochemical property of mesoporous carbon nanosphere was ascribed to the more defective sites possessed, as revealed by microstructural, morphological and electrochemcial characterization. This work may also be valuable for scientists who search for excellent carbon materials for biosensing and electrocatalysis. In Chapter4, a N-doped carbon nanomaterial was one-step prepared through direct carbonization of a metal-organic framework. Heteroatoms (such as nitrogen), which are present in the carbon materials, change the electron donor/acceptor characteristics of carbon depending on their chemical states, thus leading to an enhancement of electrochemical properties. This sensor distinguished not only the oxidation peaks of AA, DA, UA coexisted in body fluid, but also the oxidation peaks of catechol (CC) and hydroquinone (HQ), showing promising application in medical and environmental fields. In Chapter5, hemi-ordered nanoporous carbon (HONC) was obtained from a mesoporous silica template through a nano-replication method. In this nanoporous carbon electode material, the ordered porous structure may serve to promote charge transport, and the disordered porous structure may provide more defect sites for electrochemical reaction. The electrochemical sensor based on HONC material displayed fast, sensitive and well selective determination of NO2-. In Chapter6, vertically aligned arrays of Cu(OH)2nanotubes and CuO nanoflowers were grown directly on the copper substrate via a simple one-step reaction. Without any post-treatment, they were demonstrated directly as electrode materials for electrocatalytic oxidation of glucose. The Cu(OH)2arrays exhibited excellent electrochemical performances for glucose oxidation, presenting a low peak potential, high current, and high current-to-background ratio, even in comparison with the CuO nanoflower films. This sensor is expected to play an important role in the field of blood glucose monitoring. In Chapter7, graphene (GR) sheets were non-covalently functionalized by an anionic surfactant sodium dodecyl benzene sulphonate (SDBS). The SDBS functionalized GR (SDBS/GR) not only exhibits excellent water dispersion but also possesses highly dispersed negative charges, which are favorable to anchoring significant copper cations on the basis of electrostatic self-assembled strategy and producing highly dispersed Cu/CuO catalysts via electrochemistry reduction. Results revealed the distinctly enhanced sensing properties of SDBS/GR/CuO-Cu towards fructose, showing significantly lowered overpotential, ultrafast and ultrasensitive current response in a wide linear range.
引文
[1]张立德,牟季美.纳米材料和纳米科技[M].北京:科学出版社,2001.
    [2]Zhou L, Li H Q, Yu C Z, et al. Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons[J]. Carbon,2006,44:1581-1616.
    [3]Zhou J H, He J P, Zhang C X, et al. Mesoporous carbon spheres with uniformly penetrating channels and their use as a supercapacitor electrode material[J]. M ateriales characterization,2010,61:31-38.
    [4]Fang Y, Gu D, Zou Y,et al. A Low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte International Edition Chemie,2010,49:7987-7991.
    [5]Zhao X C, Zhang Q, Zhang BS, et al. Dual-heteroatom-modified ordered mesoporous carbon:Hydrothermal functionalization, structure, and its electrochemical performance[J]. Journal of Materials Chemistry,2012,22:4963-4969.
    [6]Chaikittisilp W, Hu M, Wang H J, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications,2012,48:7259-7261.
    [7]Hu M, Reboul J, Furukawa S, et al. Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon[J] Journal of the American Chemical Society,2012,2864-2867.
    [8]Knox J H, Unger K K, Mueller H, et al. Prospects for carbon as packing material in high-performance liquid chroma tography[J], Journal of liquid chromatography,1983,6:1-36.
    [9]Kyotani T, Nagai T, Inoue S, et al. Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels[J]. Chemistry of Materials,1997,9:609-615.
    [10]Ryoo R, Joo S H, Kruk M, et al. Ordered Mesoporous Carbons[J]. Advanced Materials,2001,13:677-681.
    [11]Parthasarathy R V, Phani K L N, Martin C R, Template synthesis of graphitic nanotube[J]. Advanced Materials,1995,7:896-897.
    [12]Inagaki M, Kobayashi S, Kojin F, et al. Pore structure of carbons coated on ceramic particles[J]. Carbon,2004,42:3153-3158.
    [13]Jiang H L, Bo Liu, Lan Y Q, et al. From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake[J]. Journal of the American Chemical Society,2011,133:11854-11857.
    [14]Chen L H, Li X Y, Rooke, J C, et al. Hierarchically structured zeolites:synthesis, mass transport properties and applications[J] Journal of materials chemistry,2012,22:17381-17403.
    [15]Ma Z X, Kyotani T, Liu Z, et al. Very high surface area microporous carbon with a three-dimensional nano-array structure:Synthesis and its molecular structure[J]. Chemistry of Materials,2001,13,4413-4416.
    [16]Johnson S A, Brigham E S, Olliver P J, et al. Effect of Micropore Topology on the Structure and Properties of Zeolite Polymer Replicas[J]. Chemistry of Materials,1997,9:2448-2458.
    [17]Ma Z X, Kyotani T, Tomita A, Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite[J]. Chemical Communications,2000,2365-4416.
    [18]Hou P X, Orikasa H, Yamazaki T, et al. Synthesis of nitrogen-containing microporous carbon with a highly ordered structure and effect of nitrogen doping on H2O adsorption[J]. Chemistry of Materials,2005,17:5187-5193.
    [19]Wang L F, Yang F H, Yang R T, Hydrogen Storage Properties of B-and N-Doped Microporous Carbon[J]. Aiche Journal,2009,55:1823-1833.
    [20]Matsuoka K, Yamagishi Y, Yamazaki T, et al. Extremely high microporosity and sharp pore size distribution of a large surface area carbon prepared in the nanochannels of zeolite Y[J]. Carbon,2005,43:876-879.
    [21]Itoi H, Nishihara H, Kogure T, et al. Three-Dimensionally Arrayed and Mutually Connected1.2-nm Nanopores for High-Performance Electric Double Layer Capaci tor [J]. Journal of the American Chemical Society2011,133:1165-1167.
    [22]Su F B, Zeng H J, Yu Y J, et al. Template synthesis of microporous carbon for direct methanol fuel cell application[J]. Carbon,2005,43:2368-2373.
    [23]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J] Nature,1992,359:710-712.
    [24]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J] Journal of the American Chemical Society,1992,10834-10843.
    [25]Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic50to300Angstrom Pores[J]. Science,1998,279:548-552.
    [26]Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J]. Chemical Communications,2003,2136-2137.
    [27]Nishihara H, Kyotani T. Templated Nanocarbons for Energy Storage[J] Advanced Materials,2012,24:4473-4498.
    [28]Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. Journal of Physical Chemistry B,1999,103:7743-7746.
    [29]Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J]. Chemical Communications,1999,2177-2178.
    [30]Yoon S B, Kim J Y, Yu J S, et al. Synthesis of highly ordered nanoporous carbon molecular sieves from silylated MCM-48using divinylbenzene as precursor[J]. Chemical Communications,2001,559-560.
    [31]Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. Journal of the American Chemical Society,2000,122:10712-10713.
    [32]Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature,2001,412:169-172.
    [33]Lu A H, Schmidt W, Spliethoff B, et al. Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume[J]. Advanced Materials,2003,15:1602-1606.
    [34]Lu A H, Li W C, Schmidt W, et al. Easy synthesis of an ordered mesoporous carbon with a hexagonally packed tubular structure[J]. Carbon,2004,42:2939-2948.
    [35]Lee J S, Joo S H, Ryoo R, et al. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters[J]. Journal of the American Chemical Society,2002,124:1156-1157.
    [36]Kim T W, Park I S, Ryoo R, A synthetic route to ordered mesoporous carbon materials with graphitic pore walls[J]. Angewandte Chemie International Edition,2003,42:4375-4379.
    [37]Xia Y, Mokaya R, Synthesis of Ordered Mesoporous Carbon and Nitrogen-Doped Carbon Materials with Graphitic Pore Walls via a Simple Chemical Vapor Deposition Method[J]. Advanced Materials,2004,16:1553-1558.
    [38]Xia Y, Mokaya R, Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials[J]. Chemistry of Materials,2005,17:1553-1560.
    [39]Fuertes A B, Centeno T A, Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor[J]. Journal of Materials Chemistry,2005,15:1079-1083.
    [40]Oda Y, Fukuyama K, Nishkawa K,et al. Mesocellular Foam Carbons:Aggregates of Hollow Carbon Spheres with Open and Closed Wall Structures[J]. Chemistry of Materials,2004,16:3860-3866.
    [41]Dibandjo P, Bois L, Chassagneux F, et al. Synthesis of Boron Nitride with Ordered Mesostructure [J]. Advanced Materials,2005,17:571-574.
    [42]Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths[J]. Science,1998,282:897-901.
    [43]Woo S W, Dokko K, Nakano H, et al. Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors [J]. Journal of Materials Chemistry,2008,18:1674-1680.
    [44]Tabata S, Isshiki Y, Watanabe M. Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors [J]. Journal of The Electrochemical Society,2008,155:K42-K49.
    [45]Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries[J]. Advanced Functional Materials,2005,15:547-556.
    [46]Inagaki M, Kobayashi S, Kojin F, et al. Pore structure of carbons coated on ceramic particles[J]. Carbon,2004,42:3153-3158.
    [47]Morishita T, Tsumura T, Toyoda M, et al. A review of the control of pore structure in MgO-templated nanoporous carbons[J]. Carbon,2010,48:2690-2707.
    [48]Morishita T, Suzuki T, Nishikara T, et al. Preparation of porous carbons by the carbonization of the mixtures of the thermoplastic precursors with MgO. TANSO,2005,219:226-231.
    [49]Morishita T, Suzuki T, Nishikara T, et al. Preparation of mesoporous carbons by carbonization of the mixtures of poly(vinyl alcohol) with magnesium salts. TANSO,2006,223:220-226.
    [50]Morishita T, Soneda Y, Tsumura T, et al. Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors[J]. Carbon,2006,44:2360-2367.
    [51]Morishita T, Ishihara K, Kato M, et al. Mesoporous carbons prepared from mixtures of magnesium citrate with poly(vinyl alcohol)[J]. TANSO,2007,226:15-24.
    [52]Morishita T, Ishihara K, Kato M, et al. Preparation of a carbon with a2nm pore size and of a carbon with a bi-modal pore size distribution[J]. Carbon,2007,45: 209-211.
    [53]Inagaki M, Kato M, Morishita T, Morita K, Mizuuchi K. Direct preparation of mesoporous carbon from a coal tar pitch. Carbon,2007,45:1121-1124.
    [54]Morishita T, Nishi Y, Ohta N. Preparation of controlled pore structure carbon powders that obtained by carbon coating process. In:Annual meeting of carbon society of Japan (2008.12.5) Tsukuba.
    [55]Przepio'rski J, Karolczyk J, Takeda K, et al. Porous carbon obtained by carbonization of PET mixed with basic magnesium carbonate-pore structure and pore creation mechanism. Ind Eng Chem Res,2009,48:7110-7116.
    [56]Konno H, Onishi H, Yoshizawa N, et al. MgO-templated nitrogen containing carbons derived from different organic compounds for capacitor electrodes. J Power Sources,2010,195:667-673.
    [57]Kyotani T, Tsai L, Tomita A, Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film[J] Chemistry of Materials,1996,8:2109-2133.
    [58]Habazaki H, Kiriu M, Konno H, High rate capability of carbon nanofilaments with platelet structure as anode materials for lithium ion batteries[J]. Electrochemistry Communication,2006,8:1275-1279.
    [59]Orikasa H, Akahane T, Okada M, et al. Electrochemical behavior of carbon nanorod arrays having different graphene orientations and crystallinity[J]. Journal of Materials Chemistry,2009,19:4615-4621.
    [60]Radhakrishnan L, Reboul J, Furukawa S, et al. Preparation of Microporous Carbon Fibers through Carbonization of Al-Based Porous Coordination Polymer (Al-PCP) with Furfuryl Alcohol[J]. Chemistry of Materials,2011,23:1225-1231.
    [61]Liang C, Li Z, Dai S. Mesoporous Carbon Materials:Synthesis and Modification[J]. Angewandte Chemie International Edition,2008,47:3696-3717.
    [62]Li Z J, Yan W F, Dai S, A novel vesicular carbon synthesized using amphiphilic carbonaceous material and micelle templating approach[J]. Carbon,2004,42: 767-770.
    [63]Meng Y, Gu D, Zhang F Q, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chemistry of Materials,2006,18:4447-4464.
    [64]Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie International Edition,2004,43:5785-5789..
    [65]Tanaka S, Nishiyama N, Egashira Y, et al. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite[J]. Chemical Communications,2005,2125-2157.
    [66]Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia(3)over-bard bicontinuous cubic structure[J] Journal of the American Chemical Society,2005,127:13508-13509.
    [67]Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks:Amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie International Edition,2005,44:7053-7059.
    [68]Zhang F Q, Meng Y, Gu D, et al. An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology [J]. Chemistry of Materials,2006,18:5279-5288.
    [69]Fang Y, Gu D, Zou Y, et al. A Low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte International Edition Chemie,2010,49:7987-7991.
    [70]Li M, Xue J M, Ordered mesoporous carbon nanoparticles with well-controlled morphologies from sphere to rod via a soft-template route[J]. Journal of Colloid and Interface Science,2012,377:169-175.
    [71]Sun Q, Zhang X Q, Han F, et al. Controlled hydrothermal synthesis of ID nanocarbons by surfactanttemplated assembly for use as anodes for rechargeable lithium-ion batteries[J]. Journal of Materials Chemistry,2012,22:17049-17054.
    [72]Li H L; Eddaoudi M; O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework.[J]. Nature,1999,402:276-279.
    [73]Chaikittisilp W, Hu M, Wang H J, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications,2012,48:7259-7261.
    [74]NEDO publication, FCH2009-2010, http://www.nedo.go.jp/c ontent/100080250.pdf.
    [75]Pang J B, Hampsey J E, Wu Z W, et al. Hydrogen adsorption in mesoporous carbons[J]. Applied Physics Letters,2004,85:4887-4889.
    [76]Gadiou R, Saadallah S E, Piquero T, et al. The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons [J]. Microporous Mesoporous Materials,2005,79:121-128.
    [77]Armandi M, Bonelli B, Bottero I, et al. Synthesis and characterization of ordered porous carbons with potential applications as hydrogen storage media[J]. Microporous Mesoporous Materials,2007,103:150-157.
    [78]Xia Y, Mokaya R, Ordered mesoporous carbon monoliths:CVD nanocasting and hydrogen storage properties [J]. Journal of Physical Chemistry C,2007,111:10035-10039.
    [79]Xia K S, Gao Q M, Song S Q, et al. CO2activation of ordered porous carbon CMK-1for hydrogen storage[J]. International Journal of Hydrogen Energy,2008,33:116-123.
    [80]Armandi M, Bonelli B, Karaindrou E I, et al. Post-synthesis modifications of SBA-15carbon replicas:Improving hydrogen storage by increasing microporous volume[J]. Catalysis Today,2008,138:244-248.
    [81]Terres E, Panella B, Hayashi T, et al. Hydrogen storage in spherical nanoporous carbons[J]. Chemical Physics Letters,2005,403:363-366.
    [82]Campesi R, Cuevas F, Leroy E, et al. In situ synthesis and hydrogen storage properties of PdNi alloy nanoparticles in an ordered mesoporous carbon template[J]. Microporous Mesoporous Materials,2009,117:511-514.
    [83]Oschatz M, Kockrick E, Rose M, et al. A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications[J]. Carbon,2010,48:3987-3992.
    [84]Hu Q Y, Lu Y F, Meisner G P, Preparation of nanoporous carbon particles and their cryogenic hydrogen storage capacities[J]. Journal of Physical Chemistry C,2008,112:1516-1523.
    [85]Yang Z X, Xia Y D, Sun X Z, et al. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: Effect of the zeolite template and nitrogen doping[J]. Journal of Physical Chemistry B,2006,110:18424-18431.
    [86]Yang Z X, Xia Y D, Mokaya R, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials[J]. Journal of the American Chemical Society,2007,129:1673-1679.
    [87]Wang H L, Gao Q M, Hu J, et al. High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance [J]. Carbon,2009,47:2259-2268.
    [88]Campesi R, Cuevas F, Gadiou R, et al. Hydrogen storage properties of Pd nanoparticle/carbon template composites [J]. Carbon,2008,46:206-214.
    [89]Campesi R, Cuevas F, Leroy E, et al. In situ synthesis and hydrogen storage properties of PdNi alloy nanoparticles in an ordered mesoporous carbon template[J]. Microporous Mesoporous Materials,2009,117:511-514.
    [90]Jorda-Beneyto M, Suarez-Garcia F, Lozano-Castello D, et al. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures[J]. Carbon,2007,45:293-303.
    [91]Kaye S S, Dailly A, Yaghi O M, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)(3)(MOF-5)[J]. Journal of the American Chemical Society,2007,129:14176-14177.
    [92]Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature,1998,393:346-349.
    [93]Li N C, Mitchell D T, Lee K P, et al. A nanostructured honeycomb carbon anode[J]. Journal of The Electrochemical Society,2003,150:A979-A984.
    [94]Fang B, Kim M S, Kim J H, et al. Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance [J]. Journal of Materials Chemistry,2010,20:10253-10259.
    [95]Zhou H S, Zhu S M, Hibino M, et al. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance [J]. Advanced Materials,2003,15:2107-2111.
    [96]Kim H, Cho J, Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material [J]. Nano Letters,2008,8:3688-3691.
    [97]Esmanski A, Ozin G A, Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries [J]. Advanced Functional Materials,2009,19:1999-2010.
    [98]Wang D W, Li F, Fang H T, et al. Effect of pore packing defects in2-D ordered mesoporous carbons on ionic transport[J]. Journal of Physical Chemistry B,2006,110:8570-8575.
    [99]Li H Q, Luo J Y, Zhou X F, et al. An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications[J]. Journal of The Electrochemical Society,2007,154:A731-A736.
    [100]Liang Y R, Wu D C, Fu R W, Preparation and Electrochemical Performance of Novel Ordered Mesoporous Carbon with an Interconnected Channel Structure[J]. Langmuir,2009,25:7783-7785.
    [101]Moriguchi I, Nakahara F, Furukawa H, et al. Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material [J]. Electrochemical and Solid-State Letters,2004,7:A221-A213.
    [102]Yamada H, Nakamura H, Nakahara F, et al. Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores[J]. Journal of Physical Chemistry C,2007,111:227-233.
    [103]Zhang L L, Li S, Zhang J T, et al. Enhancement of Electrochemical Performance of Macroporous Carbon by Surface Coating of Polyaniline[J]. Chemistry of Materials,2010,22:1195-1202.
    [104]Liang Y Y, Schwab M G, Zhi L J, et al. Direct Access to Metal or Metal Oxide Nanocrystals Integrated with One-Dimensional Nanoporous Carbons for Electrochemical Energy Storage[J]. Journal of the American Chemical Society,2010,132:15030-15037.
    [105]Jiang H L, Liu B, Lan Y Q, et al. From Metal-Organic Framework to Nanoporous Carbon:Toward a Very High Surface Area and Hydrogen Uptake[J] Journal of the American Chemical Society,2011,133:11854-11857.
    [106]Fernandez J A, Morishita T, Toyoda M, et al. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors [J]. Journal of Power Sources,2008,175:675-659.
    [107]Melde B J, Johnson B J. Mesoporous materials in sensing:morphology and functionality at the meso-interface[J]. Analytical and Bioanalytical Chemistry,2010,398:1565-1573.
    [108]Jia N Q, Wang Z Y, Yang G F, et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications,2007,9:233-238.
    [109]Wang H, Qi B, Lu B P, et al. Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene[J]. Electrochimica Acta,2011,56:3042-3048.
    [110]Zhou M, Shang L, Li B L, Huang L J, Dong S J. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes[J]. Electrochemistry Communications,2008,10:859-863.
    [111]Banks C E, Crossley A, Salter C, et al. Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the "Electrocatalysis" Seen at Some Nanotube-Modified Electrodes[J]. Angewandte Chemie-International Edition, 2006,45:2533-2537.
    [112]Zhu S Y, Li H J, Niu W X, Xu G B, Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode[J]. Biosensors and Bioelectronics,2009,25:940-943.
    [113]Zhou S H, Shi H Y, Feng X, et al. Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination ofbiomolecules [J] Biosensors and Bioelectronics,2013,42:163-169.
    [114]Hu G, Ma Y, Guo Y, et al. Selective electrochemical sensing of calcium dobesilate based on an ordered mesoporous carbon-modified pyrolytic graphite electrode[J]. Journal of Electroanalytical Chemistry,2009,633:264-267.
    [115]Guo Z, Li S, Liu X M, et al. Mesoporous carbon-polyaniline electrode: Characterization and application to determination of copper and lead by anodic stripping voltammetry[J]. Materials Chemistry and Physics,2011,128:238-242.
    [116]Zhou M, Ding J, Guo L P, et al. Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode [J]. Analytical Chemistry,2007,79:5328-5335.
    [117]Yang H, Lu B, Qi B, et al. Voltammetric sensor based on ordered mesoporous carbon for folic acid determination[J]. Journal of Electroanalytical Chemistry,2011,660:2-7.
    [118]Ndamanisha J C, Guo L P, Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode[J]. Bioelectrochemistry,2009,77:60-63.
    [119]Bai J, Guo L P, Ndamanisha J C, et al. Electrochemical properties and simultaneous determination of dihydroxybenzene isomers at ordered mesoporous carbon-modified electrode[J]. Journal of Applied Electrochemistry,2009,39:2497-2503.
    [120]Zhou M, Shang L, Li B, et al. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes[J]. Electrochemistry Communications,2008,10:859-863.
    [121]Pan D, Ma S, Bo X, et al. Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbon electrode modified with ordered mesoporous carbon[J]. Microchimica Acta,2011,173:215-221.
    [122]Li F, Song J, Shan C, et al. Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode [J]. Biosensors and Bioelectronics,2010,25:1408-1413.
    [123]Zang J, Guo C X, Hu F, et al. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon[J]. Analytica Chimica Acta,2011,683:187-191.
    [124]Ma J, Zhang Y, Zhang X, et al. Sensitive electrochemical detection of nitrobenzene based on macro-/meso-porous carbon materials modified glassy carbon electrode[J]. Talanta,2012,88:696-700.
    [125]Zhu L, Tian C, Yang R, et al. Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/Nafion composite film electrode[J]. Electroanalysis,2008,20:527-533.
    [126]Bai J, Ndamanisha J C, Liu L, et al. Voltammetric detection of riboflavin based on ordered mesoporous carbon modified electrode[J]. Journal of Solid State Electrochemistry,2010,14:2251-2256.
    [127]Yang D, Zhu L, Jiang X, et al. Sensitive determination of Sudan I at an ordered mesoporous carbon modified glassy carbon electrode[J]. Sensors and Actuators B:Chemical,2009,141:124-129.
    [128]Hu G, Guo Y, Shao S, Ultrasensitive electrochemical sensing of the anticancer drug tirapazamine using an ordered mesoporous carbon modified pyrolytic graphite electrode[J]. Biosensors and Bioelectronics,2009,24:3391-3394.
    [129]Wang H, Qi B, Lu B, et al. Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene[J]. Electrochimica Acta,2011,56:3042-3048.
    [130]Ndamanisha J C, Guo L, Wang G, Mesoporous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties[J]. Microporous and Mesoporous Materials,2008,113:114-121.
    [131]Zhang Y, Bo X, Guo L, Electrochemical behavior of6-benzylaminopurine and its detection based on Pt/ordered mesoporous carbons modified electrode[J]. Analytical Methods,2012,4:736-741.
    [132]Zhou M, Guo L, Lin F Y,et al. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified[J]. Analytica Chimica Acta,2007,587:124-131.
    [133]Yan X, Pan D, Wang H, et al. Electrochemical determination of L-dopa at cobalt hexacyanoferrate/large-mesopore carbon composite modified electrode[J]. Journal of Electroanalytical Chemistry,2011,663:36-42.
    [134]Dong J, Hu Y, Zhu S,et al. A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid[J]. Analytical and Bioanalytical Chemistry,2010,396:1755-1762.
    [135]Lu B, Bai J, Bo X, et al, A simple hydrothermal synthesis of nickel hydroxide-ordered mesoporous carbons nanocomposites and its electrocatalytic application [J]. Electrochimica Acta,2010,55:8724-8730.
    [136]Fang J, Qi B, Yang L, et al. Ordered mesoporous carbon functionalized with poly-azure B for electrocatalytic application[J]. Journal of Electroanalytical Chemistry,2010,643:52-57.
    [137]Liu L, Guo L, Bo X, et al. Electrochemical sensors based on binuclear cobalt phthalocyanine/surfactant/ordered mesoporous carbon composite electrode[J]. Analytica Chimica Acta,2010,673:88-94.
    [138]Ndamanisha J C, Bo X, Guo L, Electrocatalytic reduction of oxygen at ordered mesoporous carbonfunctionalized with tetrathiafulvalene[J]. Analyst,2010,135:621-629.
    [139]Su C, Zhang C, Lu G, et al. Nonenzymatic Electrochemical Glucose Sensor Based on Pt Nanoparticles/Mesoporous Carbon Matrix. Electroanalysis,2010,22:1901-1905.
    [140]Hou Y, Ndamanisha J C, Guo L, et al. Synthesis of ordered mesoporous carbon/cobalt oxide nanocomposite for determination of glutathione[J]. Electrochimica Acta,2009,54:6166-6171.
    [141]Liu L, Ndamanisha J C, Bai J, et al. Preparation of Cerium (Ⅲ)12-tungstophosphoric acid/ordered mesoporous carbon composite modified electrode and its electrocatalytic properties[J]. Electrochimica Acta,2010,55:3035-3040.
    [142]Zhang Y, Bo X, Luhana C, et al. Preparation and electrocatalytic application of high dispersed Pt nanoparticles/ordered mesoporous carbon composites[J]. Electrochimica Acta,2011,56:5849-5854.
    [143]Bo X, Bai J, Wang L, et al. In situ growth of copper sulfide nanoparticles on ordered mesoporous carbon and their application as nonenzymatic amperometric sensor of hydrogen peroxide[J]. Talanta,2010,81:339-345.
    [144]Wang L, Bo X, Bai J, et al. Gold Nanoparticles Electrodeposited on Ordered Mesoporous Carbon as an Enhanced Material for Nonenzymatic Hydrogen Peroxide Sensor[J]. Electroanalysis,2010,22:2536-2542.
    [145]Bai J, Qi B, Ndamanisha J C, et al. Ordered mesoporous carbon-supported Prussian blue:Characterization and electrocatalytic properties[J]. Microporous and Mesoporous Materials,2009,119:193-199.
    [146]Bo X, Ndamanisha J C, Bai J, et al. Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite[J]. Talanta,2010,82:85-91.
    [147]Lai C Z, Joyer M M, Fierke M A, et al. Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts[J]. Journal of Solid State Electrochemistry,2009,13:123-128.
    [148]Xu X, Guo M, Lu P, et al. Development of amperometric laccase biosensor through immobilizing enzyme in copper-containing ordered mesoporous carbon (Cu-OMC)/chitosan matrix[J]. Materials Science and Engineering:C,2010,30:722-729.
    [149]Jiang X, Zhu L, Yang D, et al. Amperometric Ethanol Biosensor Based on Integration of Alcohol Dehydrogenase with Meldola's Blue/Ordered Mesoporous Carbon Electrode[J]. Electroanalysis,2009,21:1617-1623.
    [150]You C, Xu X, Tian B, et al. Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions[J]. Talanta,2009,78:705-710.
    [151]Feng J J, Xu J J, Chen H Y, Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly[J]. Biosensors and Bioelectronics,2007,22:1618-1624.
    [152]Guo S J, Dong S J. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews,2011,40:2644-2672.
    [153]Li D, Muller M B, G ilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3:101-105.
    [154]Qi X, Pu K Y, Zhou X, et al. Conjugated-Polyelectrolyte-Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents[J]. Small,2010,6:663-669.
    [155]Zeng Q, Cheng J S, Tang L H, et al. Self-Assembled Graphene-Enzyme Hierarchical Nanostructures for Electrochemical Biosensing[J]. Advanced Functional Materials,2010,20:3366-3372.
    [156]Li X, Cai W, An J, et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils [J]. Science,2009,324:1312-1314.
    [157]Dervishi E, Li Z, Watanabe F, et al. Large-scale graphene production by RF-cCVD method[J]. Chemical Communications,2009,4061-4063.
    [158]Reina A, Jia X, Ho J, et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition[J]. Nano Letters,2009,9:30-35.
    [159]Shan C S, Tang H, Wong T, et al. Facile Synthesis of a Large Quantity of Graphene by Chemical Vapor Deposition:an Advanced Catalyst Carrier[J]. Advanced Materials,2012,24:2491-2495.
    [160]Zhou M, Wang Y, Zhai Y, et al. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films[J]. Chemistry-A European Journal,2009,15:6116-6120.
    [161]Wang Z J, Zhou X Z, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. Journal of Physical Chemistry C,2009,113:14071-14075.
    [162]Liu N, Luo F, Wu H, et al. Advanced Functional Materials,2008,18:1518-1525
    [163]Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature,2009,458:872-876.
    [164]Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature,2009,458:877-880.
    [165]Schedin F, Geim A K, Morozov S V, et al. Detection of Individual Gas Molecules Adsorbed on Graphene[J]. Nature Materials,2007,6:652-655.
    [166]Chu B H, Lo C F, Nicolosi J, et al. Hydrogen Detection Using Platinum Coated Graphene Grown on SiC[J]. Sensors and Actuators B:Chemical,2011,157:500-503.
    [167]Shang N G, Papakonstantinou P, McMullan M, et al. Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes[J]. Advanced Functional Materials,2008,18:3506-3514.
    [168]Zhang F Y, Li Y J, Gu Y, et al. One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine[J]. Microchimica Acta,2011,173:103-109.
    [169]Shan C S, Yang H F, Song J F, et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene[J]. Analytical Chemistry,2009,81:2378-2382.
    [170]Stoller M D, Park S J, Zhu Y W, et al. Graphene-Based Ultracapacitors[J]. Nano Letters,2008,8:3498-3502.
    [171]Xu Y, Sheng K, Li C, et al. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process ACS Nano,2010,4:4324-4330.
    [172]Hantel M M, Kaspar T, Nesper R, et al. Partially reduced graphite oxide for supercapacitor electrodes:Effect of graphene layer spacing and huge specific capacitance[J]. Electrochemistry Communications,2011,13:90-92.
    [173]Li Y, Zijll M, Chiang S, et al. KOH modified graphene nanosheets for supercapacitor electrodes[J]. Journal of Power Sources,2011,196:6003-6006.
    [174]Lian P C, Zhu X F, Liang S Z, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries[J]. Electrochimica Acta,2010,55:3909-3914.
    [175]Pan D, Wang S, Zhao B, et al. Li Storage Properties of Disordered Graphene Nanosheets [J]. Chemistry of Materials,2009,21:3136-3142.
    [176]Bhardwaj T, Antic A, Pavan B, et al. Enhanced Electrochemical Lithium Storage by Graphene Nanoribbons[J] Journal of The American Chemical Society,2010,132:12556-12558.
    [177]Ghosh A, Subrahmanyam K S, Krishna K S, Uptake of H2and CO2by graphene[J]. Journal of Physical Chemistry C,2008,112:15704-15707.
    [178]Ataca C, Akturk E, Ciraci S. Hydrogen storage of calcium atoms adsorbed on graphene:First-principles plane wave calculations[J]. Physical Review B,2009,79:041406-041410.
    [179]Hussain T, Maark T A, Sarkar A D, et al. Polylithiated (OLi2) functionalized graphane as a potential hydrogen storage material [J]. Applied Physics Letters,2012,101:1-4.
    [180]Truong Q D, Masato Kakihana, Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex[J]. Journal of Crystal Growth,2012,348:65-70.
    [181]Vargeese A A, Muralidharan K, Kinetics and mechanism of hydrothermally prepared copper oxide nanorod catalyzed decomposition of ammonium nitrate[J]. Applied Catalysis A:General,2012,447:171-177.
    [182]Ming H, Pan K M, Liu Y, et al. ElectrochemicalfabricationofCu(OH)2and CuO nanostructuresandtheir catalytic property [J]. Journal of Crystal Growth,2011, 327:251-257.
    [183]Sun F, Guo Y P, Song W B, et al. Morphological control of Cu20micro-nanostructure film by electrodeposition[J]. Journal of Crystal Growth,2007,304:425-429.
    [184]Lai X Y, Li X T, Geng W C, et al. Ordered Mesoporous Copper Oxide with Crystalline Walls[J]. Angewandte Chemie International Edition,2007,46:738-741.
    [185]Molares M E T, Brotz J, Buschmann V, et al. Etched heavy ion tracks in polycarbonate as template for copper nanowires[J]. Nuclear Instruments and Methods in Physics Research,2001,185:192-197.
    [186]Liu X M, Zou Y C, Electrochemical deposition and characterization of Cu2O nanowires[J]. Applied Physics A,2005,81:685-689.
    [187]Li Y, Yang X Y, Rooke J, et al. Ultralong Cu(OH)2and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance [J]. Journal of Colloid and Interface Science,2010,348:303-312.
    [188]Wang W, Varghese O K, Ruan C, et al, Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2nanowire templates[J]. Journal of materials research,2003,18:2756-2759.
    [189]Chang Y, Lye M L, Zeng H C, Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires [J]. Langmuir,2005,21:3746-3748.
    [190]Zhang W X, Wen X G, Yang S H, et al. Single-crystalline scoll-type nanotube arrays of copper hydroxide synthesized at room temperature[J]. Advanced Materials,2003,15:822-825.
    [191]Wang B J, Luo L Q, Ding Y P, et al. Synthesis of hollow copper oxide by electrospinning and its application as a nonenzymatic hydrogen peroxide sensor[J]. Colloids and Surfaces B:Biointerfaces,2012,9751-9756.
    [192]Tong S F, Jin H Y, Zheng D F, et al. Investigations on copper-titanate intercalation materials for amperometric sensor[J]. Biosensors and Bioelectronics,2009,24:2404-2409.
    [193]Wang W, Zhang L L, Tong S F, et al. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination[J]. Biosensors and Bioelectronics,2009,25:708-714.
    [194]Li X, Zhu Q Y, Tong S F, et al. Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor[J]. Sensors and Actuators B: Chemical,2009,136:444-450.
    [195]Zhou S H, Feng X, Shi H Y, Direct growth of vertically aligned arrays of Cu(OH)2nanotubes for the electrochemical sensing of glucose[J] Sensors and Actuators B:Chemical,2013,177:445-452.
    [196]Cao X, Cai X L, Wang N, et al, Hierarchical CuO nanochains:Synthesis and their electrocatalytic determination of nitrite[J]. Analytica Chimica Acta,2011,691:43-47
    [197]Zhang C Q, Tu J P, Huang X H, et al. Preparation and electrochemical performances of cubic shape Cu2O as anode material for lithium ion batteries[J]. Journal of Alloys and Compounds,2007,441:52-56.
    [198]Zhang Z L, Chen H, She X L, et al. Synthesis of mesoporous copper oxide microspheres with different surface areas and their lithium storage properties[J]. Journal of Power Sources,2012,217:336-344.
    [199]Chen J, Yang L, Fang S H, et al. Synthesis of mesoporous Sn-Cu composite for lithium ion batteries[J]. Journal of Power Sources,2012,209:204-208.
    [200]Seo S D, Lee D H, Kim J C, et al. Room-temperature synthesis of CuO/graphene nanocomposite electrodes for high lithium storage capacity[J]. Ceramics International,2013,39:1749-1755.
    [201]Goyal A, Reddy A L M, Ajayan P M, Flexible Carbon Nanotube-Cu2O Hybrid Electrodes for Li-Ion Batteries[J] Small,2011,12:1709-1713.
    [202]Muniz-Miranda Maurizio, Gellini C, Giorgetti E, Surface-Enhanced Raman Scattering from Copper Nanoparticles Obtained by Laser Ablation[J]. The Journal of Physical Chemistry C,2011,115:5021-5027.
    [203]Wang R C, Lin H Y, Efficient surface enhanced Raman scattering from Cu2O porous nanowires transformed from CuO nanowires by plasma treatments[J]. Materials Chemistry and Physics,2012,136:661-665.
    [204]Melde B J, Johnson B J, Mesoporous materials in sensing:morphology and functionality at the meso-interface [J] Analytical and Bioanalytical Chemistry,2010,398:1565-573.
    [205]Tominaga M, Nomura S, Taniguchi I, D-Fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode Biosensors and Bioelectronics,2009,24:1184-1188.
    [206]Song S P, Qin Y, Yao H, et al. Functional nanoprobes for ultrasensitive detection of biomolecules[J]. Chemical Society Reviews,2010,39:4234-4243.
    [207]Zhang Y, Yuan R, Chai Y, et al. Carbon nanotubes incorporated with sol-gel derived La(OH)3nanorods as platform to simultaneously determine ascorbic acid, dopamine, uric acid and nitrite[J]. Colloids and Surfaces B:Biointerfaces,2012,100:185-189.
    [208]Guo Q H, Huang J S, Chen P Q, et al. Simultaneous determination of catechol and hydroquinone using electrospun carbon nanofibers modified electrode[J]. Sensors and Actuators B,2012,163:179-185.
    [209]Qu Y H, Sun Q, Xiao F, et al. Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides[J]. Bioelectrochemistry,2010,77:139-144.
    [210]Zhang Y F, Zeng L J, Bo X J, et al. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites[J]. Analytica Chimica Acta,2012,752:45-52.
    [1]Dumitrescu I, Unwin P R, Macpherson J V. Electrochemistry at carbon nanotubes: perspective and issues[J]. Chemical Communication,2009,45:6886-6901.
    [2]Yang W R., Ratinac K R, Ringer S P, et al. Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?[J]. Angewandte Chemie International Edition,2010,49:2114-2138.
    [3]Banks C E, Crossley A, Salter C, et al. Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrode[J]. Angewandte Chemie International Edition,2006,45:2533-2537.
    [4]Pumera M, The Electrochemistry of Carbon Nanotubes:Fundamentals and Applications[J]. Chemistry-A European Journal,2009,15:4970-4978.
    [5]Sheng Z H, Zheng X Q, Xu J Y, et al. Electrochemical sensor based on nitrogen doped graphene:Simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Biosensors and Bioelectronics,2012,34:125-131.
    [6]Shang N G, Papakonstantinou P, McMullan M, et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes[J]. Advanced Functional Materials,2008,18:3506-3514.
    [7]Rao C V, Ishikawa Y, Activity, Selectivity, and Anion-Exchange Membrane Fuel Cell Performance of Virtually Metal-Free Nitrogen-Doped Carbon Nanotube Electrodes for Oxygen Reduction Reaction[J]. Journal of Physical Chemistry C,2012,116:4340-4346.
    [8]Jia N Q, Wang Z Y, Yang G F, et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications,2007,9:233-238.
    [9]Zhu S Y, Li H J, Niu W X, Xu G B, Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode[J]. Biosensors and Bioelectronics,2009,25:940-943.
    [10]Wan Y, Shi Y F, Zhao D Y, Supramolecular aggregates as templates:Ordered mesoporous polymers and carbons[J]. Chemistry of Materials,2008,20:932-945.
    [11]Melde B J, Johnson B J. Mesoporous materials in sensing:morphology and functionality at the meso-interface[J]. Analytical and Bioanalytical Chemistry,2010,398:1565-1573.
    [12]Zhou M, Shang L, Li B L, Huang L J, Dong S J. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes[J]. Electrochemistry Communications,2008,10:859-863
    [13]Wang H, Qi B, Lu B P, Bo X J, Guo L P. Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene[J]. Electrochimica Acta,2011,56:3042-3048.
    [14]Li Z Z, Cui X L, Zheng J S, et al. Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide[J]. Analytica Chimica Acta,2007,597:238-244.
    [15]Lezanska M, Pietrzyk P, Sojka Z. Investigations into the structure of nitrogen-Containing CMK-3and OCM-0.75carbon replicas and the nature of surface functional groups by spectroscopic and sorption techniques[J]. Journal of Physical Chemistry C2010,114:1208-1216.
    [16]Kalimuthu P, John S A, Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode [J]. Talanta,2010,80:1686-1691.
    [17]Mahshid S, Li C C, Mahshid S S, et al. Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2nanotubes modified with Pd, Pt and Au nanoparticles[J]. Analyst,2011,136:2322-2329.
    [18]Mallesha M, Manjunatha R, Nethravathi C, et al. Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid[J]. Bioelectrochemistry,2011,81:104-108.
    [19]Liu A H, Wei M D, Honma I, et al. Biosensing properties of titanate-nanotube films:Selective detection of dopamine in the presence of ascorbate and uric acid[J]. Advanced Functional Materials,2006,16:371-376.
    [20]Liu Y, Huang J S, Hou H Q, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode[J]. Electrochemistry Communications,2008,10:1431-1434.
    [21]Habibi B, Pournaghi-Azar M H, Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse[J]. Electrochimica Acta,2010,55:5492-5498.
    [22]D, Ye J S, Zhou L, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film[J]Journal of Electroanalytical Chemistry,2009,625:82-87.
    [23]Yu C Z, Fan J, Tian B Z, et al. Morphology development of mesoporous materials:a colloidal phase separation mechanism [J]. Chemistry of Materials,2004,16:889-898.
    [24]Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. Journal of the American Chemical Society,2000,122:10712-10713.
    [25]Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic50to300Angstrom Pores[J]. Science,1998,279:548-552.
    [26]Lu A H, Li W C, Schmidt W, et al. Fabrication of hierarchically structured carbon monoliths via self-binding and salt templating[J]. Microporous and Mesoporous Materials,2006,95:187-192.
    [27]Cui R J, Wang X Y, Zhang G H, et al. Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode [J]. Sensors and Actuators B:Chemical,2012,161:1139-1143.
    [28]Thiagarajan S, Tsai T H, Chen S M, Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Biosensors and Bioelectronics,2009,24:2712-2715.
    [29]Xiao C H, Chu X C, Yang Y, et al. Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine[J]. Biosensors and Bioelectronics,2011,26:2934-2939.
    [30]Yogeswaran U, Chen S M, Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films[J]. Electrochimica Acta,2007,52:5985-5996.
    [1]Shakkthivel P, Chen S M. Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode[J]. Biosensors and Bioelectronics,2007,22:1680-1687.
    [2]Mo J W, Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber[J]. Analytical Chemistry,2001,73:1196-1202.
    [3]Jodi S N D, Macro F C, Callum L, James D. Diagnostic implications of uric acid in electroanalytical measurements[J]. Electroanalysis,2005,17:1233-1687.
    [4]Liu AH, Wei MD, Honma I, Zhou H S. Biosensing properties of titanate-nanotube films:selective detection of dopamine in the presence of ascorbate and uric acid[J]. Advanced Functional Materials,2006,16:371-376.
    [5]Reddy S, Swamy B E K, Jayadevappa H. CuO nanoparticle sensor for the electrochemical determination of dopamine[J]. Electrochimica Acta,2012,61:78-86.
    [6]Thiagarajan S, Chen S M. Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid[J]. Talanta,2007,74:212-222.
    [7]Qu F L, Sun H Y, Zhang S F, You JM, Yang MH. Electrochemical sensing platform based on palladium modified ceria nanoparticles[J]. Electrochimica Acta,2012,61:173-178.
    [8]Li Y Y, Du J, Yang J D, Liu D, Lu X Q. Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode[J]. Colloids and Surfaces B:Biointerfaces,2012,97:32-36.
    [9]Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes[J]. Advanced Functional Materials,2008,18:3506-3514.
    [10]Yue Y, Hu G Z, Zheng M B, Guo Y, CaoJ M, Shao S J. A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid[J]. Carbon,2012,50:107-114.
    [11]Jia N Q, Wang Z Y, Yang G F, Shen H B, Zhu L Z. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications,2007,9:233-238.
    [12]Zhu S Y, Li H J, Niu W X, Xu G B, Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode [J]. Biosensors and Bioelectronics,2009,25:940-943.
    [13]Dumitrescu I, Unwin P R, Macpherson J V. Electrochemistry at carbon nanotubes: perspective and issues[J]. Chemical. Communication,2009,45:6886-6901.
    [14]Wang H, Qi B, Lu B P, Bo X J, Guo L P. Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene[J]. Electrochimica Acta,2011,56:3042-3048.
    [15]Zhou M, Shang L, Li B L, Huang L J, Dong S J. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes [J]. Electrochemistry Communications,2008,10:859-863.
    [16]Melde B J, Johnson B J. Mesoporous materials in sensing:morphology and functionality at the meso-interface[J]. Analytical and Bioanalytical Chemistry,2010,398:1565-1573.
    [17]Wan Y, Shi Y F, Zhao DY. Supramolecular aggregates as templates:ordered mesoporous polymers and carbons[J]. Chemistry of Materials,2008,20:932-945.
    [18]Yang H, Zheng K, Zhang Z M, Zhang P. Adsorption and protection of plasmid DNA on mesoporous silica nanoparticles modified with various amounts of organosilane[J]. Journal of colloid and interface science,2012,369:317-322.
    [19]Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. A Low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte International Edition Chemie,2010,49:7987-7991.
    [20]X.M. Sun, Y.D. Li, Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles[J]. Angewandte International Edition Chemie,2004,43,597-601
    [1]Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework.[J]. Nature,1999,402:276-279.
    [2]Mishra P, Edubilli S, Mandal B, et al. Adsorption of CO2, CO, CH4and N2on DABCO based metal organic frameworks[J]. Microporous and mesoporous materials,2013,169:75-80
    [3]Zhang F, Zou X Q, Gao X, et al. Hydrogen Selective NH2-MIL-53(A1) MOF Membranes with High Permeability [J]. Advanced Functional Materials,2012,22:3583-3590
    [4]Liu B, Jie S Y, Li B G. Metal-Organic Frameworks for Heterogeneous Catalysis[J]. Progress in chemistry,2013,25:36-45.
    [5]Park K S, Ni Z, Cote A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. PNAS,2006,103:10186-10191.
    [6]Diao H M, Ren S Z, Synthesis and Stability of Zeolitic Imidazolate Framework ZIF-8[J]. Proceedings of the7th national conference on Chinese functional materials and applications,2010,1-3:252-257.
    [7]Jiang H L, Liu B, Lan Y Q, et al. From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake[J]. Journal of the American Chemical Society,2011,133:11854-11857.
    [8]Chaikittisilp W, Hu M, Wang H J, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications,2012,48:7259-7261.
    [9]Dai L, Chang D W, Baek J B, et al. Carbon Nanomaterials for Advanced Energy Conversion and Storage[J]. Small,2012,8:1130-1166.
    [10]Hao G P, Li W C, Wang S, et al. Tubular structured ordered mesoporous carbon as an efficient sorbent for the removal of dyes from aqueous solutions [J]. Carbon,2010,48:3330-3339.
    [11]Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature,2001,412:169-172.
    [12]Kuila T, Bose S, Khanra P, et al. Recent advances in graphene-based biosensors[J] Biosensors and Bioelectronics,2011,26:4637-4648.
    [13]Dumitrescu I, Unwin P R, Macpherson J V. Electrochemistry at carbon nanotubes:perspective and issues[J] Chemical Communications,2009,45:6865-7052.
    [14]Jia N Q, Wang Z Y, Yang G F, et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications,2007,9:233-238.
    [15]Zhu S Y, Li H J, Niu W X, et al. Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode [J]. Biosensors and Bioelectronics,2009,25:940-943.
    [16]Sheng Z H, Zheng X Q, Xu J Y, et al. Electrochemical sensor based on nitrogen doped graphene:Simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Biosensors and Bioelectronics,2012,34:125-131.
    [17]Xiao C H, Chu X C, Yang Y, et al. Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine[J]. Biosensors and Bioelectronics,2011,26:2934-2939.
    [18]Liu Y, Huang J S, Hou H Q, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode[J]. Electrochemistry Communications,2008,10:1431-1434.
    [19]Guo Q H, Huang J S, Chen P Q, Liu Y, Hou H Q, You T Y, Simultaneous determination of catechol and hydroquinone using electrospun carbon nanofibers modified electrode[J]. Sensors and Actuators B:Chemical,2012,163:179-185.
    [20]Unnikrishnan B, Ru P L, Chen S M. Electrochemically synthesized Pt-MnO2composite particles for simultaneous determination of catechol and hydroquinone[J]. Sensors and Actuators B:Chemical,2012,169:235-24.
    [1]LinCY,BalamuruganA,LaiYH,etal. A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation[J] Talanta,2010,82:1905-1911.
    [2]Lijinsky W, Epstein S S. Nitrosamines as environmental carcinogens.[J]. Nature,1970,225:21-23.
    [3]Zhang J, Yang C, Wang X L, Yang X R. Colorimetric recognition and sensing of nitrite with unmodified gold nanoparticles based on a specific diazo reaction with phenylenediamine[J]. Analyst,2012,137:3286-3292.
    [4]Li X R, Kong F Y, Liu J, et al. Synthesis of Potassium-Modified Graphene and Its Application in Nitrite-Selective Sensing[J]. Advanced Functional Materials,2012,22:1981-1988.
    [5]Wang J Y, Diao P, Zhang Q. Dual detection strategy for electrochemical analysis of glucose and nitrite using a partitionally modified electrode[J]. Analyst,2012,137:145-152.
    [6]Mani V, Periasamy A P, Chen S M, Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode [J]. Electrochemistry Communications,2012,17:75-78.
    [7]Zhang W, Yuan R, Chai Y Q, Zhang Y, et al. A simple strategy based on lanthanum-multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite[J] Sensors and Actuators B:Chemical,2012,166-167:601-607.
    [8]Miyazaki K, Matsumoto G, Yamada M,et al. Simultaneous voltammetric measurement of nitrite ion, dopamine, serotonin with ascorbic acid on the GRC electrode[J] Electrochimica Acta,1999,44:3809-3820.
    [9]Wang C, Yuan R, Chai Y Q, et al. Au-nanoclusters incorporated3-amino-5-mercapto-1,2,4-triazole film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite [J] Biosensors and Bioelectronics,2011,30:315-319.
    [10]Hu F X, Chen S H, Wang C Y, et al. Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite[J] Analytica Chimica Acta2012,724:40-46.
    [11]Yin H S, Zhang Q M, Zhou Y L, et al. Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene-chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples [J]. Electrochimica Acta56(2011)2748-2753.
    [12]Wang C, Yuan R, Chai Y Q, Simultaneous determination of hydroquinone, catechol, resorcinol and nitrite using gold nanoparticles loaded on poly-3-amino-5-mercapto-1,2,4-triazole-MWNTs film modified electrode[J] Analytical Methods,2012,4:1526-1628.
    [13]Jiang H L, Bo Liu, Lan Y Q, K Kuratani, T Akita, H Shioyama, F Q Zong, Q Xu. From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake[J]. Journal of the American Chemical Society,2011,133:11854-11857
    [14]Ji X L, Lee K T, Holden R, et al. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes[J]. Nature Chemistry,2010,2:286-293
    [15]Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J] Nature,2001,412:169-172.
    [16]Ndamanisha J C, Guo L P. Ordered mesoporous carbon for electrochemical sensing:A review[J]. Analytica Chimica Acta,2012,747:19-28.
    [17]Melde B J, Johnson B J, Mesoporous materials in sensing:morphology and functionality at the meso-interface [J] Analytical and Bioanalytical Chemistry,2010,398:1565-573.
    [18]Dumitrescu I, Unwin P R, Macpherson J V. Electrochemistry at carbon nanotubes: perspective and issues[J]. Chemical Communication,2009,45:6886-6901.
    [19]Ndamanisha J C, Guo L P. Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode[J]. Bioelectrochemistry,2009,77:60-63.
    [20]L.D. Zhu, C.Y. Tian, D.X. Zhu, et al. Ordered Mesoporous Carbon Paste Electrodes for Electrochemical Sensing and Biosensing[J] Electroanalysis,2008,20:1128-1134.
    [21]Wang Z P, Mao S J, Hironori O, Electrochemical determination of NADH based on MPECVD carbon nanosheets[J]. Talanta,2012,99:487-491.
    [22]Zhou M, Shang L, Li B L, et al. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes [J]. Electrochemistry Communications,2008,10:859-863.
    [23]Wang H, Qi B, Lu B P, et al. Comparative study on the electrocatalytic activities of ordered mesoporous carbons and graphene[J] Electrochimica Acta,2011,56:3042-3048.
    [24]D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science,1998,279:548-552.
    [25]Tsai H M, Yang S J, Ma C C M, et al. Preparation and electrochemical activities of iridium-decorated graphene as the electrode for all-vanadium redox flow batteries[J]. Electrochimica Acta,2012,77:232-236.
    [26]Lu A H, Li W C, Schmidt W, et al. Fabrication of hierarchically structured carbon monoliths via self-binding and salt templating[J]. Microporous and Mesoporous Materials,2006,95:187-192.
    [27]Xie L M, Jiao L Y, Dai H J. Selective Etching of Graphene Edges by Hydrogen Plasma[J]. Journal of the American Chemical Society,2010,132:14751-14753.
    [28]Cui R J,Wang X Y, Zhang G H, et al. Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode[J] Sensors and Actuators B:Chemical,2012,161:1139-1143
    [29]Lezanska M, Pietrzyk P, Sojka Z. Investigations into the Structure of Nitrogen-Containing CMK-3and OCM-0.75Carbon Replicas and the Nature of Surface Functional Groups by Spectroscopic and Sorption Techniques[J] The Journal of Physical Chemistry C,2010,114:1208-1216.
    [30]Jia N Q, Wang Z Y, Yang G F, Shen H B, Zhu L Z. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochemistry Communications,2007,9:233-238.
    [31]Liu Y, Huang J S, Hou H Q, You T Y, Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode Electrochemistry Communications,2008,10:1431-1434.
    [32]Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes[J]. Advanced Functional Materials,2008,18:3506-3514.
    [33]Xiao C H, Chu X C, Yang Y, Li X, Zhang X H, Chen J H, Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine[J].Biosensors and Bioelectronics,2011,26:2934-2939.
    [1]Heller A, Feldman B. Electrochemical glucose sensors and their applications in diabetes management[J]. Chemical Reviews,2008,108:2482-2505.
    [2]Wang J. Electrochemical glucose biosensors, Chemical Reviews,2008,108:814-825.
    [3]Holt-Hindle P, Nigro S, Asmussen M, Chen A C. Amperometric glucose sensor based on platinum-iridium nanomaterials[J]. Electrochemistry Communications,2008,10:1438-1441.
    [4]Li Y, Song Y Y, Yang C, et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose[J]. Electrochemistry Communications,2007,9:981-988.
    [5]Chen X L, Pan H B, Liu H F, Du M. Nonenzymatic glucose sensor based on flower-shaped Au@Pd core-shell nanoparticles-ionic liquids composite film modified glassy carbon electrodes, Electrochimica Acta,2010,56:636-643.
    [6]Zhang Y, Xu F G, Sun Y J, et al. Assembly of Ni(OH)2nanoplates on reduced graphene oxide:a two dimensional nanocomposite for enzyme-free glucose sensing[J] Journal of Materials Chemistry,2011,21:16949-16954.
    [7]X Li, J P Liu, X X Ji, et al. Ni/Al layered double hydroxide nanosheet film grown directly on Ti substrate and its application for a nonenzymatic glucose sensor[J], Sensors and Actuators B:Chemical,2010,147:241-247.
    [8]Safavi A, Maleki N, Farjami E, Fabrication of a glucose sensor based on a novel nanocomposite electrode, Biosensors and Bioelectronics,2009,24:1655-1660.
    [9]Zhang Y C, Su L, Manuzzi D, et al. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires[J]. Biosensors and Bioelectronics,2012,31:426-432.
    [10]Li S, Zheng Y J, Qin GW, et al. Enzyme-free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O modified electrode[J]. Talanta,2011,85:1260-1264.
    [11]Cherevko S, Chung C H, The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection[J]. Talanta,2010,80:1371-1377.
    [12]Tong S F, Jin H Y, Zheng D F, et al. Investigations on copper-titanate intercalation materials for amperometric sensor[J]. Biosensors and Bioelectronics,2009,24:2404-2409.
    [13]Luo J, Jiang S S, Zhang H Y, et al. A novel non-enzymatic glucose sensor based Cu nanoparticle modified graphene sheets electrode[J]. Analytica Chimica Acta,2012,709:47-53.
    [14]Li X, Zhu Q Y, Tong S F, et al. Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor[J]. Sensors and Actuators B: Chemical,2009,136:444-450.
    [15]Wang W, Zhang L L, Tong S F, et al. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination[J]. Biosensors and Bioelectronics,2009,25:708-714.
    [16]Tong S F, Xu Y H, Zhang Z X, et al. Dendritic bimetallic nanostructures supported on self-assembled titanate films for sensor application[J]. Journal of Physical Chemistry C,2010,114:20925-20931.
    [17]Luo P F, Prabhu S V, Baldwin R P, Constant potential amperometric detection at a copper-based electrode:electrode formation and operation[J]. Analytical Chemistry,1990,62:752-755.
    [18]Luo P F, Kuwana T, Nickel-titanium alloy electrode as a sensitive and stable LCEC detector for carbohydrates[J]. Analytical Chemistry,1994,66:2775-2782.
    [19]Casella I G, Desimoni E, Cataldi T R I, Study of a nickel-catalysed glassy carbon electrode for detection of carbohydrates in liquid chromatography and flow injection analy si [J]. AnalyticaChimica Acta,1991,248:117-125.
    [20]Lu B P, Jing B, Bo X J, et al. A simple hydrothermal synthesis of nickel hydroxide-ordered mesoporous carbons nanocomposites and its electrocatalytic application[J]. Electrochimica Acta,2010,55:8724-8730.
    [21]Stitz A, Buchbwger W, Studies on electrochemical reactions at metal-oxide electrodes for combination with high performance liquid chromatography[J]. Electroanalysis,1994,6:251-258.
    [22]You T Y, Kiwa O, Tomita M, et al. Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method[J]. Electrochemistry Communications,2002,4:468-471.
    [23]Sun Y H, Jiang L, Schuermann K C, et al. Semi conductive, one-dimensional,self-Assembled nanostructures based on oligopeptides with p-conjugated segments[J]. Chemistry-A European Journal,2011,17:4746-4749.
    [24]Mukherjee B, Mukherjee M, One-step fabrication of ordered organic crystalline array for novel optoelectronic applications[J]. Organic Electronics,2011,12:1980-1987.
    [25]Kumar M A, Jung S, Ji T, Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods[J]. Sensors,2011,11:5087-5111.
    [26]Gutierrez F, Rubianes M, Rivas G, Dispersion of multi-wall carbon nanotubes in glucose oxidase:Characterization and analytical applications for glucose biosensing[J]. Sensors and Actuators B:Chemical,2012,161:191-197.
    [27]Xia C, Ning W, A novel non-enzymatic electrochemical glucose sensor modified with FeOOH nanowire[J]. Electrochemistry Communications,2010,12:1581-1584.
    [28]Lei Y, Yan XQ, Zhao J, et al. Improved glucose electrochemical biosensor by appropriate immobilization of nano-ZnO[J]. Colloids and Surfaces B: Biointerfaces,2011,82:168-172.
    [29]Gabig-Ciminska M, Los M, Holmgren A, et al. Detection of bacteriophage infection and prophage induction in bacterial cultures by means of electric DNA chips[J]. Analytical Biochemistry,2004,324:84-91.
    [30]Yang W R, Ratinac K R, Ringer S P, et al. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene[J]. Angewandte Chemie International Edition,2010,49:2114-2138.
    [31]Shin C, Shin W, Hong H G. Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor[J]. Electrochimica Acta,2007,53:720-728.
    [32]Diao P, Liu Z F, Electrochemistry at chemically assembled single-wall carbon nanotube arrays[J]. Journal of Physical Chemistry B,2005,109:20906-20913.
    [33]Yang J, Zhang W D, Gunasekaran S, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays[J]. Biosensors and Bioelectronics,2010,26:279-284.
    [34]Du D, Wang M H,Qin Y H, et al. One-step electrochemical deposition of Prussian Blue-multiwalledcarbon nanotube nanocomposite thin-film: preparation, characterization and evaluation for H2O2sensing[J]. Journal of Materials Chemistry,2010,20:1532-1537.
    [35]Zhang W X, Wen X G, Yang S H,ea al. Single-crystalline scoll-type nanotube arrays of copper hydroxide synthesized at room temperature[J]. Advanced Materials,2003,15:822-825.
    [36]Wen X G, Zhang W X, Yang S H, Synthesis of Cu(OH)2and CuO nanoribbon arrays on a copper surface[J]. Langmuir,2003,19:5898-5903.
    [37]Ndamanisha J C, Guo L P, Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode[J]. Bioelectrochemistry,2009,77:60-63.
    [38]Wang J P, Thomas D F, Chen A C, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks[J]. Analytical Chemistry,2008,80:997-1004.
    [39]Zhao Y, Zhao J Z, Ma D C, et al. Synthesis, growth mechanism of different Cu nanostructures and their application for non-enzymatic glucose sensing[J]. Colloids and Surfaces A,2012,409:105-111.
    [40]Kumar S A, Cheng H W, Chen S M,et al. Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing[J]. Materials Science and Engineering:C,2010,30:86-91.
    [41]Fang B, Gu A X, Wang G F, et al.Silver oxide nanowalls grown on cu substrate as an Enzymeless Glucose Sensor[J]. Applied Materials&Interfaces,2009,12:2829-2834.
    [42]Zhang P, Zhang L, Zhao G C, et al. A highly sensitive nonenzymatic glucose sensor based on CuO nanowires[J] Microchimica Acta,2012,176:411-417.
    [1]Paredes P A, Parellada J, Fernandez V M, et al. Amperometric mediated carbon paste biosensor based on D-fructose dehydrogenase for the determination of fructose in food analysis[J]. Biosensors and Bioelectronics,1997,12:1233-1243.
    [2]Tan W, Zhang D, Wang Z, et al.4-(N,N-dimethylamine)benzonitrile (DMABN) derivatives with boronic acid and boronate groups:new fluorescent sensors for saccharides and fluoride ion[J]. Journal of Materials Chemistry,2007,17:1964-1968.
    [3]Cascant M, Kuligowski J, Garrigues S, et al. Determination of sugars in depilatory formulations:A green analytical method employing infrared detection and partial least squares regression[J]. Talanta,2011,85:1721-1729.
    [4]Wahjudi P N, Patterson M E, Lim S, et al. Measurement of glucose and fructose in clinical samples using gas chromatography/mass spectrometry[J]. Clinical Biochemistry,2010,43:198-207.
    [5]Biscay J, Rama E C, Garcia M B G, et al. Amperometric fructose sensor based on ferrocyanide modified screen-printed carbon electrode Talanta,2012,88:432-438.
    [6]Tsujimura S, Nishina A, Kamitaka Y, et al. Amperometric fructose sensor based on ferrocyanide modified screen-printed carbon electrode [J]. Analytical Chemistry,2009,81:9383-9387.
    [7]Trivedi U B, Lakshminarayana D, Kothari I L, et al. Amperometric fructose biosensor based on fructose dehydrogenase enzyme[J] Sensors and Actuators B: Chemical,2009,136:45-51.
    [8]Tominaga M, Nomura S, Taniguchi I, D-Fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode Biosensors and Bioelectronics,2009,24:1184-1188.
    [9]Holt-Hindle P, Nigro S, Asmussen M, Chen A C. Amperometric glucose sensor based on platinum-iridium nanomaterials[J]. Electrochemistry Communications, 2008,10:1438-1441.
    [10]Wang Y, Wang W, Song W B, Electrochimica Acta,2011,56:10191-10196.
    [11]L.M. Dai, D.W. Chang, J.B. Baek, et al. Carbon Nanomaterials for Advanced Energy Conversion and Storage[J] Small,2012,8:1130-1166.
    [12]Huang X, Qi X Y, Boey F, et al. Graphene-based composites Chemical Society Reviews,2012,41:666-686.
    [13]Liu Y X, Dong X C, Chen P. Biological and chemical sensors based on graphene materials[J]. Chemical Society Reviews,2012,41:2283-2307.
    [14]F. Schwierz, Graphene transistors[J]. Nature Nanotechnology,2010,5:487-496.
    [15]Kuila T, Bose S, Mishra A K, et al. Chemical functionalization of graphene and its applications Progress in Materials Science,2012,57:1061-1105.
    [16]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets Nature Nanotechnology,2008,3:101-105.
    [17]Kuila T, Bose S, Mishra A K, et al. Chemical functionalization of graphene and its applications Progress in Materials Science,2012,57:1061-1105.
    [18]V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chemical Reviews,2012,112:6156-6214.
    [19]Liu J, Li Y, Li Y, et al. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly [J]. Journal of Materials Chemistry,2010,20:900-906.
    [20]Liu J, Yang W, Tao L, et al. Thermosensitive Graphene Nanocomposites Formed Using Pyrene-Terminal Polymers Made by RAFT Polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2010,48:425-33.
    [21]Zhang K, Mao L, Zhang L L, et al. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes[J]. Journal of Materials Chemistry,2011,21:7302-7307.
    [22]Goak J C, Lee S H, Han J H, et al. Spectroscopic studies and electrical properties of transparent conductive films fabricated by using surfactant-stabilized single-walled carbon nanotube suspensions[J]. Carbon,2011,49:4301-4313.
    [23]Islam M F, Rojas E, Bergey D M,et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Letters,2003,3:269-273.
    [24]Bystrzejewski M, Huczko A, Lange H, et al. Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions[J]. Journal of Colloid and Interface Science,2010,345:138-142.
    [25]Zeng Q, Cheng J S, Tang L H, et al. Self-Assembled Graphene-Enzyme Hierarchical Nanostructures for Electrochemical Biosensing[J]. Advanced Functional Materials,2010,20:3366-3372.
    [26]Wenseleers W, Vlasov I I, Goovaerts E, et al. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles[J]. Advanced Functional Materials,2004,14:1105-1112.
    [27]Zhang Y Q, Xia X H, Wang X L, et al. Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithium-ion batteries [J] Journal of Power Sources,2012,213:106-111.
    [28]Jiang H, Ma J, Li C Z.Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes [J]. Advanced Materials,2012,24:4197-4202.
    [29]Shang N G, Papakonstantinou P, Wang P, et al. Platinum Integrated Graphene for Methanol Fuel Cells[J] Journal of Physical Chemistry C,2012,114:15837-15841.
    [30]Liang Y Y, Wan g H L, Zhou J G, et al. Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts[J]. Journal of the American Chemical Society,2012,134:3517-3523.
    [31]Yang X, Yang Q D, Xua J, et al. Bimetallic PtPd nanoparticles on Nafion-graphene film as catalyst for ethanol electro-oxidation[J]. Journal of Materials Chemistry,2012,22:8057-8062.
    [32]Xiao F, Li Y Q, Zan X L,et al. Growth of Metal-Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors [J] Advanced Functional Materials,2012,22:2487-2494.
    [33]Tong S F, Xue Y H, Zhang Z X, et al. Dendritic Bimetallic Nanostructures Supported on Self-Assembled Titanate Films for Sensor Application[J]Journal of Physical Chemistry C,2010,114:20925-20931.
    [34]Zhi J, Song D P, Li Z W, et al. Palladium nanoparticles in carbon thin film-lined SBA-15nanoreactors:efficient heterogeneous catalysts for Suzuki-Miyaura cross coupling reaction in aqueous media[J]. Chemical Communications,2011,47:10707-10709.
    [35]Vilhelmsen L B, Walton K S, Sholl D S, Structure and Mobility of Metal Clusters in MOFs:Au, Pd, and AuPd Clusters in MOF-74[J]. Journal of the American Chemical Society,2012,134:12807-12816.
    [36]Gao H C, Xiao F, Ching C B, et al. One-Step Electrochemical Synthesis of PtNi Nanoparticle-Graphene Nanocomposites for Nonenzymatic Amperometric Glucose Detection[J]. Applied Materials and Interfaces,2011,3:3049-3057.
    [37]Hua J G, Li F H, Wang K K, et al. One-step synthesis of graphene-AuNPs by HMTA and the electrocatalytical application for O-2and H2O2[J]. Talanta,2012,93:345-349.
    [38]Wang X W, Dong X C, Wen Y Q, et al. A graphene-cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets[J]. Chemical Communications,2012,48:6490-6492
    [39]Shan C S, Yang H F, Song J F, et al.Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene[J]. Analytical Chemistry,2009,81:2378-2382.
    [40]Luo P F, Prabhu S V, Baldwin R P, Constant potential amperometric detection at a copper-based electrode:electrode formation and operation[J]. Analytical Chemistry,1990,752-755.
    [41]Wang W, Tong S F, Jin H Y, et al. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination[J]. Biosensors and Bioelectronics,2009,24:2404-2409.
    [42]Song M J, Hwang S W, Whang D. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection[J]. Talanta,2010,80:1648-1652.
    [43]Zhang Y C, Su L, Manuzzi D, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires[J]. Biosensors and Bioelectronics,2012,31:426-432.
    [44]Hassanl H B, Hamid Z A, Electrodeposited Cu-CuO Composite Films For Electrohemcial Detection of glucose[J]. International Journal of Electrochemical Science,2011,6:5741-5758.
    [45]Crouch S R, Cullen T F. Kinetic Determinations and Some Kinetic Aspects of Analytical Chemistry[J].Analytical Chemistry,1998,70:53-106.
    [46]Trivedi U B, Lakshminarayana D, Kothari I L, et al. Amperometric fructose biosensor based on fructose dehydrogenase enzyme[J]. Sensors and Actuators B: Chemical,2009,136:45-51.
    [47]Luo J, Zhang H Y, Jiang S S, et al. Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene [J]. Microchimica Acta,2012,177:485-490.
    [48]Luo L Q, Zhu L M, Wang Z X, Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode [J]. Bioelectrochemistry,2012,88:156-163.
    [49]Qiao N Q, Zheng J B, Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene[J]. Microchimica Acta,2012,177:103-109.
    [50]Antiochia R, Lavagnini I, Magno F. Amperometric mediated carbon nanotube paste biosensor for fructose determination[J]. Analytical Letters,2004,37:1657-1669.
    [51]Campuzano S, Esamilla-Gomez V, Herranz M A, et al. Development of amperometric biosensors using thiolated tetrathiafulvalene-derivatised self-assembled monolayer modified electrodes [J]. Sensors and Actuators B: Chemical,2008,134:974-980.
    [52]Tkac J, Vostiar I, Sturdik E, et al. Fructose biosensor based on D-fructose dehydrogenase immobilised on a ferrocene-embedded cellulose acetate membrane[J]. Analytica Chimica Acta,2001,439:39-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700