用户名: 密码: 验证码:
太阳能动力强化迭盘式蒸馏系统淡化苦咸水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着淡水资源匮乏日益严重,我国面临着水源型和水质型缺水的双重困局,尤其西部村镇地区以苦咸水作为饮用水源的用水安全问题亟待解决。为此,国家将进一步加大农村饮用水安全保障力度,针对西部地区降水稀少、蒸发强烈、供水水源普遍含盐量较高、科学技术比较落后但太阳能资源丰富等特点,本文选择了太阳能动力强化迭盘式蒸馏技术进行了试验研究。
     试验分为两个阶段:动力强化迭盘式蒸馏淡化基础试验是在稳态条件下,用电加热器作为供热源,研究对比了外加真空泵抽吸强化的单级、二级迭盘式蒸馏淡化试验,得出蒸馏器产水量与运行温度、盐水浓度、抽吸压力等因素的关系,并比较了各试验的产水水质和效率,为蒸馏器传热性能的改进和装置的放大设计提供了参数;后一阶段的太阳能动力强化集成型迭盘式蒸馏淡化试验是在前一阶段试验的基础上,对蒸馏器形式进行了改进和整合,将反应器级数提高到五级,并对多级蒸馏器的性能和产水量进行了试验,并根据文献对其实际应用的经济成本进行了简单的核算,论证了该蒸馏器与太阳能集热器实际联用的可行性。
     研究结果发现:随着运行温度和抽吸压力的提升,装置产水量会随之增加,能耗也会随之提升。但由于制作工艺、保温性能、蒸馏器换热性能的限制,抽吸压力并不是越大越好,而要根据需要采用合适压力和运行温度,本反应器在60℃,抽吸压力为0.04Mpa,含盐量为10g/L的条件下的热力学效率可达48%;根据简单的经济核算,采用太阳能动力强化集成型迭盘式蒸馏淡化系统的制水的成本大约在15.5元,和膜法淡化方法比较具有一定的优势。但由于时间有限,反应器的换热系统的改进未能全部完成,保温措施也不够完善,也未能在实际天气条件下进行全天候运行得到蒸馏器的实际产水效率,还有待进一步的试验研究。
     试验证明太阳能动力强化迭盘式蒸馏系统以其结构简单、性能稳定、可利用廉价太阳能源、环保安全、易于推广等优势在我国西部等多数缺水区具有很大的开发潜力,但还需进一步深入研究反应器的传热性能,提高太阳能集热器对能量的利用效率。
With scarcity of fresh water resources, China is caught into face predicaments of water source shortage and poor water quality. Especially the security issues of brackish water as a drinking water source in the western rural area must be resolved as soon as possible. Therefore, the state will make more efforts to guarantee drinking water safety and security in rural areas. In western region of China, characteristic of scarce rainfall, the strong evaporation, salinity water but rich solar energy resources are very prominent, where technology is relatively backward. According to these situations, solar stacked disc distillation strengthened by additional power is studied. The experiment is divided into two stages. The base experiment is in steady state conditions with the electric heater as a heating source, in which the effect of external vacuum suction enhanced single-stage and two-stage distillation desalination are compared. The relationship between distiller water production and operating temperature, salt concentration, suction pressure and other factors are obtained from the experiment. The experimental production water quality and efficiency are compared in experiment, which provide the parameters for heat transfer performance improvements and integration equipment promotions. the solar power to strengthen integrated Diego disc distillation desalination pilot test was based on the form of in the previous stage, the distiller was modified and integrated: the reactor series was improved to 5, and the multi-level distiller's performance and capacity of water were tested, and a simple calculation of the economic costs of practical application was conducted according to the literature, and the feasibility of practical application of distiller was demonstrated.
     The results showed that: with the operating temperature and suction pressure increasing, the fresh water production would raise either, as well as energy consumption. However, due to many factors such as production process, thermal insulation properties, distillation, heat exchange performance limitations, the pressure did not need so high. For the reactor, the appropriate operating temperature is at 60℃and suction pressure is 0.04Mpa, under which conditions, salt concentration of 10g/L desalts, whose thermodynamic efficiency is up to 48%. According to simple economic accounting, water cost of the solar disc stacked desalination integrated system worth 15.5 yuan. Compared to the current market of pure water costs, desalination costs have advantages. However, as time is limited and the reactor heat transfer system is not perfect, experiment in actual weather conditions has not been completed, so the stills of the actual water production efficiency is unknown. It still remains to further verify by other tests.
     The results indicate that the solar stacked disc distillation system strengthened by additional power has advantages to promote in majority dry areas in western China, with characteristics of simple structure, stable performance, cheap solar energy and environmentally safe. The technology has great potential, which is also needed further research on reactor heat transfer performance of solar collectors to improve the energy efficiency.
引文
A. Hamed. Thermal assessment of a multiple effect boiling (MEB) desalination system[J]. Desalination, 1992, 86:325-339.
    Adhikari RS, Kumar A, Scootha GD. Simulation studies on a multi-stage stacked tray solar still. Solar Energy, 1995, 54: 317-25.
    Al-Abbasi MA, Al-Karaghouli AA, Minasian AN. Photochemically assisted solar desalination of saline water. Desalination DSLNAH, 1992, 86:317-24.
    Ali M. EI-Nashar, Atef M. El Baghdadi. Seawater distillation by solar energy[J]. Desalination, 1987, 61:49-66.
    Bouchekima B, Gros B, Ouahes R, Diboun M. Brackish water desalination with heat recovery. Desalination, 2001, 138: 47-55.
    EdahireK, et, al. Research and Development of Multi一effect Horizontal Tube Film Eva Porator. Desalination, 1977, (22): 121-130.
    Famer J C, Fix D V, Mack G V, et,al. Applied Electrochem,. 1996, (26):1007.
    Fernandez JL, Chargoy N. Multi-stage, indirectly heated solar still. Solar Energy. 1990, 44:21-23.
    Hogan PA, Fan AG, Morrison GL. Desalination by solar heated membrane distillation[J]. Desalination, 1991, 81(1-3):81-90.
    Holman JP. Heat transfer. New York: McGraw Hill; 2001.
    J. C. Drake. Multi-effect stack: the zero-manpower desalination plant. Middle East Water & Sewage J, April, 1980.
    Jubran BA, Ahmed MI, Ismail AF, Abakar YA. Numerical modeling of a multistage solar still. Journal of Energy. Conversion and Management, 2000, 41 (11):11-21.
    Kalogirou S. Survey of solar desalination systems and system selection. Energy, 1997, 22:69-81.
    Kelly BD, De Laquil P. Conceptual design of a photocatalytic wastewater treatment plant. In: Solar engineering 1992. The 1992 ASME, JSES, KSES International Solar Energy Conference, Maui, Hawaii, vol. 1; 1992.
    Madani AA, Zaki GM. Yield of solar stills with porous basins. Applied Energy, 1995, 52: 273–281.
    Malic MAS, Tiwari GN, Kumar A. Solar Distillation[J].Oxford:PergamonPerss, 1982, 8-17.
    Mimaki M, Tanaka K, Watanabe K. The performance of solar still. Energy Development in Japan 1981, 3: 207-25.
    Mohsen MS, Jaber JO. A photovoltaic-powered system for water desalination. Desalination. 2001, 138: 129-36.
    Mowla D, Karimi G. Mathematical modeling of solar still in Iran. Solar Energy, 1995, 55: 389-393.
    Owens W.L. Correlation of Thin Film Eva Poration Heat Transfer Coeffieients of Horizontal Tubes. Proc Fifth Annual Confon Oeean Themral Enegry Conversion Miami Beach.1978..
    Popkin R. Desalination: water for the world’s future. New York: Frederick A. Praeger Publishers. 1968.
    Porta-Gandara MA, Rubio-Cerda E, Fernandez-Zayas JL. Visualization of natural convection inside shallow solar stills. Experiments in Fluids 1998;25(4):369–70.
    PqauetA., YoshidaA., Honjo.T, Shohji T. :Seawate rDesalination By Horizontal Tube Multiple Eeffet Themral and Nuclear Power. rDesalination, 1975.
    R. Matz, Z. Zimerman. Low-temperature vapor compression and multi-effect distillation of sea water[J]. Desalination, 1985, 52:201-216.
    Riefrt VG, et, al. Heat Transfer in Thin Film—Type Eva Poration With Profiled Tubes. Desalination. 1989, 74: 363-372.
    Sartori E. Solar still versus solar evaporator: a comparative study between their thermal behaviors. Solar Energy, 1996, 56: 199–206.
    Tiwari GN. Recent advances in solar distillation, In:Solar Energy and Conversation[J]. Wiley Easten, New Delhi, 1992.
    U. Fisher, A. Aviron, A. Gendel. ASHDOD multi-effect low temperature desalination plant report on year of operation[J]. Desalination, 1986, 55:13-32.
    Uda K, Sato H, Watanabe K. Development of advanced evacuated solar still. In:ASME joint solar engineering conference; 1994, 513.
    Watanabe K, Kashima K, Matsui K. Experimental and analytical study of performance for a single roofed solar stills. In: Proceedings of ISES congress, New Delhi, India, vol. 3; 1978: 46-50.
    Wendt H J. Applied Electrochem. 1998, (28):227.
    陈明玉,袁建军.膜蒸馏海水淡化研究进展和发展趋势[J].天津化工. 2007, 5(21):1-3
    陈志莉,焦宝山,郑宏飞.降膜蒸发三效立式全自然能源海水淡化系统的实际运行.太阳能学报[J], 2006, 12 (27): 1225-1229.
    陈志云,陈荃.利用太阳能淡化海水前景展望[J].东北水利水电. 2004, 22(10):57-58.
    崔亚凡.反渗透技术在高氟苦咸水处理中的应用[J].铁道标准设计. 2002, 10:44-46.
    冯广军.海水淡化一解决淡水资源短缺的有效方案[J].华北电力技术[J], 2005, (3): 41-44.
    高从增,陈国华.海水淡化技术与工程手册.化学工业出版社,北京,2004.
    高健.用于海水淡化的低成本膜蒸馏技术[J].水处理技术, 2005, (1):80.
    何绪文,宋志伟,王殿芳等.反渗透技术在煤矿苦咸水处理中的应用研究[J].中国矿业大学学报, 2002, 06(31):74-77.
    惠绍棠.推动海水资源开发利用事业大发展.海洋技术[J], 2002, 21 (4): 1-4.
    解利听,李凭力,王世昌.海水淡化技术现状及各种淡化方法评述.化工进展, 2003, 22 (10): 1081-1084.
    解利听,李凭力,王世昌.海水淡化技术现状及各种淡化方法评述[J]. 2003, 22 (10): 1081-1084
    李常建.海水资源开发利用成套新技术.海洋技术[J], 2002, 21 (4): 5-8.
    马学虎.表面处理水平管外海水降膜蒸发传热的初步试验研究[J].水处理技术[J], 2004, 30 (1):22-25.
    彭祥.南水北调从规划转入实施.中国水利[J]. 2003, 24
    阮国岭,开发新水源是解决缺水问题的根本出路. 2002, 21(4): 9-12.
    尚天宠.反渗透技术在苦咸水淡化工程中的应用[J].工业水处理. 1998, 2(18):35-38.
    尚天宠.膜分离技术在中国西部省区苦咸水淡化工程中的应用[J].净水技术, 2000, 02(26):29-34.
    宋蔚.浅谈饮用水处理技术[J],天津化工. 1997, (2):15-18.
    王国张,冯厚军,张凤友.海水化学资源综合利用发展前景概述.海洋技术. 2002. 21(4):61
    王俊鹤,李鸿瑞,周迪颐等.海水淡化.北京:科学出版社, 1978:197.
    王立新,郭颜威,王秀明.苦咸水淡化处理方法探讨[J].安全与环境工程. 2006, 1(13): 70-73.
    王世昌.蒸馏法发展十年.水处理技术[J], 1985, 11 (5): 48-53.
    王振堃.离子交换膜—制备、性能及应用.化学工业出版社, 1986: 160.
    杨涛.沧化18000吨/日反渗透高浓度苦咸水淡化工程[J].水处理技术. 2002, 01(28): 40-43.
    于德贤.膜蒸馏海水淡化研究[J].膜科学与技术. 2002, (2):135-137.
    于丁一,宋澄章.膜分离工程及典型设计实例[M].北京:化学工业出版社,2005: 164-165.
    张洪.多级闪蒸在水处理及工业废液蒸发方面的应用.水处理技术[J], 1984, 10 (4): 28-32.
    张雷.大钦岛电渗析苦咸水淡化工程长期运行探析[J].水处理技术,2001, 27 (4) :236 - 238.
    张良军. T形管沸腾传热强化海水淡化器研究.(硕士论文).广州:华南理工大学.
    张维润等.电渗析工程学.北京:科学出版社,1995:100.
    张小艳,郑宏飞,张联英.多级叠盘式太阳能蒸馏器的试验研究[J].水处理技术, 2003, 29(4):233-235.
    郑宏飞,何开岩,陈子乾.太阳能海水淡化技术[M].北京:北京理工大学出版社, 2005.
    郑宏飞.太阳能海水淡化技术.自然杂志, 2000, 22 (l): 33-36.
    周少祥等.天津市研制出百吨级蒸馏装置.水处理技术[J], 1982, 1 (1):33-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700