用户名: 密码: 验证码:
毛乌素沙地土壤生物结皮细菌多样性分析与拮抗菌株5A5-3的筛选鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以毛乌素沙地土壤生物结皮为研究对象,采用稀释平板法统计了土壤生物结皮及结皮下土壤层各样品的细菌生物量;根据平板菌落形态差异分离菌株,通过测定分离菌株的16S rDNA序列,进行细菌种属鉴定和种群多样性分析。以分离到的细菌菌株为研究对象,通过对峙试验筛选得到对兰花根腐病病原菌有较强拮抗作用的细菌5A5-3,并对5A5-3进行了生理生化鉴定和16S rDNA序列分析。研究所得的主要结果如下:
     可培养细菌分离生物量数量级为105,各取样点结皮层样品细菌生物量略高于土壤层,各方向随距离变化所采集样品分离到的细菌种类数和生物量变化没有相一致的趋势。生物结皮样品分离到的细菌菌落表型丰富,共获得190株菌落表型差异的细菌,结皮下土壤层样品得到表型差异的细菌84株。
     获得的274株细菌的16S rDNA有效序列测序后进行BLAST比对分析,除5株与已报道的菌株序列相似性低于97%,其余均大于等于97%。根据序列相似性分析,生物结皮样品中测序的186株细菌划分在60个分类单元,而土壤样品中测序的83株细菌划分在29个分类单元。生物结皮样品的物种丰富度(S),Shannon-Wiener多样性指数(H)和均匀度指数(D)分别为22.25±2.06,2.7016±0.0567和0.9081±0.0189,土壤样品的物种丰富度(S),Shannon-Wiener多样性指数(H)和均匀度指数(E)分别为13.00±2.45,2.3093±0.2037和0.8329±0.0735,其中生物结皮物种丰富度(S),多样性指数(H)和均匀度指数(E)分别都明显优于土壤样品,而优势度指数(D)显示土壤样品高于结皮样品。
     细菌种群多样性分析表明,生物结皮样品和土壤样品分离到的细菌类群分布在厚壁菌门(Fimicutes),放线菌门(Actinobacteria),变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)。芽孢杆菌属(Bacillus)为所研究样品的优势菌属,在结皮和土壤样品中的分离频率分别为86.84%和56.41%。四个主风向不同距离采集的样品多样性显示各采样点细菌多样性分布差异明显。
     从生物结皮分离的菌株,有4株与数据库里已报道的细菌相似性低于97%,土壤样品中只分离出1株相似性低于97%的细菌,证明生物结皮有优于土壤发现新型菌的潜力。并从分离到的274株细菌菌株中筛选到1株对兰花根腐病病原菌尖孢镰刀菌(Fusarium oxysporium)和串珠镰孢菌(Fusarium moniliforme)均有强拮抗作用的菌株5A5-3,通过生理生化试验和16S rDNA序列分析鉴定为Bacillus velezensis。
In order to understand the soil bacterial diversity of biological soil crusts of Mu Us Desert in Inner Mongolia Erdos Wushenqi areas, 54 of biological soil crusts and soil samples were studied. The quantity of bacterium were mesured by plate culture; Isolated strains with different morphological characteristic of colonies; Also, the phylogenetic diversity of generalized bacteria in biological soil crusts and soil was analyzed by 16S rDNA sequences of isolates. A strain named 5A5-3 with a rather higher antagonistic activity against pathogens had inhibition zone diameter than 15 mm was screened via preliminary sereening from bacterias isolated from 54 samples The strain 5A5-3 was further characterized by morphological and culture observation, physiological and biochemical experiments and 16S rDNA sequence analysis. The test results were as follows:
     The quantity of culturable bacteria biomass was in the order of 105.Each biomass of bacteria in BSCs sample was higher than in the soil layer. Changes of biomass in different distances of four directions did not have a consistent trend. The diversity of the morphological characteristic of colonies was more relatively rich in BSCs samples than soil samples. 190 of bacterias with different morphological characteristic of colonies were isolated from BSCs samples, and 84 from soil samples.
     When 16S rDNA sequences of 274 isolates were aligned the closest relatives in the GenBank database with BLAST, the similarity of 269 isolates were higher than 97%, and 5 isolates were lower than 97%. The strains were clustered into operational taxonomic units (OTUs) at a level of sequence similarity of≥97%, OTUs formed by strains from BSCs samples and soil samples respectively were: 60 and 29. While Species richness (S), Shannon–Wiener index(H) and Evenness index(E) of bacteria in BSCs samples respectively were: 22.25±2.06,2.7016±0.0567和0.9081±0.0189; and which of soil samples respectively were: 13.00±2.45,2.3093±0.2037 and 0.8329±0.0735. Bacteria diversity index of Species richness (S), Diversity index (H) and Evenness index (E) in BSCs samples were significantly higher than the soil samples, while the Dominance index(D) of the soil samples was higher than BSCs samples.
     Phylogenetic analysis based on the partial 16S rDNA sequences indicated that isolates were mostly clustered into Fimicutes, Proteobacteria, Actinobacteria and Bacteroidetes. Bacillus was the dominant kind of bacteria, the separation frequency of which in BSCs samples and soil samples were 86.84% and 56.41%. Analysised by genus level, bacterial diversity in different samples showed high distinctive.
     The similarity of 4 strains from BSCs samples were lower than 97%,while only 1 isolates from soil samples. BSCs was more potentially to discover new bacterial species. A strain named 5A5-3 with a rather higher antagonistic activity against Fusarium oxysporium and Fusarium moniliforme respectively. Based on the results of physiological and biochemical experiments and 16S rDNA sequence analysis, the strain was initially identified as Bacillus velezensis.
引文
[1]范君华,刘明,黄伟.南疆温室和菜地土壤微生物学特性比较[J].土壤肥料, 2003, 1: 31-33.
    [2]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境, 2002, 11(2): 140-143.
    [3]俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报, 1999, 36(3): 413-422.
    [4]Eldridge D J, Koen T B. Cover and floristics of microphytic soil crusts in relatioto indices of landscape health[J]. Plant Ecology, 1998, 137(1): 101-114.
    [5]Eldridge D J, Greene R S B. Microbiotic soil crusts: A view of their roles in soiand ecological processes in the rangelands of Australia[J]. Australian Journal of Soil Research, 1994, 32: 389-415.
    [6]Fearnehough W, Fullen M A, Mitchen Trueman D, et al. Aeolian deposition and its effect on soil and vegetation changes on stabilized desert dunes in northern China[J]. Geom orphology, 1998, 23: 171-182.
    [7]Fullen M A, Mitchell D J. Desertification and reclamation in north-central China[J]. AMB IO, 1994, 23: 131-135.
    [8]BowkerM A, Belnap J, Davidson D W, et al. Evidence for micronutrient limitation of biological soil crusts: Importance to aridland restoration[J]. Ecological Applications, 2005, 15: 1941-1951.
    [9]邵玉琴,赵吉.库布齐固定沙丘土壤微生物数量与土壤生态因子的研究[J].内蒙古大学学报(自然科学版), 1997, 28(5): 715-719.
    [10]吴永胜,哈斯,李双权,等.毛乌素沙地南缘沙丘生物结皮中微生物分布特征[J].生态学杂志, 2010, 29(8): 1624-1628
    [11]许冬梅,王堃.毛乌素沙地南缘生态过渡带土壤微生物特征,中国沙漠[J]. 2007, 27(5): 805-808.
    [12]West N E. Structure and function of microphytic soil crusts in wild land ecosystems of arid to semi-arid regions[J]. Adv Ecol Res , 1990, 20: 179–223.
    [13]Belnap, J. Microbes and microfauna associated with biological soil crust[J]. Springer Verlag, Berlin, 2001: 167–176.
    [14]Johansen J R. Cryptogamic crusts of semiarid and arid lands of North America[J]. J Phycol, 1993, 29: 140–147.
    [15]Li X R, Chen Y W, Yang L W. Cryp togam diversity and formation of soil crusts in temperate desert[J]. Annals of A rid Zone, 2004, 43: 335-353.
    [16]李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展, 2009, 24(1): 11-24.
    [17]Li Xinrong, Chen Yingwu, Jia Rongliang. Biological soil crusts: A significant food source for insects in the arid desert ecosystems[J]. Journal of Desert Research, 2008, 28: 245-248.
    [18]F. Garcia-Pichel. Small-scale vertical distribution of bacterial biomass and diversity in biologicalsoil crusts from arid lands in the Colorado Plateau[J]. Microb Ecol, 2003, 46: 312-321.
    [19]张宪武,周崇莲.包兰铁路沿线沙漠地区土壤微生物的研究[A].流沙治理研究[C].北京:科学出版社, 1963.
    [20]陈祝春,张继贤,李定淑,等.腾格里沙漠东南缘不同类型沙丘的微生物学特征[J].中国沙漠, 1983, 3 (1) : 20-26.
    [21]陈祝春,李定淑.科尔沁沙地奈曼旗固沙林地土壤微生物区系动态[J].中国沙漠, 1992, 12 (3) : 18-21.
    [22]朱志诚,郭爱莲,岳明.陕北黄土高原臭柏群落进展演替和逆行演替[J].西北大学学报(自然科学版), 1996, 26 (4): 325-329.
    [23]Wu Nan. Temporal-spatial dynamics of distribution patterns of microorganism relating to biological soil crusts in the Gurbantunggut Desert[J]. Chinese Science Bulletin, 2006, 51: 124-131.
    [24]Nagy M. The prokaryotic diversity of biological soil crusts in the Sonoran desert[J]. FEMS Microbiol Ecol, 54: 233–245.
    [25]S.M. Smith, R.M.M. Abed, F. Garcia-Piche. Biological Soil Crusts of Sand Dunes in Cape Cod National Seashore, Massachusetts[J]. Microbial Ecology, 2004, 48: 200-208.
    [26]Kuske C R, Ticknor L O, Miller M E, et al. Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland[J]. Appl Environ Microbiol, 2002, 68: 1854-1863.
    [27]Sathyanarayana R G. phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation[J]. Microb Ecol, 52: 345-357.
    [28]Bates S T. A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass[J]. Environ Microbiol, 2009, 11(1): 56-67.
    [29]States J S. Fungi associated with biological soil crusts in the desert grasslands of Utah and Wyoming[J]. Mycologia, 93: 432-439.
    [30]Brian J. Darby, David C, et al. Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts[J]. Eukaryot Microbiol, 2006, 53(6): 507-514.
    [31]Garcia-Pichel F. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau[J]. Appl Environ Microbiol, 2001, 67(4): 1902-1910.
    [32]Elizabeth Redfield, Susan M B, Jayne Belnap, et al. Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau[J]. FEMS Microbiology Ecology, 2002, 40: 55-63.
    [33]Campbell S E. Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota[J]. Orig Life, 1979, 9: 335-348.
    [34]Belnap J, Gardner J S. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus[J]. Great Basin Naturalist, 1993, 53: 40-47.
    [35]Schulten J A. Soil aggregation by cryptogams of a sand prairie[J]. Am J Bot, 1985, 72: 1657-1661.
    [36]Eldridge D J. Cryp togams, vascular plants, and soil hydrological relations: some preliminaryresults from the semiarid woodlands of Eastern Australia[J]. Great B asin Naturalist, 1993, 53: 48-58.
    [37]Eldridge D J, Greene RS. Microbiotic soil crusts: A review of their roles in soil and ecological processes in the rangelands of Australia[J]. Aust J Soil Res, 1994, 32: 389-415.
    [38]George D B, Roundy B A, St Clair L L, et al. The effects of microbiotic soil crusts on soil water loss[J]. Arid Land Res Manag, 2003, 17: 113-125.
    [39]Harper K T, Pendleton R L. Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants[J]. Great B asin Naturalist, 1993, 53: 59-72.
    [40]Belnap J, Harper K T. Influence of cryp tobiotic soil crusts on elemental content of tissue of two desert seed plants[J]. Arid Soil Res & Rehabilitation, 1995, 9: 107-115.
    [41]Defalco L A, Detling J K, Richard Tracy C, et al. Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert[J]. Plant Soil , 2001, 234: 1-14.
    [42]Harper K T, Belnap J. The influence of biological soil crust on mineral uptake by associated vascular plants[J]. J Arid Environ, 2001, 47: 347-357.
    [43]Prasse R, Bornkamm R. Effect of microbiotic soil surface crusts on emergence of vascular plants[J]. Plant Ecol, 2000, 150: 65-75.
    [44]St.Clair L L, Webb L, Johansen J R, et al. Cryp togamic soil crusts: enhancement of seeding establishment in disturbed and undisturbed areas[J]. Reclamation & Revegetation Res, 1984, 3: 129-136.
    [45]Skarpe C, Henriksson E. Nitrogen fixation by cyanobacterial crusts and by associative symbiotic bacteria in Western Kalahari, Botswana[J]. A rid Soil Res & Rehabilitation, 1986, 1: 55-59.
    [46]Zaady E, Groffman P , Shachak M. Nitrogen fixation in macro-andmicrophytic patches in the Negev Desert[J]. Soil B iol & B iochem, 1998, 30: 449-454.
    [47]Li X R, Jia Y K, Long L Q, et al. Advances in microbiotic soil crust research and its ecological significance in arid and semiarid region[J]. J Desert Res, 2001, 21 (1): 4-12.
    [48]Shepherd U L, Brantley S L, Tarleton C A. Species richness and abundance patterns of microarthropods on cryptobiotic crusts in a pinon-juniper habitat: a call for greater knowledge[J]. J Arid Environ, 2002, 52: 349-360.
    [49]Garcia-Pichel F, Belnap J, Neuer S, et al. Estimates of global cyanobacterial biomass and its distribution[J]. Arch Hydrobiol Suppl Alg Studies, 2002, 119: 213-228.
    [50]Harel Y. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust[J]. Plant Physiol, 2004, 136(2):3070-3079.
    [51]Jayne Belnap. Nitrogen fixation in biological soil crusts from southeast Utah[J]. Biol Fertil Soils, 2002, 35: 128-135.
    [52]Chris M, Yeager L, Jennifer L, et al. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the ColoradoPlateau[J]. FEMS Microbiol Ecol, 2007, 60: 85-97.
    [53]Yeager C M, Kornosky J L, Housman DC, et al. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert[J]. Appl Environ Microbiol, 2004, 70(2): 973-983.
    [54]Veluci R M, Neher D A, Weicht T R. Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils[J]. Microb Ecol. 2006, 51(2): 189-96.
    [55]Johnson SL, Budinoff CR, Belnap J, et al. Relevance of ammonium oxidation within biological soil crust communities[J]. Environ Microbiol, 2005, 7: 1-12.
    [56]Callaghan T V, Carlsson B A , Sonesson M, et al. Between year variation in climate related growth of circumarctic populations of the moss Hylocomium splendens[J]. Functional Ecology, 1997, 11 (2): 157-165.
    [57]Crenshaw C, Lauber R L, Sinsabaugh L K. Fungal control of nitrous oxide production in semiarid grassland[J]. Biogeochemistry, 2008, 87: 17-27.
    [58]Jeffries D L, Klopatek J M, Link S O, et al. Acetylene reduction of cryptogamic crust from a blackbrush community as related to resaturation/dehydration[J]. Soil Biol Biochem, 1992, 24: 1101-1105.
    [59]Xiao B.Soil nutrients accumulation and their loss risk under effects of biological soil crust in Loess Plateau of northern Shaanxi Province, China[J]. Ying Yong Sheng Tai Xue Bao, 2008, 19(5): 1019-1026.
    [60]Beraldi Campesi H, Hartnett H E, Anbar A, et al. Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land[J]. Geobiology, 2009, 7(3): 348-359.
    [61]Lichao Liu, Yaoxuan Song. Effects of microbiotic crusts on evaporation from the revegetated area in a Chinese desert[J]. Australian Journal of Soil Research, 2007, 45(6): 422-427.
    [62]J Belanp, D A Gillette. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern utah[J]. Land Degrad Develop, 1997, 8: 55-362.
    [63]Matthew A, Bowker, Mark E, et al. Prioritizing conservation effort through the use of biological soil crusts as ecosystem function indicators in an arid region[J]. Conservation Biology, 2008, 22(6): 1533-1543.
    [64]Reddy G S N, Garcia-Pichel F. Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al,2000[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57: 2014-2020.
    [65]Reddy G S N, Garcia-Pichel F. Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al., and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov[J]. Int J Syst Evol Microbiol, 2009, 59: 87-94.
    [66]Reddy G S N, Ferran Garcia-Pichel. Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau[J]. International Journal ofSystematic and Evolutionary Microbiology, 2007, 57: 1028-1034.
    [67]Reddy G S N, Garcia-Pichel F. Dyadobacter crusticola sp.nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000[J]. Int J Syst Evol Microbiol, 2005, 55: 1295-1299.
    [68]Gundlapally S N, Reddy Moria Nagy, Ferran Garcia-Pichel. Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56: 51-58.
    [69]West N E. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semiarid regions[J]. Advances in Ecological Research, 1990, 20: 179-223.
    [70]Vies H. Understanding dryland landscape dynamics: Do biological crusts hold the key? [J]. Geography Com pass, 2008, 3 (2): 899-919.
    [71]Belnap J, Phillip S L, Miller M E. Response of desert biological soil crusts to alterations in precipitation frequency[J]. Oecologia, 2004, 141: 306-316.
    [72]Kidron G J, Barzilay E, Sachs E. Microclimate control upon sand microbiotic crusts, western Negev desert, Israel[J]. Geom orphology, 2000, 36: 1-18.
    [73]Campbell S E, Seeler J, Golubic S. Desert crust formation and soil stabilization [J]. A rid Soil Research and Rehabilitation, 1989, 3: 217-288.
    [74]Li X R, Zhou H Y, Wang X P, et al. The effects of sand stabilization and revegetation on cryp togam species diversity and soil fertility in Tengger desert, Northern China[J]. Plant and Soil, 2003, 251: 237-245.
    [75]Fearnehough W, Fullen M A, Mitchen Trueman D, et al. Aeolian deposition and its effect on soil and vegetation changes on stabilized desert dunes in northern China[J]. Geom orphology, 1998, 23: 171-182.
    [76]Fullen M A, Mitchell D J. Desertification and reclamation in north central China[J]. AMB IO, 1994, 23: 131-135.
    [77]Malam Issa O. Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger) Sahel[J]. Catena, 1999, 37: 175-196.
    [78]Li X J, Li X R, Song W M, et al. Effects of crust and shrub patches on runoff, sedimentation, and related nutrient (C, N) redistribution in the desertified steppe zone of the Tengger desert, northern China[J]. Geom orphlogy, 2008, 96: 221-232.
    [79]Greene R S B, Tongway D J. The significance of ( surface) physical and chemical p roperties in determining soil surface condition of red earths in rangelands[J]. Australian Journal Soil Research, 1989, 27: 213-225.
    [80]Chartres C J. Soil Crusting in Australia[A]. Sumner M E, Stewart B A. Soil Crusting: Chemical and Physical Processes[C], Florida: Lewis Publishers, 1992: 339-365.
    [81]Johansen J R. Impacts of fire on biological soil crusts[A]. Belnap J, Lange O L, eds. Biological Soil Crusts: Structure, Function and Management[C]. Berlin: Springer Verlag, 2001: 385-397.
    [82]Bowker M A. Wildfire resistant biological soil crusts and fire induced loss of soil stability inPalouse p rairies, USA [J]. Applied Soil Ecology, 2004, 26: 41-52.
    [83]Thompson, Wendy A. Eldridge, David J, et al. Structure of biological soil crust communities in Callitris glaucophylla woodlands of New South Wales, Australia[J]. Journal of Vegetation Science, 2006, 17: 271-280.
    [84]Jessica M Cable, Travis E Huxman. Precipitation pulse size effects on Sonoran Desert soil microbial crusts[J]. Oecologia, 2004, 141: 317-324.
    [85]Brian J, Darby, David C, et al. Effects of Altered Temperature and Precipitation on Desert Protozoa Associated with Biological Soil Crusts[J]. Eukaryot Microbiol, 2006, 53(6): 507-514.
    [86]Pringault O. Hydrotaxis of cyanobacteria in desert crusts[J]. Microb Ecol, 2004, 47(4): 366-373.
    [87]Belnap J, Phillips S L, Miller ME. Response of desert biological soil crusts to alterations in precipitation frequency[J]. Oecologia, 2004, 141(2):306-316.
    [88]Bowker M A. Biological soil crust rehabilitation in theory and practice: An underexp loited opportunity[J]. Restoration Ecology, 2007, 15: 13-23.
    [89]Patrick E. Researching crusting soils: Themes, trends, recent de-velopments and imp lications for managing soil and water resources in dry areas[J]. Progress in Physical Geography, 2002, 26: 442-461.
    [90]Ecology, Environment & Conservation[M]. Atlanta, 2009.
    [91]车裕斌,韩冰华.特殊生境研究综述[J].咸宁师专学报(自然科学版) , 1997, 17(3): 72-73.
    [92]唐永红,曹庸,卢成瑛,等.特殊生境微生物及其活性代谢产物研究进展[J].微生物学通报, 2006, 33 ( 4) : 163-166.
    [93]林永成,周世宁.海洋微生物及其代谢产物[M].北京:化学工业出版社, 2003.
    [94]李能章,彭远义.植物内生菌研究进展[J].生物技术, 2004, 2(14): 69-71.
    [95]鲁敏,王文翔,王丽萍,等.南极土壤嗜冷真菌Chrysosporium sp.C_(3438)活性代谢产物C_(3438)A的分离及结构鉴定[J].中国抗生素杂志, 2002, 27 (1): 9-121.
    [96]徐明全,郑平,刘荣维,等.兰花主要病害鉴定及药剂筛选试验[J].广东农业科学, 2005, 5: 46-49.
    [97]陈述富,黄健君,古涛.兰花病虫害的防治[J].广西农业科学, 1994, 3: 137.
    [98]刘仲健.中国兰花观赏与培育及病虫害防治[M].北京,中国林业出版社, 1998: 250-294.
    [99]沃连银.兰花各种病害及防治[J].中国花卉盆景, 1993, 5: 16.
    [100]范青.果实采后病害生物防治及其机理研究[D].北京:中国科学院, 2003, 32(6): 45-48.
    [101]罗闰良.拮抗菌防治果蔬采后病害研究进展[J].农牧情报研究, 1993, 38(4): 46-48.
    [102]马成涛,胡青,杨德奎.土壤有益微生物防治植物病害的研究进展[J].山东科学, 2007, 20(6): 61-66.
    [103]张俊华.微生物代谢产物作用于植物的研究探讨[J].生命科学研究, 2007, 11(4): 44-47.
    [104]邱德文.我国生物农药现状分析与发展趋势[J].植物保护, 2007, 32(5): 27-32.
    [105]刘晓光,高克祥,康振生,等.生防茵诱导植物系统抗性及其生化和细胞学机制[J].应用生态学报, 2007, 18(8): 1861-1866.
    [106]郝晓娟,刘波.植物枯萎病生物防治研究进展[J].中国农学通报, 2005, 21(7): 319.
    [107]李勇,杨慧敏.微生物农药的研究和应用进展[J].农药信息市场, 2003, 23(10): 10-11.
    [108]刘起丽.栾川县采兰山区蕙兰炭疽病病原鉴定及植物源抑菌剂的筛选[J].广东农业学, 2009, 9: 108-117.
    [109]朱天辉,刘富平.坚强芽孢杆菌对3种病原真菌的抗生现象[J].林业科学, 2007, 43(2): 120-123.
    [110]Claudine D S Seixas, Robert W Barreto, Eloise Killgore. Fungal pathogens of Miconia calvescens(Melastomataceae) from Brazil,with reference to classical biological control[J]. Mycologia, 2007, 99(1): 99-111.
    [111]Cheng Yali, McNally David J, Caroline Labbé, et al.Insertional mutagenesis of a fungal biocontrol agent led to discovery of a rare cellobiose lipid with antifungal activity[J]. Applied and Environmental Microbiology, 2003, 69(5): 2595-2602.
    [112]于淑池,张利平.拮抗细菌作为生物防治手段研究进展[J].河北农业科学, 2004, 8(1):62-65.
    [113]胡燕梅,杨龙.利用微生物防治植物病害的研究进展[J].中国生物防治, 2006, 22(增刊): 190-193.
    [114]程亮,游春平.拮抗细菌的研究进展[J].江西农业大学学报, 2003, 25(5): 732-738.
    [115]Kim S B, Yoon J H, Kim H, et al. A phylogenetic analysis of the genus Saccharomonospora conducted with 16SrRNA gene sequences[J]. International Journal of Systematic Bacteriology, 1995, 45(2): 351-356.
    [116]Rainey F A, Ward-Rainey N, Kroppenstedt RM, et al. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov [J]. International Journal of Systematic Bacteriology, 1996, 46: 28-96.
    [117]Suzuki M T, Rappe M S, Haimberger ZW, et al. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample [J]. Applied and Envrionmental Microbiology, 1997, 63 (3): 983-989.
    [118]陈梦.对生态系统及生物多样性等理论问题的探讨[J].南京林业大学学报(自然科学), 2003, 27(5): 30-34.
    [119]李术娜,杜红方,袁洪水,等.棉花黄萎病拮抗细菌LC-04菌株的抗菌蛋白产生条件研究[J].棉花学报, 2006, 18(4): 233-237.
    [120]东秀竹,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001.
    [121]R.E.布坎南, N.E.吉本斯.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984.
    [122]Laned J. 16S/23S rRNA sequencing[A].STACKEBRANDTE.Goodfellow.Ed.nucleicacid techniques in bacteria systematics[M]. Chichester:John Wiley & Sons, 1991: 115-147.
    [123]Saitou N, Nei M. The Neighbour-joining Method: a New Method for Reconstructing Phylogenetic Trees[J]. Mol Biol Evol, 1987, 4: 406-425.
    [124]Julie D, Thmpson, Desmond G, et al. W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 1994, 22(22): 4673-4680.
    [125]Oita S, Horita M, Yanagi S O. Purification properties of a new chitin-binging antifungal CB21from Bacillus licheniformis[J]. Bioscience Biotechnology&Biochemistry, 1996, 60(3): 481-483.
    [126]黄剑飞,李健,刘淇,等.一株芽孢杆菌的分离、鉴定及其抗菌效果研究[J].安徽农业科学, 2008, 36(6): 2321-2322.
    [127]Korsten L, De Villiers E E, Williers F C,et al. Field sprays of Bacillus subtilis and fungicides for control of preharvestfruit diseases of avocadoin in south Affica[J]. Plant Disease, 1997, 81: 455-459.
    [128]王倩,李术娜,朱宝成,等.兰花炭疽病拮抗细菌Bacillus megaterium 1-12菌株的产芽孢条件优化[J].河北大学学报(自然科学版), 2008, 28(5): 522-528.
    [129]Sen R, Swaminathant. Application of response surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin[J]. Appl Microbiol Biotechnol, 1997, 47: 358-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700