用户名: 密码: 验证码:
杨木纤维纳米SiO_2改性机理及复合材料制备工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以杨木纤维为原料,采用溶胶-凝胶法对其进行改性,在木材纤维细胞内的纳米空隙内引入无机纳米SiO2溶胶,并制成具有良好阻燃性能的无机纳米改性纤维复合材料。
     本文主要研究了杨木纤维无机纳米SiO2改性机理、热压工艺对无机纳米SiO2改性纤维复合材料物理力学性能的影响以及无机纳米SiO2改性纤维复合材料阻燃性能及机理。
     研究结果表明:
     1.无机纳米SiO2可以通过纹孔渗入木材细胞内部,并且能够与细胞壁上的羟基发生化学连接。为了保证改性纤维具有良好的胶合特性,采用纤维表面清洗工序,去除了纤维表面的无机纳米SiO2溶胶,取得了良好的效果。
     2.单因素试验结果分析获得,无机纳米SiO2改性纤维复合材料的施胶量、热压温度、热压时间的较优参数为:施胶量:10%;热压温度:170℃;热压时间:30s/mm。通过接触角测试结果分析显示,清洗纤维表面后可以保证无机纳米SiO2改性纤维具有良好的润湿性;DSC曲线分析说明,无机纳米SiO2改性对于UF胶粘剂与杨木纤维的胶合不会产生显著影响,保证了两者之间的良好胶合。
     3.与未改性纤维复合材料相比,无机纳米SiO2改性纤维复合材料具有良好的阻燃性能;原因可能是处于纤维细胞壁上的无机纳米SiO2凝胶可以有效地延缓热量的传递,起到阻燃效果。
The objects of the research were to treat poplar wood fiber with sol-gel method and introduce the Silica sol into the nanometer space in the wood fiber cell, and manufacture the woodfiber/nano-SiO2 composite with the good fire resistance performance.
     The modification mechanism of wood fiber treated, the impact of hot-pressing process on physical and mechanical properties of poplar woodfiber/nano-SiO2 composite, and the fire resistance performance and mechanism of composite were studied.
     The results of the research are showed as follow:
     1. The S1O2 particles could enter the wood fiber cell through the pits, and SiO2 sol had some chemical reaction with the-OH of wood cell wall; To keep the good bonding characteristic, the process of washing could help remove the Silica sol on the surface of fiber.
     2. With one-factor experiment method, the optimum parameters were as follow: Glue consumption:10%; Hot-pressing temperature:170℃; Hot-pressing time:30s/mm. The contact angles testing results showed the process of washing could keep the good bonding characteristic of poplar fiber treated by Silica sol. The analysis of DSC showed that the process of treating by Silica sol had no remarkable impact on the bonding between UF and poplar fiber.
     3. The fire resistance performance of poplar woodfiber/nano-SiO2 composite was better than that of poplar wood fiber composite. The reason may be that SiO2gel particles within the wood fibers could alleviate the heat transfer and improve the performance of fire resistance.
引文
[1]刘一星,赵广杰.2004.木质资源材料学[M].北京:中国林业出版社,1-6
    [2]http://www.people.com.cn.粮农组织称每年全球约1300万公顷森林被毁
    [3]国家林业局森林资源管理司.第六次全国森林资源清查及森林资源状况[J].绿色中国,2005(2):10-12
    [4]攻.木材の多孔微构造と材质[M].木材工业,1984,39:361-366
    [5]Saka S, Sasaki M, Tanahashi M. Wood-inorganic composites prepared by the sol-gel process I. Wood-inorganic composites with porous structure[J]. Mokuzai gakkaishi,1992,38(11):1043-1049
    [6]Saka S, Yakake Y. Wood-inorganic composites prepared by the sol-gel process Ⅲ.Chemical-modified wood-inorganic composites[J]. Mokuzai gakkaishi,1.993,39(3):308-314
    [7]Saka S, Tanno F. Wood-inorganic composites prepared by the sol-gel processVI. Effects of a property-enhancer on fire-resistance in SiO2-P2O5 and SiO2-B2O3 wood-inorganic composites[J]. Mokuzai gakkaishi,1996,42(1):81-86
    [8]Saka S, Ueno T. Several SiO2 wood-inorganic composites and their fire-resisting properties [J]. Wood science and technology,1997,31(6):457-466
    [9]Ogiso K, Saka S. Wood-inorganic composites prepared by the sol-gel process Ⅱ.Effects of ultrasonic treatments on preparation of wood-inorganic composites [J]. Mokuzai gakkaishi,1993,39(3):301-307
    [10]Ogiso K, Saka S. Wood-inorganic composites prepared by the sol-gel process Ⅳ. Effects of chemical bends between wood and inorganic substances on property enhancement[J]. Mokuzai gakkaishi,1994, 40(10):1100-1106
    [11]Miyafuji H, Saka S.Wood-inorganic composites prepared by the sol-gel process Ⅴ. Fire-resisting properties of the SiO2-P2O5-B2O3 wood-inorganic composites [J]. Mokuzai gakkaishi,1996,42(1): 74-80
    [12]Miyafuji H, Saka S. Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry. Wood science and technology[J],1997,31(6):449-455
    [13]Miyafuji H, Saka S, Yamamoto A. SiO2-P2O5-B2O3 wood-inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties [J]. Holzforschung,1998,52(4):410-416
    [14]Miyafuji H, Saka S Na2O-SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties [J]. Journal of wood science,2001,47(6):483-489
    [15]Fumie T, Saka S, Yamamoto A, et. Antimicrobial TMSAH-added wood-inorganic composites prepared by the sol-gel process[J]. Holzforchung,1998,52:365-370
    [16]Tanno F, Saka S, Takabe K. Antimicrobial TMSAC-added wood-inorganic composites prepared by the sol-gel process[J]. Materials science research international,1997,3(3):137-142
    [17]Tanno F, Saka S, Yamamoto A, Takabe K. Antimicrobial TMSAH-added wood-inorganic composites prepared by the sol-gel process[J]. Holzforschung,1998,52(4):365-370
    [18]Fujita S, Miyafuji H, Saka S. Antimicrobial SiO2 wood-inorganic composites as prepared by the sol-gel process with water-soluble silicon oligomer agents[J]. Mokuzai gakkaishi,2003 49(5):365-370
    [19]王西成,田杰.陶瓷化木材的复合机理[J].材料研究学报,1996,10(4):435-44
    [20]王西成,程之强,莫小洪等.木材/二氧化硅原位复合材料界面的研究[J].材料工程,1998(5):16-18
    [21]王西成,史淑兰,程之强等.(AL-,Si-)陶瓷化木材的化学方法[J].材料研究学报,2000,14(1):51-55
    [22]孙立,莫小洪,程之强等.用化学方法制备木材/二氧化硅纳米复合材料[J].中国建材科技,1998,7(3):23-25
    [23]廖秋霞,卢灿辉,许晨.原位溶胶-凝胶制备木材-PMMA-SiO2复合材料及其显微结构[J].福建化工,2001(1):21-23
    [24]蔡宁.木材陶瓷化反应机理的研究[J].无机材料学报,2001,16(4):767-780
    [25]李坚,邱坚.硅气凝胶在木材-纳米无机质复合材料中的应用(1)[J].东北林业大学学报,2005,5(3)
    [26]薛振华,赵广杰.蒙脱土/木材复合材料应力松弛性能的初步研究[J].北京林业大学学报,2006,12(5)
    [27]吕文华,赵广杰.杉木木材/蒙脱土纳米复合材料的结构和表征[J].北京林业大学学报,2007,29(1):131-135
    [28]张建,汪奎宏,李琴.应用纳米有机蒙脱土改善实木地板尺寸稳定性初探.中国人造板,2008,(1)
    [29]Ohkoshi, Makoto, Terakado Hideto. Improvement of coated wood surface by addition of TiO2 micro particulate and PEGMA to clear paint [J]. Toso Kogaku,2002,37 (10):340-349
    [30]周晓燕,陈亮.纳米自洁型刨花板初步研究[J].林业科技开发,2005,19(6):50-51
    [31]龙玲,万祥龙,王金林.抗菌型饰面人造板的研究[J].林业科学,2006,42(12):114-119
    [32]王卫东,钟家林,卢晓宁.抗菌耐磨实木复合地板的性能分析[J].木材工业,2004,18(6):36-37
    [33]叶江华.纳米TiO2改性薄木的研究[D].福州:福建农林大学硕士学位论文,2006
    [34]杨道媛,马成良,孙宏魏等.马尔文激光粒度分析仪粒度检测方法及其优化研究[J].中国粉体技术,2002,8(5):27-30
    [35]焦淑红,邹若飞,郭晋梅等.激光粒度分析仪测定氢氧化铝细颗粒方法的探讨[J].理化检验-物理分册,2004,40(7):344-346.
    [36]张炳花,唐太平,杨正红.马尔文激光粒度分析技术及其在石化行业中的应用优势[J].现代科学仪器,2000(2):68-71
    [37]王振新,钱彦虎.激光粒度仪测定PTA粒径分布[J].聚酯工业,2004,17(3):50-52
    [38]李坚,邱坚.新型木材-无机纳米复合材[M].北京:科学出版社,2005
    [39]Rivka Elbaum, Stanislav Gorb, Peter Fratzl. Journal of Structural Biology,2008 (164):101-107.
    [40]欧志翔,邱坚.木材中SiO2的含量及其作用[J].林业调查规划,2008,33(2)
    [41]徐峰,史铁钧,张克宏,王鹏.SiO2/杉木粉复合材料的制备和表征[J].复合材料学报,2007,24(3)
    [42]刘振学等.实验设计与数据处理[M].北京:化学工业出版社,2005
    [43]张亮,项炜,陈晓东,王建祺.PET碳氟等离子处理的表面动力学的研究-Wilhelmy吊片法的研究[J].高等学校化学学报,1995,18(2):289-292
    [44]Pizzi. A, Mtsweni. B, Parsons. W. Wood-induced catalytic activation of PF adhesives autopolymerization vs. PF/wood covalent bonding[J]. J.Appl. Polym. Sci.,1994,52:1847
    [45]A. Pizzi, L. A. Panamgama. Diffusion hindrance vs. wood-induced catalytic activation of MUF adhesive polycondensation[J]. J. Appl. Polym. Sci.,1995,58:109.
    [46]A. Pizzi, X. Lu, R. Garcia. Ligriocellulosic substrates influence on TTT and CHT curing diagrams of polycondensation resins[J]. J. Appl. Polym. Sci.,1999,71:915
    [47]A. Pizzi, C. Zhao, C. Kamoun, H. Heinrich. TTT and CHT curing diagrams of water-borne polycondensation resins on lignocellulosic substrates [J]. J. Appl. Polym. Sci.,2001,80:2128.
    [48]M. Properzi, A. Pizzi, L. Uzielli. Influence of preparation parameters on the CHT curing diagrams of MUF polycondensation resins [J]. J. Appl. Polym. Sci.,2001,81:2821
    [49]L. Onic, V. Bucur, M. P. Ansell, A. Pizzi, X. Deglise, A. Merlin. Dynamic thermomechanical analysis as a control technique for thermoset bonding of wood joints[J]. Intern. J. Adh. and Adhes., 1998,18:89-94
    [50]A. Pizzi. A molecular mechanics approach to the adhesion of urea-formaldehyde resins to cellulose. Part 1. Crystalline Cellulose I[J]. J. Adhes. Sci. Technol.,1990,4:573
    [51]A. Pizzi, L. A. Panamgama. Diffusion hindrance vs. wood-induced catalytic activation of MUF adhesive polycondensation[J]. J. Appl. Polym. Sci.,1995,58:109
    [52]K. Siimer, T. Kaljuvee, P. Christjanson. Thermal behaviour of urea-formaldehyde resins during curing[J].2003,72:609
    [53]M. Szesztay, Z. Laszlo-Hedvig, E. Kovacsovics, F. Tudos. DSC application for characterization of Urea formaldehyde condensates[J]. European Journal of Wood and Wood Products,199351:298
    [54]王庆国,张军,张峰.锥形量热仪的工作原理及应用[J].现代科学仪器,2003,6:36-39
    [55]汪浩明.MDF的阻燃处理及热解研究[D].南京:南京林业大学,2007
    [56]邱坚.木材/SO2气凝胶纳米复合材的研究[D].哈尔滨:东北林业大学,2004
    [57]许民等.锥形量热仪法在木材阻燃性能测试中的应用——FRW阻燃落叶松木材阻燃性能分析(1)[J].东北林业大学学报,2001,5(3):17-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700