用户名: 密码: 验证码:
VUV/β-Ga_2O_3光催化降解室内VOCs研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对室内环境的依存度逐渐提高,室内空气品质(IAQ)愈发引起人们的重视和关注。光催化氧化作为一种新型高级氧化技术,在室内空气治理领域有巨大的应用潜力。本文从解决光催化技术存在的光生载流子易于复合、光催化效率低的问题入手,采用简便、温和、低成本的水热法,通过优化材料生长条件,调控制备出具有特殊结构的高效β-Ga_2O_3光催化剂,并研究了其结构形貌、光学特性与光催化性能之间的关系。
     利用低温水热法成功制备出具有特殊形貌结构的β-Ga_2O_3光催化剂,优化了水热反应条件,表明在水热温度140℃,水热时间6h,初始反应物硝酸镓和尿素摩尔比为1:10时,所得催化剂具有最高的光催化活性,这与催化剂在不同生长条件下的晶型结构、晶粒大小和比表面积密切相关。
     在水热体系中考察了PEG浓度和分子量对材料光催化性能的影响机制。证明了PEG分子量为200,用量为20mL时所得β-Ga_2O_3具有最高的催化活性。这是因为适宜的PEG浓度和分子量可以优化催化剂形貌,增加催化剂的比表面积,并产生丰富的氧空位及镓氧空位对,对提高气固传质反应速率和抑制光生载流子的复合率起到了积极的作用。
     利用PTR-MS和GC-MS对VUV光解室内低浓度甲苯和萘过程的中间产物进行了在线检测和定性分析,发现了一些醛、酮等毒性较大的中间产物。空气下光解萘过程还发现了2种碳原子数大于10的光生聚合体,聚合体的形成可能与臭氧氧化作用相关。
     联合VUV/β-Ga_2O_3光催化降解技术净化单一和复合污染物,与普通UV/β-Ga_2O_3和VUV/TiO_2光催化进行了效果对比,表明VUV/β-Ga_2O_3技术具有更强的污染物去除能力,连续流中单一甲苯污染物去除率可达92.2%。在VUV下β-Ga_2O_3因其更大的禁带宽度,也表现出了较TiO_2更优越的光催化性能。
As increasing of dependence on indoor environment, people has paid more andmore attention to the indoor air quality (IAQ). Photocatalytic oxidation (PCO), as anadvanced oxidation technology, has potential values for application in indoorpollutants treatment. In this dissertation, a simple, mild and low-cost hydrothermalmethod was used to prepared high efficientβ-Ga_2O_3 with special microstructure byoptimizing the material growth conditions, to solve main photocatalytic bottlenecks,including high photoinduced hole-eletron recombination rate and low photocatalyticefficiency. Also, the relationships between morphology, crystallization, opticalproperties with photocatalytic activities were investigated.
     High efficientβ-Ga_2O_3 photocatalyst was successfully synthesized via alow-temperature hydrothermal method. It is indicated that when the hydrothermaltemperature is 140℃, hydrothermal time is 6h, the initial reactant molar ratio ofgallium nitrate and urea is 1:10, the obtained sample has highest photocatalyticactivity, which is closely concerned with the crystallization, grain size and surfacearea under different grow conditions.
     The factors of PEG concentration and molecular weight on the photocatalyticproperties ofβ-Ga_2O_3 were investigated in the hydrothermal system and the impactmechanism was deduced. The experimental data showed that when PEG molecularweight was 200, volume dosage was 20mL, the synthesized catalyst exhibited highestphotocatalytic activity. It is proved that suitable PEG concentration and molecularweight can optimize the catalysts morphology, increase the catalysts surface area,produce more oxygen vacancies and gallium-oxygen vacancies, which played anactive role in improving the gas-solid mass transfer rates and suppressing therecombination of photogenerated holes-electrons.
     The reaction process of VUV photodegradation of toluene and naphthalene byPTR-MS and GC-MS were investigated. A lot of by-products were determinedqualitatively. Some more toxic intermediates such as aldehydes and ketones weredetected. Two kinds of photo-polymer species were discovered in photodegradationnaphthalene at moist air, which were related to the ozone. The possible mechanismsof VUV photodegradation pollutants in different conditions were also proposed.
     Treatment of single or complex pollutants were further invested by VUV combined withβ-Ga_2O_3(VUV/β-Ga_2O_3) photocatalytic degradation technology. It isconfirmed that VUV/β-Ga_2O_3 technology is more powerful than VUV/TiO_2 todegradate hamful compounds into less harm intermediates. The removal efficiency oftoluene has reached 92.2% in continuous flow reaction. It is testified that thephotocatalytic properties ofβ-Ga_2O_3 is more superior to P25-TiO_2 due to its largerband gap.
引文
[1]S. B. Wang, H. M. Ang, M. 0. Tade. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International,2007, 33, 694-705.
    [2]J. Robinson, W. C. Nelson. National human activity pattern survey database. U.S.EPA, Research Triangle Park, North Carolina, 1995.
    [3]J. Grossman. What's hiding under the sink: Dangers of household pesticides.Environmental Health Perspectives, 1995, 103, 550-554.
    [4]宋瑞金,张爱军.人对室内外空气污染物的个体接触量评价研究[A].第七届全国大气环境科学学术会议论文集[C].北京:中国环境科学出板社.1998,560-564.
    [5]徐东群,董小艳,王桂芳.北京市装修居室空气有机物污染状况调查[J].中国卫生检验杂志,2006,16,1281-1283.
    [6]完莉莉,汪玉庭.室内空气有机污染的研究现状[J].环境监测管理与技术,2001,13,12-16.
    [7]Q. Lan, L. P. Zhang, R. Vermeulen, et al. Hematotoxicity in workers exposed to low levels of benzene. Science, 2004, 306, 1774-1776.
    [8]赵海明,赵志刚,边金花.室内环境空气质量监测与污染治理技术现状[J].中国科技信息,2005,19,181.
    [9]M. Sleiman, C. Ferronato, J. M. Chovelon. Photocatalytic removal of pesticide dichlorvos from indoor Air: A study of reaction parameters, intermediates and mineralization. Environmental Science and Technology, 2008, 42, 3018-3024.
    [10]J. Zhao, X. D. Yang. Photocatalytic oxidation for indoor air purification: A literature review. Building and Environment, 2003, 38, 645-654.
    [11]M. Sleiman, P. Conchon, C. Ferronato. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental, 2009, 86,159-165.
    [12]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972,238, 37-38.
    [13]J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB in the presence of titanium dioxide in aqueous susPension. Bulletin of Environmental Contamination and Toxicology, 1976. 16. 697-701.
    [14] S. N. Frank, A. J. Bard. Heterogeneous photo-catalytic oxidation of cyanide ion in aqueous solution at TiO_2 Powders. Journal of the American Chemical Society, 1977, 99. 303-304.
    [15] D. F. Ollis, E. Pelizzetti, N. Serpone. Photocatalyzed destruction of water contaminants. Environmental Science and Technology. 1991. 25, 1523-1529.
    [16] M. R. Hoffmann. S. T. Martin, W. Choi, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95, 69-96.
    [17] D. F. Ollis. Photocatalytic purification and remediation of contaminated air and water. Chemistry, 2000, 3,405-411.
    [18] I. Sopyan, S. Murasawa, K. Hashimoto, et al. High efficient TiO_2 film photocatalyst degradation of gaseous acetaldehyde. Chemisty Letters, 1994, 23, 723-726.
    [19] S. Hager, R. Bauer, G.Kudielka. Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide. Chemosphere. 2000, 41, 1219-1225.
    [20] P. Pichat, J. Disdier, C. Hoang-van, et al. Purificatio/deodorization of indoor air and gaseous effluents by TiO_2 photocatalysis, Catalysis Today, 2000. 63, 363-369.
    [21] P. R. Gogate, A. B. Pandit. A review of imperative technologies for wastewater treatment II: hybrid methods. Advances in Environmental Researeh, 2004, 8, 553-597.
    [22] E. D. Felip, F. Ferri, C. Lupi, et al. Structure-dependent photocatalytic degradation of polychlorobiphenyls in a TiO_2 aqueous system. Chemosphere, 1996, 33.2263-2271.
    [23] S. Vijaikumar, N. Somasundaram, C. Srinvasan. Photoinduced oxidation of benzhydrol and reduction of benzil on titanium dioxide. Applied catalysis A: General. 2002,223. 129-135.
    [24] C. T. Brigden, S. Poulston, M. V. Twigg. Photo-oxidation of short-chain hydrocarbons over titania. Applied Catalysis B: Environmental, 2001, 32, 63-71.
    
    [25] K. Waki, J. C. Zhao, S. Horikoshi, et al. Photooxidation mechanism of nitrogen-containing compounds at TiO_2/H_2O interfaces: an experimental and theoretical examination of hydrazine derivatives. Chemosphere, 2000. 41, 337-343.
    [26] C. C. Wong, W. Chu. The dircet photolysis and photocatalytic degradation of alachlor at different TiO_2 and UV sources. Chemosphere. 2003, 50, 981-957.
    [27] H. Muto. K. Saitoh, H. Funayama. PCDD/DF formations by the heterogeneous thermal reactions of phenols and their TiO_2 photocatalytic degradation by batch-recycle system. Chemosphere, 2001, 45. 129-136.
    [28] M. Bekbolet, G Ozkosemen. A preliminary investigation on the photocatalytic degradation of a model humic acid. Water Science and Technology, 1996, 33,189-194.
    [29] A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000,1, 1-21.
    [30] S. M. Cho, W. Y. Choi. Solid-Phase photocatalytic degradation of PVC-TiO_2 polymer composites. Journal of photochemistry and photobiology A: Chemistry, 2001,143,221-225.
    [31] J. H. Ye, Z. G Zou. Visible light sensitive photocatalysts In_(1-x)M_xTaO_4 (M=3d transition-metal) and their activity controlling factors. Journal of Physics and Chemistry of Solids, 2005, 66, 266-273.
    [32] K. Masao, O. Ichiro. Photocatalysis: Science and Technology. Kodansha,Springer, 2002, 18
    [33] 邓南圣,吴峰.环境光化学[M].北京:化学工业出版社(第一版).2003.
    [34] W. H. Leng, X. F. Cheng, J. Q. Zhang. Commenton "photocatalytic oxidation of arsenite on TiO_2 understanding the controversial oxidation mecehanism involving superoxides and the effect of alternative electron acceptors". Environmental Science and Technology, 2007,41, 6311 -6312.
    [35] E. Yassitepe, H. C. Yatmaz, C. Ozturk. Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions. Journal of Photochemistry and Photobiology A:Chemistry, 2008, 198, 1-6.
    [36] J. Bandara, R. A. S. S. Ranasinghe. The effect of MgO coating on photocatalytic activity of SnO_2 for the degradation of chlorophenol and textile colorants; the correlation between the photocatalytic activity and the negative shift of fiatband potential of SnO_2. Applied Catalysis A: General. 2007, 319, 58-63.
    [37] M. Yagi, S. Maruyama, K. Sone, et al. Preparation and photoelectrocatalytic activity of a nano-structured WO_3 Platelet film. Journal of Solid State Chemistry.2008,181,17-182.
    [38] B. Neppolian, Q. Wang, H. Yamashita. Synthesis and characterization of ZrO_2-TiO_2 binary oxide semiconductor nanoparticles: Application and interparticle electron transfer process. Applied Catalysis A: General. 2007, 333, 264-271.
    [39] X. Y. Chen, T. Yu, X. X. Fan. et al. Enhanced activity of mesoporous Nb_2O_5 for photocatalytic hydrogen production. Applied Surface Scienee. 2007, 253, 8500-8506.
    [40] M. A. Gondal, A. Hameed. Z. H. Yamani, et al. Production of hydrogen and oxygen by water splitting using laser induced photocatalysis over Fe_2O_3. Applied Catalysis A: General. 2004. 268, 159-167.
    [41] T. Puangpetch, T. Sreethawong, S. Yoshikawa. Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO_3 nanocrystals Prepared by sol-gel method with the aid of structure-directing surfactant. Journal of Molecular Catalysis A: Chemieal. 2008, 287, 70-79.
    [42] S. Sakthivel, H. Kiseh. Daylight photocatalysis by carbon-modified titaniwn dioxide. Angewandte Chemie International Edition. 2003, 42, 4908-4911.
    [43] 谢立进,马峻峰,赵忠强等.半导体光催化剂的研究现状及展望[J].硅酸盐通报.2005,24,80-84.
    [44] Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, et al. Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. Inorganic Chemistry. 2007, 46, 6675-6682.
    [45] S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, et al. Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO_2 with mesoporous structure. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 163-169.
    [46] X. Li. Y. Q. Fan, W. Q. Jin, et al. Effect of EDTA on preparation of Pd membranes by photocatalytic deposition. Desalination. 2006, 192, 117-124.
    [47] H. H. Wang, C. S. Xie. W. Zhang, et al. Comparation of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous Materials. 2007, 141.645-652.
    [48] 蔡乃才,简翠英.董庆华.TiO_2光催化剂表面载铂方法的研究[J].催化学报.1989,10,137-141.
    [49] W. Choi, A. Termin, M. R. Hoffmann. The role of metal ion dopants in quantum-sized TiO_2: Correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry. 1994, 98, 13669-13679.
    [50] 奕勇,傅平丰,戴学刚等.金属离子掺杂对TiO_2光催化性能的影响[J].化学进展.2004.16.738-746.
    [51] 戴智铭,陈爱平等.气固相光催化氧化反应动力学分析[J].化工学报,2002. 53,578-582
    [52] 段晓东,胡松涛等.光催化氧化法处理挥发性有机物研究进展[J].哈尔滨建筑大学学报,2002,35,55-59.
    [53] Y. Zhang, J. C. Crittenden, D. W. Hand, et al. Fixed-bed photocatalysts for solar decontamination of water. Environmental Science and Technology, 1994, 28,435-442.
    [54] Y. Luo, D. F. Ollis. Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity. Journal of Catalysis, 1996, 163, 1-11.
    [55] Y. Luo, D. F. Ollis. Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity. Journal of Catalysis, 1996, 163, 1-11.
    [56] N. Takeda, T. Torimoto, S. Sampath, et al. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. Journal of Physical Chemistry, 1995,99, 9986-9991
    [57] M. L. Sauer, D. F. Ollis. Acetone oxidation in a photocatalytic monolith reactor.Journal of Catalysis, 1994, 149, 81-88
    [58] P. N. Moza, K. Hustert, E. Feicht, et al. Photolysis of imidacloprid in aqueous solution. Chemosphere, 1998, 36, 497-502.
    [59] O. Shigeo, S. Norihito, A. Naoki, et al. Characterization of transparent and conducting Sn-doped β-Ga_2O_3 single crystal after annealing. Thin Solid Films. 2008,516,5763.
    [60] L. Binet, D. Gourier. Origin of the blue luminescence of beta-Ga_2O_3. The Journal of Physics and Chemistry of Solids. 1998, 59, 1241.
    [61] H. H. Tippins. Optical absoprtion and photoconductivity in the band edge of β-Ga_2O_3. Physical Review, 1965, 140, A316-A319.
    [62] H. Zoltan, M. Jozsef, K. Gabor, et al. Role of oxygen vacancy defect states in the n-type conduction of p-Ga_2O_3. Journal of Applied Physics, 1999, 86, 3792.
    [63] D. D. Edwards, T. O. Mason, F. Goutenoire. A new transparent conducting oxide in the Ga_2O_3-ln_2O_3-SnO_2 system. Applied Physics Letters, 1997, 70, 1706-1710.
    [64] M. Passlack, E. F. Schubert, W. S. Houson, et al. Ga_2O_3 films for electronic and optoelectronic applications. Journal of Applied Physics, 1995, 77, 686-693.
    [65] N. Ueda, H. Hosono, R. Waseda, et al. Synthesis and control of ultraviolet transmitting β-Ga_2O_3 single crystals. Applied Physics Letters. 1997. 70, 3561-3563.
    [66] Z. Hajnal. J. Micro. G.Kiss, et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga_2O_3. Journal of Applied Physics, 1999, 86, 3792-3796.
    [67] M. Ogita. N. Saika. Y. Nakanishi, et al. Ga_2O_3 thin film for high-temperature gas sensors. Applied Surface Science, 1999. 142, 188-191.
    [68] M. R. Mohammadi. D. J. Fray. Semiconductor TiO_2-Ga_2O_3 thin film gas sensors derived from particulate sol-gel route. Acta Materialia, 2007, 55. 4455-4466
    [69] Z. H. Wang, C. C. Dai. Mechanism for the nanometer scale modification on HOPG surface by scanning tunneling microscope. Chinese Physics Letters, 1993. 10. 535-549.
    [70] Y. D. Hou. X. C. Wang, X. Z. Fu, et al. Efficient decomposition of benzene over a β-Ga_2O_3 photocatalyst under ambient conditions. Environmental Science and Technology, 2006. 40, 5799-5803.
    [71] S. Sharma, M. K. Sunkara. Direct synthesis of gallium oxide nanowires. nanotubes, and nanopaintbrushes. Journal of the American Chemical Society. 2002, 124,12288.
     [72] U. M. Graham, S. Sharma, M. K. Sunkara, et al. Nanoweb formation: 2-D self-assembly of semiconductor gallium oxide nanowires. Advanced Functional Materials, 2003, 13.576.
    [73] Y. C. Choi, W. S. Kim, Y. S. Park, et al. Catalytic growth of beta-Ga_2O_3 nanowires by arc discharge. Advanced Materials. 2000. 12. 746.
    
    [74] W. Q. Han, P. Kohler-Redlich, F. Ernst, et al. Growth and microstructure of Ga_2O_3 nanorods. Solid State Communications. 2000, 115. 527-529.
    [75] B. Y. Geng, L. D. Zhang. G. W. Meng, et al. Large-scale synthesis and photoluminescence of singlecrystalline β-Ga_2O_3 nanobelts. Journal of Crystal Growth, 2003,259,291-295.
    [76] X. C. Wu, W. H. Song. W. D. Huang, et al. Crystalline gallium oxide nanowires: intensive blue light emitters. Chemical Physics Letters. 2000, 328, 5-9.
    [77] G.Gundiah, A. Govindaraj, C. N. R. Rao. Nanowires, nanobelts and related nanostructures of Ga_2O_3. Chemical Physics Letters, 2002, 351. 189-194.
    [78] H. W. Kim, N. H. Kim. Formation of amorphous and crystalline gallium oxide nanowires by metalorganic chemical vapor deposition. Applied Surface Science, 2004, 233, 294-298.
     [79] J. Zhang, Z. G. Liu, C. K. Lin, et al. A simple method to synthesize β-Ga_2O_3 nanorods and their photoluminescence properties. Journal of Crystal Growth. 2005,280,99-106.
    [80] S. Avivi, Y. Mastai, G Hodes, et al. Sonochemical hydrolysis of Ga~(3+) ions: synthesis of scroll-like cylindrical nanoparticles of gallium oxide hydroxide.Journal of the American Chemical Society, 1999, 121, 4196-4199.
    [81] C. C. Huang, C. S. Yeh, C. J. Ho. Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide. The Journal of Physical Chemistry B. 2004, 108, 4940-4945.
    [82] A. C. Tas, P. J. Majewski, F. Aldinger. Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior.Journal of the American Ceramic Society, 2002, 85, 1421-1429.
    [83] 高振衡编译.有机光化学[M].北京:人民教育出版社,1979.
    [84] 李善君,纪才圭,李栋,程极济.高分子光化学原理及应用[M].上海:复旦大学出版社,1993.
    [85] F. Rappaport, J. Lavergne. Coupling of electron and proton transfer in the photosynthetie water oxidase. Biochimica et Biophysica Acta, 2001,1503, 246-259.
    [86] Y. W. Ko, T. J. Gremm, G Abbt-Braun, et al. Determination of dichloroacetic acid and trichloroacetic acid by liquid-liquid extraction and ion chromatography. Fresenius' Journal of Analytical Chemistry, 2000, 366, 244-248.
    [87] M. G Gonzalez, E. Oliveros, M. Worner, et al. Vacuum-ultraviolet photolysis of aqueous reaction systems. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2004, 5, 225-246.
    [88] J. Jeong, K. Sekiguchi, K. Sakamoto. Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO_2 catalyst: Comparison of three UV sources. Chemosphere, 2004, 57, 663-671.
    [89] J. L. Lopez, F. S. G Einschlag, M. C. Gonzalez, et al. Hydroxyl radical initiated photodegradation of 4-chloro-3, 5-dinitrobenzoic acid in aqueous solution. Journal of Photochemistry and Photobiology A, 2000, 137, 177-184.
    [90] A. Dombi, I. llisz, Z. Laszlo, et al. Comparison of ozone-based and other(VUV and TiO_2/UV)radical generation methods in phenol decomposition. Ozone: Science and Engineering, 2002, 24, 49-54
    [91] W. Y. Han, W. P. Zhu, P. Y. Zhang, et al. Photocatalytic degradation of phenols in aqueous solution under irradiation of 254 and 185 nm UV light. Catalysis Today, 2004, 90,319-324.
    [92] W. Y. Han. P. Y. Zhang. W. P. Zhu. et al. Photocatalysis of p-chlorobenzoic acid in aqueous solution under irradiation of 254nm and 185nm UV light. Water Research,2004,38,4197-4203.
    [93] C. Wang, J. Y. Xi, H. Y. Hu. Chemical identification and acute biotoxicity assessment of gaseous chlorobenzene photodegradation products. Chemosphere, 2008.73,1167-1171.
    [94] 黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003,243-244
    [95] 刘希尧.工业催化剂分析测试表征[M].北京:烃加工出版社,1990,45-48.
    [96] 左演声,陈文哲,梁伟.材料现代分析方法[M].北京:北京工业大学出版社.2000,136-137.
    [97] K. Teramura, K. Maeda, T. Saito, et al. Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga_(1-x)Zn_x)(N_(1-x)O_x) for photocatalytic overall water splitting. The Journal of Physical Chemistry B . 2005, 109,21915-21921.
    [98] C. C. Huang, C. S. Yeh, C. J. Ho. Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide. The Journal of Physical Chemistry B. 2004, 108. 4940-4945.
    [99] E. Frackowiak, S. Delpeux. K. Jurewicz, et al. Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Letters. 2002, 361, 35-41.
    [100] Y. Xu, M. A. A. Schoonen. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000,85,543-556.
    [101] J. G. Yu, G. H. Wang, M. H. Zhou, et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO_2 powders. Applied Catalysis B: Environmental, 2006, 69. 171-180.
    [102] J. D. Ng, B. Lorber. J. Witz, et al. The crystallization of biological macromolecules from precipitates-evidence for ostwald ripening. Journal of Crystal Growth, 1996. 168,50-62.
    [103] Y. Sun. L. H. Zhang, H. W. Zhou, et al. Seedless and templateless synthesis of rectangular palladium nanoparticles. Chemistry of Materials, 2007, 19, 2065-2070.
    [104] C. Feldmann. Polyol-mediated synthesis of nanoscale functional materials. Solid State Sciences. 2005, 7, 868-873.
    [105] S. Y. Lian, Z. H. Kang, E. B. Wang, et al. Convenient synthesis of single crystalline magnetic Fe_3O_4 nanorods. Solid State Communications, 2003, 127,605-608.
    [106] Z. Q. Li, Y. J. Xiong, Y. Xie. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorganic Chemistry, 2003,42, 8105-8109.
    [107] J. G Yu, X. J. Zhao, J. C. Du, et al. Preparation, microstructure and photocatalytic activity of the porous TiO_2 anatase coating by sol-gel processing. Journal of sol-gel science and technology, 2000, 17, 163-171.
    [108] S. J. Bu, Z. G Jin, X. X. Liu, et al. Preparation and formation mechanism of porous TiO_2 films using PEG and alcohol solvent as double-templates. Journal of Sol-Gel Science and Technology, 2004, 30,239-248.
    [109] B. Guo, Z. L. Liu, L. Hong, et al. Sol-gel derived photocatalytic porous TiO_2 thin films. Surface and Coatings Technology, 2005, 198, 24-29.
    [110] W. Sun, S. Q. Zhang, Z. X. Liu, et al. Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO_2 photocatalysts. International Journal of Hydrogen Energy. 2008, 33, 1112-1117.
    [111] B. D. Cullity. Elements of X-ray diffraction. 2nd ed. Reading, MA:Addison-Wesley; 1978.
    [112] S. H. Elder, Y. Gao, X. S. Li, et al. Zirconia-stabilized 25-angstromTiO_2 anatase crystallites in a mesoporous structure. Chemistry of Materials, 1998, 10, 3140-3145.
    [113] J. Zhang, Z. G. Liu, C. K. Lin, et al. A simple method to synthesize P-Ga_2O_3 nanorods and their photoluminescence properties. Journal of Crystal Growth. 2005,280,99-106.
    [114] D. S. Zhang, H. X. Fu, L. Y. Shi, et al. Synthesis of CeO_2 nanorods via ultrasonication assisted by polyethylene glycol. Inorganic Chemistry, 2007. 46,2446-2451.
    [115] A. Vantomme, Z. Y. Yuan, G H. Du, et al. Surfactant-assisted large-scale preparation of crystalline CeO_2 nanorods. Langmuir, 2005, 21, 1132-1135.
    [116] R. G Chen, J. H. Bi, X. Z. Fu. et al. Orthorhombic Bi_2GeO_5 nanobelts: Synthesis,characterization, and photocatalytic properties. Crystal Growth & Design, 2009, 9,1775-1779.
    [117] W. F. Zhang, M. S. Zhang, Z. Yin, et al. Photoluminescence in anatase titanium dioxide nanocrystals. Applied physics B, 2000, 70, 261-265.
    [118] L. D. Zhang, C. M. Mo. Luminescence in nanostructured materials.Nanostructured Materials, 1995, 6, 831-834.
    [119] J. Hong. J. Cao. J. Z. Sun. et al. Electronic structure of titanium oxide nanotubules. Chemical Physics Letters, 2003, 380. 366-371.
    [120] L. Q. Jing, Z. L. Xu, J. Shang, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles. Applied Surface Science. 2001, 180. 308-314.
    [121] L. Q. Jing, B. F. Xin, F. L. Yuan, et al. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO_2 nanoparticles and their relationships. Journal of Physical Chemistry B. 2009. 36, 17860-17865.
    [122] M. R. Hoffmann. S. T. Martin, W. Choi, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95, 69-96.
    [123] A. L. Linsebigler. G.Q. Lu, J .T. Yates. Photocatalysis on TiO_2. Surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 1995, 95, 735-758.
    [124] M. I. Litter. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental. 1999, 23, 89-114.
    [125] J. Sato, H. Kobayashi, Y. Inoue. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. II. roles of geometric and electronic structures. The Journal of Physical Chemistry B, 2003, 107, 7970-7975.
    
    [126] K. Y. Jung, S. B. Park, M. Anpo. Photoluminescence and photoactivity of titania particles prepared by the sol-gel technique: effect of calcination temperature. Journal of Photochemistry and Photobiology A: Chemistry. 2005, 170, 247-252.
    [127] X. Chen, H. Xue. X. Z. Fu, et al. Ternary wide band gap p-block metal semiconductor ZnGa_2O_4 for photocatalytic benzene degradation. The Journal of Physical Chemistry C. 2008, 112, 20393-20397.
    
    [128] S. J. Bu, Z. G.Jin. X. X. Liu, et al. Preparation and formation mechanism of porous TiO_2 films using PEG and alcohol solvent as double-templates. Journal of Sol-gel Science and Technology, 2004, 30. 239-248
    [129] T. J. Yan, X. X. Wang, X. Z. Fu. et al. Urea-based hydrothermal growth, optical and photocatalytic properties of single-crystalline In(OH)_3 nanocubes. Journal of Colloid and Interface Science, 2008, 325, 425-431.
    [130] G.Dell'Agli. G.Mascolo. Agglomeration of 3mol% Y-TZP powders sythesized by hydrothermal treatment. Journal of the European Ceramic Society, 2001, 21, 29-35.
    [131] Z. Q. Li, Y. J. Xiong, Y. Xie. Selected-control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route. Inorganic Chemistry, 2003, 42, 8105-8109.
    [132] J. Zhao, D. W. Schaefer. Morphology of PEG-stabilized carbon nanofibers in water. The Journal of Physical Chemistry C, 2008. 112, 15306-15310.
    [133] Z. P. Zhang, X. Q. Shao. M. Y. Han, et al. Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures. Chemistry of Materials. 2005, 17, 332-336.
    [134] Z. P. Zhang, H. P. Sun, M. Y. Han. et al. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Advanced Materials, 2005, 17,42-47.
    [135] D. S. Zhang, H. X. Fu, W. J. Yu, et al. Synthesis of CeO_2 nanorods via ultrasonication assisted by polyethylene glycol. Inorganic Chemistry, 2007, 46, 2446-2451.
    [136] C. Wang, J. Y. Xi, H. Y. Hu. Chemical identification and acute biotoxicity assessment of gaseous chlorobenzene photodegradation products. Chemosphere. 2008, 73,1167-1171.
    [137] R. Munter, T. Marina, Y. Veressinina. Advanced oxidation processes for the degradation of 2, 4-chloro-and 2, 4-dimethylphenol. Journal of Environmental Engineering, 1998, 124,690-698.
    [138] H. Einaga, S. Futamura, T. Ibusuki. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO_2 catalyst. Applied Catalysis B: Environmental, 2002, 38, 215-225.
    [139] S. F. Chen, Y. Z. Liu. Study on the photocatalytic degradation of glyphosate by TiO_2 photocatalyst. Chemosphere, 2007, 67, 1010-1017.
    
    [140] V. Augugliaro, S. Coluccia, V. Loddo, et al. Photocatalytic oxidation of gaseous toluene on anatase TiO_2 catalyst: Mechanistic aspects and FT-IR investigation. Applied Catalysis B: Environmental, 1999, 20, 15-27.
    [141] J. H. Mo, Y. P. Zhang, Q. J. Xu, et al. Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Applied Catalysis B: Environmental, 2009, 89, 570-576.
    [142] M. C. Blount, J. L. Falconer. Steady-state surface species during toluene photocatalysis. Applied Catalysis B: Environmental, 2002, 39, 39-50.
    
    [143] A. J. Maira, J. M. Coronado, V. Augugliaro, et al. Fourier transform infrared study of the performance of nanostructured TiO_2 particles for the photocatalytic oxidation of gaseous toluene. Journal of Catalysis, 2001, 202, 413-420.
    [144] P. Y. Zhang, J. Liu, Z. L. Zhang. VUV photocatalytic degradation of toluene in the gas phase. Chemistry Letters, 2004, 33, 1242-1243.
    [145] J. V. Durme, J. Dewulf, W. Sysmans, et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere. 2007, 68.1821-1829.
    [146] V. Wagner, M. E. Jenkin. S. M. Saunders. et al. Modelling of the photooxidation of toluene: conceptual ideas for validating detailed mechanisms. Atmospheric Chemistry and Physics. 2003, 3, 89-106.
    [147] 殷永泉.郑艳.苏元成,崔瑔,崔兆杰.气相甲苯光催化降解反应动力学及机理[J].过程工程学报,2009,9,536-540
    [148] 徐新华,赵伟荣.水与废水的臭氧处理[M].化学工业出版社,2003,9,80-83.
    [149] E. Pramauro, A. B. Prevot, M. Vincenti, et al. Photocatalytic degradation of naphthalene in aqueous TiO_2 dispersions: Effect of nonionic surfactants.Chemosphere, 1998, 36. 1523-1542.
    [150] K. Dai, T. Y. Peng, H. Chen, et al. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environmental Science and Technology, 2008, 42, 1505-1510.
    [151] M. Aceituno, C. D. Stalikas, L. Lunar, et al. H_2O_2/TiO_2 photocatalytic oxidation of metol. Identification of intermediates and reaction pathways. Water Research, 2002,36, 3582-3592.
    [152] C. H. Ao. S. C. Lee. Indoor air purification by photocatalyst TiO_2 immobilizedon an activated carbon filter installed in an air cleaner. Chemical Engineering Science.2005,60,103-109.
    [153] 刘栋,张彭义,王军伟.真空紫外光催化降解甲烷[J].中国环境科学,2006,26,653-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700