用户名: 密码: 验证码:
两株芴高效降解菌的分离鉴定及降解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从某焦化厂活性污泥中分离筛选出两株能以多环芳烃芴为唯一碳源和能源生长的细菌(分别命名为W-1和W-2),在形态学观察和生理生化试验基础上,采用16S rDNA序列分析及系统发育学分析的方法,鉴定菌株W-1为粪产碱杆菌(Alcaligenes faecalis)、W-2为微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)。在接种量10%(V/V),初始芴浓度40 mg/L,pH 7.0,温度30℃的条件下,接种培养11 d后,菌株W-1和W-2对芴的降解效率分别达到87.8%和86.0%;在相同条件下,菌株混合培养能够大幅度提高芴的降解能力,对芴的降解效率达到94.0%。
     采用碱裂解法和煮沸裂解法对菌株W-1和W-2进行质粒抽提,均未发现质粒条带,推测菌株的芴降解基因可能位于染色体上。
     考察了菌株W-1和W-2对几种多环芳烃的降解特性。在分别含有20mg/L的[艹屈]、芘、蒽和菲的培养体系中,菌株W-1对[艹屈]、芘、蒽和菲的降解效率分别可达95.5%、71.0%、85.7%和80.0%,菌株W-2对[艹屈]、芘、蒽和菲的降解效率分别可达86.0%、80.2%、91.4%和94.5%。研究结果表明,该两株菌可作为修复多环芳烃复合污染环境的优良微生物资源。
     考察了水中芴浓度、投菌量和pH等因素对菌株降解芴的影响,对外加碳源(葡萄糖、邻苯二甲酸、水杨酸、邻苯二酚和萘)对芴生物降解的刺激作用作了研究。结果表明,投菌量、初始芴浓度及pH等因素对芴的降解影响较大,菌株W-1对芴的适宜降解条件为:芴浓度10mg/L~40mg/L,投菌量7%~25%,pH 7.0~9.0。菌株W-2降解芴的适宜条件为:芴浓度10mg/L~40mg/L,投菌量7%~20%,pH 6.0~7.0。
     外加碳源对菌株W-1和W-2降解芴的影响差异较大,向反应体系投加适量葡萄糖、水杨酸、邻苯二酚和多环芳烃萘,均可刺激菌株W-2对芴的降解。当投加100 mg/L的葡萄糖和50 mg/L的水杨酸、邻苯二酚和萘时,菌株W-2对水中芴的降解效率分别可达93.8%、97.3%、97.4%和96.5%。投加适量邻苯二甲酸和萘对菌株W-1降解芴具有刺激作用。向反应体系中投加50 mg/L邻苯二甲酸和20 mg/L萘时,菌株W-1对水中芴的降解效率分别达到94.6%和97.1%。
Two predominant fluorene-degrading strains(named W-1 and W-2 , respectively)which can use fluorene as sole carbon and energy source for growth in the selective culture medium was isolated and screened from activated sludge of a coking plant. On the basis of morphological observation and physio-biochemical test, the strain W-1 and W-2 were identified as Alcaligenes faecalis and Stenotrophomonas acidaminiphila by 16S rDNA gene sequence and phylogeny analysis, respectively. Under the conditions of inoculation amount 10% (V/V), initial concentration of fluorene 40 mg/L, pH 7.0 and temperature 30℃, the degradation efficiency of fluorene by the strain W-1 and W-2 reached 87.8% and 86.0% within 11 days, respectively.
     The results indicate that fluorene degradation ability would be increased greatly when the strain W-1 and W-2 were cultivated together, and the degradation efficiency of fluorine reached 94.0%, in the same conditions.
     Alkaline and boiling lysis methods were applied to extract plasmids from strain W-2, but none of plasmids were detected.It was supposed that fluorene-degrading gene harbored by strain W-2 may locate on the chromosomes instead of on the plasmids.
     The degradable PAHs as substrates for metabolism of the strains are diversiform. In the cultivation system solely containing chrysene, pyrene, anthracene or phenanthrene of 20 mg/L, the degradation efficiency of chrysene, pyrene, anthracene and phenanthrene by the strain W-1 reached 95.5%、71.0%、85.7% and 80.0%, respectively, and the degradation efficiency of chrysene, pyrene, anthracene and phenanthrene by the strain W-2 reached 86.0%、80.2%、91.4% and 94.5%, respectively . The results showed that the strains could be used as superordinary microorganism resource to remedy environment complexly polluted by polycyclic aromatic hydrocarbons.
     The effect of initial concentration of fluorene in culture solutions, strains dosage and pH on biodegradation efficiencies was also inspected. The enhancement of exotic carbon sources (such as glucose, phthalic acid, salicylic acid, pyrocatechol, naphthalene) on biodegradation of fluorene was studied.
     The results show that the strains dosage, initial concentration of fluorene and pH has obvious influence on the biodegradation. The appropriate condition for degradation of fluorene by the strain W-1 is: initial concentration of fluorene, 10 mg/L~40 mg/L; strains dosage, 7%~25%; pH, 7.0~9.0. The appropriate condition for degradation of fluorene by strain W-2 is: initial concentration of fluorene, 10 mg/L~40 mg/L; strains dosage, 7%~20%; pH, 6.0~7.0.
     The difference of impact of exotic carbon sources on biodegradation of fluorene by the strain W-1 and W-2. Eligible addition of glucose, salicylic acid, pyrocatechol and PAH naphthalene to the reaction system can all stimulate the biodegradation of fluorene by strain W-2.
     The removal rate of fluorene reached 93.8%、97.3%、97.4% and 96.5%, by the strain W-1, respectively, when 100mg/L glucose, 50mg/L salicylic acid, 50mg/L pyrocatechol or 50mg/L naphthalene was provided.
     Eligible addition of o-phthalic acid and naphthalene to the reaction system can all stimulate the biodegradation of fluorene by strain W-1. The removal rate of fluorene reached 94.6% and 97.1%, respectively, by the strain W-1, when 50 mg/L of o-phthalic acid or 20 mg/L of naphthalene was provided.
引文
[1] P. Fernández, G. Carrera, J. O. Grimalt. Persistent organic pollutants in remote freshwater ecosystems [J]. Aquatic Sciences, 2005, 67 (3): 263-273.
    [2] J. L. Dai, S. J. Li, Y.L.Zhang, et al. Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji’nan city,China[J]. Environ Monit Assess, 2008, 147 (1-3): 317-326.
    [3] C. W. Matson, A. M. Gillespie, C.M.Charthy, et al. Wildlife toxicology: biomarkers of genotoxic exposures at a hazardous waste site[J]. Ecotoxicology, 2009, 18 (7): 886-898.
    [4]岳敏,谷学新,邹洪,等.多环芳烃的危害与防治[J].首都师范大学学报(自然科学版), 2003, 24 (3): 40-44.
    [5] J. Jacob, W. Karcher, J.J.Belliardo. Polycyclic aromatic compounds of environmental and occupational importance - Their occurrence, toxicity and the development of high-purity certified reference materials [J].Fresenius Z Anal Chem, 2004, 340 (12): 755-767.
    [6] J. Yan, L. Wang, P. P. Fu, et al. Photomutagenieity of 16 Polycyclic aromatic hydrocarbons from the USEPA Priority Pollutant list[J]. Mutation Research, 2004, 557 (1): 99-108
    [7] J. J. Stegeman, J. J. Lech. . Cytochrome p-450 monooxygenase system in aquatic species: Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure[J]. Environ Health Perspect, 1991, 90 (1): 101-109.
    [8]洪有为,袁东星.秋茄(Kandelia candel)幼苗对菲和荧蒽污染的生理生态效应[J].生态学报, 2009, 29 (1): 446-455.
    [9] A. Pullman , B. Pullman. Electronic structure and carcinogenic activity of aromatic molecules new developments[J]. Advances in Cancer Resarch, 1955, 3: 117-159.
    [10] D. M. Jerina, R. E. Lehr. In: Microsomes and Drug Oxidations[M]. Oxford: Pergamon Press, 1977: 709-720.
    [11]戴乾圜.化学致癌剂及化学致癌机理的研究一多环芳烃致癌性能的定量分子轨道模型一“双区理论”[J].中国科学, 1979, 30 (10): 964-977.
    [12]匡少平,孙东亚.多环芳烃的毒理学特征与生物标记物研究[J].世界科技研究与发展,2007,29 (2): 41-47.
    [13] J. L. Durant, W. F. Busby, et al. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclicaromatic hydrocarbons associated with urban aerosols[ J ]. Mutation Research, 1996, 371 (3-4): 123-157.
    [14] S. W. Burchiel, M. I. Luster. Signaling by environmental polycyclic aromatic hydrocarbons inhuman lymphocytes[J]. Clin Immunol, 2001, 98 (1): 2-10.
    [15] W. Jedrychowski, A. Galas, A. Pac, et a1. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life [J]. European Journal of Epidemiology, 2005, 20 (9): 775-782.
    [16]许珊珊,刘文新,陶澍.全国多环芳烃年排放量估算[J].农业环境科学学报, 2005, 24 (3): 476-479.
    [17] J.á. Gómez-Ruiz, T. Wenzl. Evaluation of gas chromatography columns for the analysis of the 15 + 1 EU-priority polycyclic aromatic hydrocarbons (PAHs) [J]. Anal Bioanal Chem, 2009, 393(6-7): 1697-1707.
    [18] Q. Shen, K. Y. Wang, W. Zhang, et al. Characterization and sources of PAHs in an urban river system in Beijing, China[J]. Environ Geochem Health, 2009, 31 (4): 453-462.
    [19]刘维立,朱先磊,卢妍妍.大气中多环芳烃的来源及采样方式的研究[J].城市环境与城市生态, 2008, 12 (5): 58-60.
    [20]张烃,董亮,史双昕,等.某焦化厂废气厂址表层土壤中PAHs的污染特征研究[C].第五届全国环境化学大会论文集, 2009.
    [21] J. Djinovic, A. Popovic, W. Jira. Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia[J]. Eur Food Res Technol, 2008, 80 (2): 449-456.
    [22]田蕴,郑天凌,王新红,等.厦门西海域表层水中PAHs污染与PAHs降解菌分布的关系[J].热带海洋学报, 2003, 22 (6): 15-20.
    [23] Y. Liu, L. Chen, J.F.Zhao. et al. Distribution and sources of polycyclic aromatic hydrocarbons n surface sediments of rivers and an estuary in Shanghai, China[J]. Environmental Pollution, 2008, 154 (2): 298-305.
    [24]姜永海,韦尚正,席北斗,等. PAHs在我国土壤中的污染现状及其研究进展[J],生态环境学报, 2009, 18 (3): 1176-1181.
    [25]罗孝俊,陈社军,麦碧娴,等.珠江三角洲地区水体表层沉积物中多环芳烃的来源、迁移及生态风险评价[J].生态毒理学报, 2006, 1 (1): 17-24.
    [26]麦碧娴,林峥,张干,等.珠江三角洲河流和珠江口表层沉积物中有机污染物研究-多环芳烃和有机氯农药的分布及特征[J].环境科学学报, 2000, 20 (2) :192-197.
    [27]丘耀文,周俊良, K.Maskaoui.等.大亚湾海域水体和沉积物中多环芳烃分布及其生态危害评价[J],热带海洋学报, 2004, 23 (4): 72-80.
    [28]周俊丽,刘征涛,孟伟,等.长江河口表层沉积物中PAHs的生态风险评价[J].环境科学研究, 2009, 22 (7): 778-783.
    [29] Y. Ren, Q. Zhang, J. Chen. Distribution and Source of polycyclic Aromatic Hydrocarbon (PAHs) on Dust Collected in Shanghai, People’s Republic China[J]. Bulletin of Environmental Contaminnationand Toxicology, 2006, 76 (3): 442-449.
    [30] M. Liu, S. B. Cheng, D. N. Ou, et a1. Characterization,identification of road dust PAHs in central Shanghai areas, China[J]. Atomspheric Environment, 2007, 38 (41): 8785-8795.
    [31] H. M. Deng, P.Peng, W.Huang. eta1. Distribution and loadings of Polycyclic aromatic hydrocarbons i n the Xijiang River in Guangdong, South China[J], Chemosphere, 2006, 4 (8):1401-1411.
    [32] L. J. Zhang, G. Li, X.D.Li. et a1. Source seasonality of polycyclic aromatic hydroearbons(PAHs) in a subtropical city, Guangzhou, South China[J]. Seienee of the Total Environment, 2006, 355 (1-3): 145-155.
    [33]徐士强,蒋新,王连生,等.长江和辽河沉积物中的多环芳烃类污染物[J],中国环境科学, 2000, 20 (2): 128-131.
    [34]杨敏,倪余文,苏凡,等.辽河沉积物中多环芳烃的污染水平与特征[J],环境化学, 2007, 26 (2): 217-220.
    [35] H. T. Zhao, C. Q. Xin, M. X. Chen, et al. Size distribution and diffuse pollution impacts of PAHs in street dust in urban streams in the Yangtze River Delt[J]. Joumal of Environmental Sciences, 2009, 21 (2): 162-167.
    [36] G.Q.Liu, Y.P.Tong, H.Zhang. et al. A source study of atmospheric polycyclic aromatic hydrocarbons in Shenzhen, South China[J]. Environ Monit Assessment, 2010, 163 (1-4): 599-606.
    [37] H. Sharma, V.K.Jain, Z.H.Khan. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in the urban air of Delhi during 2003[J]. Environmental Monitoring Assess, 2008, 147 (1-3): 43-55.
    [38] N. J Brown, B. M. Peake. Sources of heavy metals and Polycyclic aromatic hydrocarbons in urban stormwater runoff [J]. Science of the Total Environment, 2006, 359 (1-3): 145-155.
    [39]韩菲,尚宏志,王英艺,等.辽东海及国内外海湾多环芳烃污染研究进展[C],中国环境科学学会学术年会论文集, 2009: 544-547.
    [40] M. A Olivella. Polycyclic aromatic hydrocarbons in rainwater and surface waters of Lake Maggiore, a subalpine lake in Northern Italy[J]. Chemosphere, 2006, 63 (1): 116-131. .[41] A. Masih, R. Saini, R. Singhvi, et al. Concentrations, sources, and exposure profiles of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in the north central part of India[J]. Environ Monit Assess, 2010, 163 (1-4): 421-431.
    [42] T. Y. W. Fon, O. Noriatsu, S. Hiroshi. Polycyclic Aromatic Hydrocarbons (PAHs) in the Aeroso of Higashi Hiroshima, Japan: Pollution Scenario and Source Identification[J]. Water Air Soil Pollut, 2007, 182 (1-4): 235-243.
    [43] Q. Shen, K. Y. Wang, W. Zhang, et al. Characterization and sources of PAHs in an urban river system in Beijing, China[J]. Environ Geochem Health, 2009, 31 (4): 453-462.
    [44] Y. H. Wang, S. H. Qi, J. H. Chen, et al. Concentration, Distribution and Sources of PolyaromaticHydrocarbons in Soils from the Karst Tiankengs, South China[J]. Bull Environ Contam Toxicol, 2009, 83 (5): 720-726.
    [45] X. J. Luo, S. J. Chen, B. X. Mai. Distribution, Source Apportionment, and Transport of PAHs in Sediments from the Pearl River Delta and the Northern South China Sea[J]. Arch Environ Contam Toxicol, 2008, 55 (1): 11-20.
    [46]郑天凌,庄铁城,蔡立哲,等.微生物在海洋污染环境中的生物修复作用[J].厦门大学学报(自然科学版), 2001, 40 (2): 524-534.
    [47] S. Amir, M. Hafidi, G. Merlina. Fate of polycyclic aromatic hydrocarbons during composting of lagooning sewage sludge[J]. Chemosphere, 2005, 58 (4): 449-458.
    [48]刘莉,陈玉成,于萍萍,等.多环芳烃微生物降解的研究进展[J].安徽农业科学, 2006, 34 (23): 6289-629.
    [49]沈德中.污染环境的生物修复[M].北京:化学工业出版社, 2002: 18-124.
    [50]谭文捷,李宗良,丁爱中,等.土壤和地下水中多环芳烃生物降解研究进展[J].生态环境, 2007, 16 (4): 1310-1317.
    [51] G.Y. Zhang, J. Y. Ling, H. B. Sun, et al. Isolation and characterization of a newly isolated polycyclic aromatic hydrocarbons-degrading Janibacter anophelis strain JY11[J]. Journal of Hazardous Materials, 2009, 172 (2-3): 580-600.
    [52] H. W. Zhou, T. G. Luan, F.Zou. et al. Different bacterial groups for biodegradation of three-and four-ring PAHs isolated from a Hong Kong mangrove sediment[J]. Journal of Hazardous Materials, 2008, 152 (3): 1179-1185.
    [53]胡杰,何晓红,李大平,等.鞘氨醇单胞菌研究进展[J].应用与环境生物学报, 2007, 13 (3) : 431-437.
    [54] J .F. Field, G. F. Costa. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of White rot fungi[J]. Appl Environ Microbiol, 1992, 58 (8): 2219-2226.
    [55]王银善,陈宝梁.白腐真菌对水中多环芳烃的生物吸附与生物降解[C].第五届全国环境化学大会会议论文集, 2009
    [56]唐玉斌,毛莉,吕锡武,等.一株蒽降解菌的分离鉴定及其降解特性研究[J].环境科学与技术, 2007, 30 (9): 11-13.
    [57]陈芳艳,唐玉斌,毛莉,等.一株茄镰孢菌对菲的降解特性研究[J].江苏科技大学学报, 2008, 22 (3): 72-76.
    [58] M. G. Romero, M.C.Cazau. et al. Phenanthrene degradation by microorganisms isolated from a contaminated stream[J]. Environmental Pollution, 1998, 101 (3): 355-359
    [59] N. V. Balashova, A. Stolz, H. J. Knackmuss, et al. Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene andphenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1[J]. Biodegradation, 2001, 12 (3): 179-188.
    [60] A. Saito, T. Iwabuchi, S. Harayama, et al. Characterization of genesfor enzymes involved in the phenanthrene degradation in Nocardioides SP. KP7[J]. Chemosphere, 1999, 38 (6): 1331-1337.
    [61] S. J. Kim, O. Kweon, R.C.Jones. et al. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1[J]. Biodegradation, 2008, 19 (6): 859-881.
    [62]郑天凌,骆苑蓉,曹晓星,等.高分子量多环芳烃-苯并[a]芘的生物降解研究进展[J].应用与环境生物学报, 2006, 12 (6):884-89.
    [63]巩宗强,李培军,王新,等.污染土壤中多环芳烃的共代谢降解过程[J].生态学杂志, 2000, 19 (6): 40-45.
    [64]侯树宇,张清敏,于海晨,等.多环芳烃芘高效降解菌的筛选及其降解性能的研究[J].南开大学学(自然科学版), 2006, 9 (2): 71-74.
    [65]曹晓星,田蕴,胡忠,等. PAHs降解基因及降解酶研究进展[J].生态学杂志, 2007, 26 (6): 917-924.
    [66]赵百锁,王慧,李瑞瑞,等.好氧细菌对多环芳烃降解机制的研究进展[J].微生物学报, 2008, 35 (3): 414-420.
    [67] E. Deque, A.Haidour, F.Godoy, etal. Construction of a Pseudomonas hybrid stain that mineralizes 2,4,6-trinitrotoluene[J]. J.Bacterio1. 1993, 175(8): 2278-2283.
    [68]郑乐,刘宛,李培军,等.多环芳烃微生物降解基因的研究进展[J],生态学杂志,2007,26 (3): 449-454.
    [69]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学, 2000, 19 (3): 24-29.
    [70] R. Ueno, S. Wada, N. Urano. Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam [J]. Canadian Journal of Microbiology, 2008, 54 (1): 66-70.
    [71] L. M. Muckian, R. J. Grant, N. J. W. Clipson, et al. Bacterial community dynamics during bioremediation of phenanthrene- and fluoranthene-amended soil [J]. International Biodeterioration & Biodegradation, 2009, 63 (1): 52-56.
    [72] C. Ravelet,S. Krivobok,L. Sage,et al. Biodegradation of pyrene by sediment fungi [J]. Chemosphere, 2000, 40 (5): 557-563.
    [73] L. Levin, A. Viale, A. Forchiassin. Degradation of organic pollutants by the white rot basidiomycete Trametes trogii [J]. International Biodeterioration & Biodegradation, 2003, 52 (1): 1-5.
    [74] H. M. Zhang, A. Kallimanis, A. I. Koukkou, et al. Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils[J]. Appl. Microbiol. &Biotechnol, 2004, 65 (1): 124-131.
    [75] R. J. S. Jacques, B. C. Okeke, et al. Improved Enrichment and Isolation of Polycyclic Aromatic Hydrocarbons (PAH)-Degrading Microorganisms in Soil using Anthracene as a Model PAH[J]. Curr Microbiol, 2009, 58 (6): 628-634.
    [76] S. P. Story, E. L. Kline, T. A. Hughes, et al. Degradation of Aromatic Hydrocarbons by Sphingomonas paucimobilis Strain EPA505[J]. Arch. Environ. Contam. Toxicol, 2004, 47 (2): 168-176
    [77] S.Krivobok, S.Kuony, C.Meyer, etal.Identification of pyrene-induced proteins in Mycobacterium sp strain 6PY1: Evidence for two ring-hydroxylating dioxygenases[J]. Journal of Bacteriology, 2003, 185 (13): 3828-3841.
    [78]唐玉斌,孙常宇,陈芳艳,等.一株[艹屈]高效降解菌的分离鉴定及其降解特性[J].微生物学通报, 2009, 36 (4): 593-597.
    [79] A. L. Juhasz, G. A. Stanley, M. L. Britz. Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a,h]anthracene by Stenotrophomonas maltophilia VUN 10003[J]. Journal of Industrial Microbiology & Biotechnology, 2002, 28 (2): 88-96.
    [80]张小凡,小柳津广志.多环芳烃化合物菲分解菌的分离鉴定及分解特性研究[J].上海环境科学, 2003, 22 (8): 544-547.
    [81]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001: 77-79.
    [82] R. E.布坎南,N. E.吉本斯.伯杰细菌鉴定手册[M]? 8版.北京:科学出版社, 1984: 359-361.
    [83]李全霞. PAHs降解菌的筛选、降解基因克隆及作用效果[D],中国农业科学院硕士论文, 2007.
    [84] J. L. Shuang, C. H. Liu, S. Q. An, et al. Some Universal Characteristics of Intertidal Bacterial Diversity as Revealed by 16S rRNA Gene-Based PCR Clone Analysis[J]. Journal Microbiology Biotechnology, 2006, 16 (12): 1882-1889.
    [85] C. H. Liu, X. Chen, T. T. Liu, et al. Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components[J]. Appl Microbiol Biotechnol, 2007, 76 (2): 459-466.
    [86]郭亚辉,郭坚华,李斌.根据16SrRNA序列对假单胞菌属分类学的研究进展[J].微生物学杂志, 2004, 24 (2): 38-41.
    [87]王振雄,徐毅,周培瑾.嗜盐碱古生菌新种的系统分类学研究[J].微生物学报, 2000,40 (2):115-120.
    [88]常青,周开亚.分子进化研究中系统发生树的重建[J].生物多样性, 1999, 6 (1): 55-62.
    [89]李红权,李红梅,蒋继志,等.一株DDT降解菌的筛选、鉴定及降解特性的初步研究[J].微生物学通报, 2008, 35 (5): 696-699.
    [90]黄星,何健,潘继杰,等.噻吩磺隆降解菌FLX的分离鉴定及降解特性[J].中国环境科学,2006,26 (2): 214-218.
    [91]叶央芳,杜宇峰.三株寡养单胞菌对苯噻草胺的降解及系统发育分析.江苏环境科技,2005,18 (4): 4-6.
    [92]魏春红,李毅,现代分子生物学实验技术[M].高等教育出版社, 2006.
    [93] J.萨姆布鲁克,D. W.拉塞尔.分子克隆实验指南(精编版)/生物实验室系列[M].化学工业出版社,2008.
    [94] S. M. NíChadhain, E. M.Moritz, E. Kim, et al. Identifcation, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1[J]. Ind. Microbiol. Biotechnol., 2007, 34 (9): 605-613.
    [95] H. Kiyohara, S.Torigoe, N. Kaida, et al. Cloning and Characterization of a Chromosomal Gene Cluster, pah, that Encodes the Upper Pathway for Phenanthrene and Naphthalene Utilization by Pseudomonas putida OUS82 [J]. Journal of Bacteriology, 1994, 176 (8): 2439-2443.
    [96] O. A. Mogilnaya, E. S. Krivomazova, T. V. Kargatova, et al. Formation of Structured Communities by Natural and Transgenic Naphthalene-Degrading Bacteria[J]. Applied Biochemistry and Microbiology, 2005, 41 (1): 72-78.
    [97] O. V. Volkova, T. O. Anokhina, I. F. Puntus, et al. Effects of Naphthalene Degradative Plasmids on the Physiological Characteristics of Rhizosphere Bacteria of the Genus Pseudomonas [J]. Applied Biochemistry and Microbiology, 2005, 41 (5): 460-464.
    [98] J. C. Cho, S. J.Kim. Detection of mega-Plasmid from Polycyclic aromatic hydrocarbon-degrading Sphingomonas sP.strain KS14 [J]. Mol. Microbiol. Biotechnol., 2001, 3 (4): 503-506.
    [99] H. P .Zhao, L. Wang, J. R. Ren, et al. Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5[J]. Journal of Hazardous Materials, 2008, 152 (3): 1293-1300.
    [100] Z. Y. Wang, J. Zhang, Y. Zhang, et al. Molecular characterization of a bacterial consortium enriched from an oilfield that degrades phenanthrene [J]. Biotechnology Letters, 2006, 28 (9) :617–621
    [101]金志刚,张彤,朱怀兰.污染物生物降解[M].上海:华东理工大学出版社,1997:158-159.
    [102]王新新,张颖,李慧,等.三氯乙烯降解菌FT17的分离、鉴定及其降解特性研究[J].微生物学通报, 2009, 36 (4): 563-568.
    [103] A. K. Haritash, C. P. Kaushik. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs) : A review[J]. Journal of Hazardous Materials, 2009, 169 (1-3): 1-15.
    [104]陈晓鹏,易筱筠,陶雪琴,等.油污染土壤中芘高效降解菌群的筛选及降解特性研究[J].环境工程学报, 2008, 3 (2): 413-417.
    [105]田雷,马沛,钟建江.一株新的菲降解菌株及外来碳源对其降解特性的影响[J].华东理工大学学报, 2003, 28 (1): 32-35.
    [106]李莹莹.对硝基苯酚高效降解菌的分离、鉴定及降解性能研究[D],山东济南,山东农业大学硕士学位论文, 2008: 52-53.
    [107]刘旭光,邵世光.—株苯酚高效降解菌2N-17的分离鉴定及其降解特性[J].湖北农业科学. 2009, 48 (4) : 830-833.
    [108]陈春云,岳珂,陈振明,等.微生物降解多环芳烃的研究进展[J].微生物学杂志, 2007, 27 (6):100-103.
    [109] P. Onruthai, H. Hiroshi, S. Nuttapun, et al. Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2[J]. microbiology letters, 2000, 191 (1):115-121.
    [110]陶雪琴,卢桂宁,党志,等.菲降解菌株GY2B的分离鉴定及其降解特性[J].中国环境科学,2006, 26 (4): 478-481.
    [111]曹晓星.多环芳烃降解菌的共代谢及其相关酶的研究[D],厦门,厦门大学硕士学位论文, 2006: 54-60.
    [112]王艳,辛嘉英,宋昊,等.生物降解萘的研究进展[J].中国生物工程杂志, 2009, 29 (9): 119-124.
    [113]贾燕,尹华.假单胞菌N7的萘降解特性及其降解途径研究[J].环境科学, 2008, 29 (3): 756-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700