用户名: 密码: 验证码:
“泥人张”泥塑快速硬化成型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对传统“泥人张”生产中存在着胶泥干燥硬化时间较长、开裂、收缩率大等问题。结合MPC水泥固化机理,本着不添加新元素的原则,向“泥人张”原始泥料中加入凝胶成分磷酸二氢铵(NH4H2PO4)和氧化镁(MgO)。分析比较不同含量MPC成份对胶泥在自然条件下干燥失水时间、可捏制时间、收缩率、密度等物理性质,以及外部形貌和力学性能等方面的影响。结果表明:
     加入MPC成分后,能够缩短胶泥在自然条件下的干燥硬化时间。随着MPC成分含量的增加,胶泥的干燥失水时间、可捏制时间、收缩率、密度、抗折强度均呈减小趋势,颜色逐渐变浅。气孔和裂纹在MPC成分超过5%后明显增加。其主要原因是由于MPC成分的水化反应本身是一个放热反应,有利于加快胶泥内部水分蒸发。其产物NH4MgPO4·6H2O不断长大并相互交联,既能够起到凝水的作用,又能够填充原始胶泥内部较大的孔隙,经烧制失水后仍能对胶泥空隙起到填充和胶链作用。但是当MPC成分超过5%时,反应产生过多的NH3逸出胶泥表面,反而增多了胶泥表面的孔隙和裂纹。
     MPC成分在5%以下的胶泥,自然条件下干燥失水时间比原始胶泥降低明显,可捏制时间变化不大,密度均匀下降,能够保持均匀细密,无明显的凝胶成份颗粒和裂纹。其中MPC成分为1%和2%时,收缩率变化不大,而MPC成分为3%到5%时,收缩率明显减小。MPC成分为1%的胶泥经烧结后,抗折强度与原始胶泥相差很小,而MPC成分在2%以上时,其抗折强度急剧下降30%以上。
     综上所述,向原始泥料中添加1%MPC成分,其自然条件下的干燥失水时间减少了8%,可捏制时间、表面粗糙度、抗折强度等性质均无明显变化。密度减小,但收缩率没有明显下降。是最为优化的成分配比。
In this paper, some major issues are studied in the producing process of the traditional“clay figurine zhang”, such as long drying time, surface cracks, large shrinkage, and so on. With curing mechanism of MPC cement, ammonium dihydrogen phosphate (NH4H2PO4) and magnesium oxide (MgO) are added to the original mud gel material without other new elements. Analysis of different components of the MPC under natural conditions, drying time, the kneading time, shrinkage rate, density and other physical properties, as well as the external appearance and mechanical properties of the impact suchareas. The results showed that:
     After adding, the drying time is shortened under natural condition. As the MPC ingredients increases, the drying time, the kneading time, shrinkage rate, density, flexural strength showed a decreasing trend , so as to the color. Pores and cracks are increasing significantly after the MPC ingredients above 5%. The main reason is due to components of hydration MPC itself is an exothermic reaction, and is conducive to speeding up the internal clay evaporation. Its product , NH4MgPO4 ? 6H2O ,constantly grow and mutual cross-linked, both can play the role of condensate water and clay to fill the original internal larger pores by water loss on clay after the gap can still play a filler and plastic chain role. However, when the MPC composition of content more than 5%, the reaction of NH3 escaped too much from clay surface, it increases pores and cracks in the surface. When the MPC ingredients is below 5%, under natural conditions ,drying time reduced significantly than the original clay, kneading fitness can be changed little, uniform density decline , the gel particles and cracks is rare. the shrinkage rate changed little when MPC composition is 1% or 2%,, but it reduces significantly when the ratio reach 3% to 5% . MPC ingredients for 1% of clay, after sintering, the bending strength appears a very small difference between the original one. The bending strength would be in sharp decline in more than 30% when the ratio is more than 2%.
     Above all, when adding 1% of MPC to the original clay, their natural Drying time has been reduced by 8 percent. The kneading time, surface roughness, flexural strength hardly change. Density decreased, but there was no significant drop in shrinkage. So it is the most optimized composition ratio.
引文
[1]天津泥人张彩绘工作室官方网站,http://www.nirenzhangwr.com/
    [2]司马宇,“泥人张”考,中国防伪报道,2006,9:8-19
    [3]丁铸,李宗津,早强磷硅酸盐水泥的制备和性能[J].材料研究学报,2006,20(2):141-147
    [4] Weill P, U S Pat 475676, 1986-12-07
    [5] Kukacka, Polymer concrete compsn. formed from crosslinkable organo-siloxane - with unsatd. monomer and sand and cement fillers, Patent Number(s): US4231917-A 1980
    [6] Abdelrazig B E I, Sharp H, A discussion of the papers on magnesia-phosphate by T Sugama and L E Kukarcka, Cement Concr. Res, 1985, 15: 921~922
    [7] Tomic E A, Phosphate cement and mortar, U. S. Pat 4394174, 1983
    [8]龙安厚,磷酸盐水泥的组成和性能[J].大庆石油学院学报,1996, 20(1): 111-114.
    [9] Sugama T, Kukacka L E, Characteristic of magnesium polyphosphate cements derived from ammo-nium polyphosphate solutions. Cement Concrete Res, 1983,(13):499
    [10]姜洪义,张联盟磷酸镁水泥的研究,武汉理工大学学报,2001,23(4):32~34
    [11]邢福静,磷酸盐的种类及其应用,山西化工,1989,2:71~72
    [12]汪洪涛,钱觉时等,粉煤灰对磷酸盐水泥基修补材料性能的影响,新型建筑材料,2005,12:41~43
    [13] Abdelrazig B E I, Sharp J H, B. El-Jazairi, The chemical composition of mortars made from magnesia– phosphate cement, Cem. Concr. Res., 1988, 18(3): 415~425
    [14] Abdelrazig B E I, Sharp J H, B. El-Jazairi, The microstructure and mechanical properties of mortars made from magnesia– phosphate cement, Cem. Concr. Res., 1989, 19(2): 247~258
    [15] Neiman R, Sarma A C, Setting and thermal reactions of phosphate investments, J Dental Res, 1980, 59(9): 1478~1485
    [16]谢慈仪,混凝剂外加剂作用机理及合成基础,西南师范大学出版社,1993:190~193
    [17]张冠伦,混凝土外加剂原理与应用,北京:中国建筑工业出版社,1996,105~109
    [18] Stierli R F, Tarver C C, Magnesium phosphate concrete compositions, U. S. Pat. 3960580, 1976
    [19] Sugama T, Kukacka L E, Magnesium monophosphate cements derived from diammonium phosphate solutions, Cem. Concr. Res., 1983, 13(3): 407~416
    [20] bdelrazig B E I, Sharp H, A discussion of the papers on magnesia-phosphate by T Sugama and L E Kukarcka, Cement Concr. Res, 1985, 15: 921~922
    [21] Sharp J H, Winhow H D, Magnesia Phosphate Cement, Cements Research Progress, 1989: 233~263
    [22]陈冠荣,化工百科全书,北京:化学工业出版社,1998,19:5~72
    [23] Emmanudl Soudee, Jean Pera, Influence of magnesia surface on the seting time of magnesia-phosphate cement, cement and concrete research, 2002, 32: 153~157
    [24]汪洪涛,曹巨辉,磷酸盐水泥凝结时间研究,后勤工程学院学报,2007,23(4):84~87
    [25]姜洪义,张联盟,磷酸镁水泥的研究,武汉理工大学学报,2001,23(4):32~34
    [26] Band EI. Process for preparing activators for fast setting cements[J]. U. S. Pat. 4931097, 1990.
    [27] Quanbing Yang, Beirong Zhu, etc, Properties and applications of magnesia-phosphate cement mortar for rapid repair of concrete, Cement and Concrete Research 2000, 30: 1807~1813
    [28] Tomic E A, Phosphate cement and mortar, U. S. Pat 4394174, 1983
    [29]汪宏涛,钱觉时,王建国.磷酸镁水泥的研究进展[J].材料导报,2005,19(12):46
    [30] Brown W E and Chow L C,. A new calcium phosphate, Water-setting cement[J]. In: Brown PW, ed. Cements Research Progress, Weatervile, Ohio: American ceramic society, 1986: 352-79.
    [31]张冠伦.混凝土外加剂[J].上海建材出版社,105-109.
    [32] Kim J K, Lee C S, Prediction of Defferentail Drying Shrinkage Concrete, Cement and Concrete Research, 1998, 28( 7): 985~994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700