功能化碳纳米颗粒的制备、性质及其分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳材料是一种地球上比较普遍并且特殊的材料,它不仅可以形成硬度较大的金刚石,也可以形成较软的石墨。它的研究及其应用一直是科技创新的前沿领域,尤其是碳纳米管(CNTs)和石墨烯的出现,由于其优异的电磁学、光学、力学和热学等方面的性能,在化学、物理、材料科学、生物等诸多领域表现出诱人的应用前景,引起了科学界巨大的反响,兴起了在碳材料方面的研究热潮。碳纳米颗粒是碳材料中的一种,也具有类似的石墨结构,但是以前的研究是基于较小的碳纳米颗粒(碳量子点)的光学性质应用于成像方面,而基于较大的碳纳米颗粒的性质及应用研究还没有被报道。
     本论文致力于结合我们在荧光传感方面的研究,对功能化碳纳米颗粒进行了深入的探讨。由于分析化学发展的一个重要方向是设计能够对特定目标分析物产生可测量信号的传感器。荧光传感器由于检测的灵敏度高、选择性好和使用方便等优点,近年来取得了较大发展。而在传感器中信号传导部分是影响荧光传感器传感性能的主要因素,因此研究与发展具有选择性好、灵敏度高又具有较好的稳定性和可逆性的传导材料一直是构建荧光传感器时值得探索和完善的重要方面。本论文应用对碳纳米颗粒的性质的研究,在碳纳米管和石墨烯作为构建传感平台的基础上,开拓了碳纳米颗粒作为荧光传感平台的应用,对碳纳米颗粒和核酸探针的作用机制进行了深入的研究,并进一步拓展了功能化碳纳米颗粒在催化性能方面的应用。主要完成了以下四个工作:
     (1)利用蜡烛燃烧的方式得到不溶于水的碳灰,通过改进的方法得到水溶液分散的碳纳米颗粒,接着对其进行了SEM、AFM、DLS、XPS、Raman、FTIR和pH滴定等详细的表征分析。结果表明制得的碳纳米颗粒具有比较好的富氧含量,通过计算证明碳的氧化率为1/6,此方法可以简单、大量制备氧化碳纳米颗粒,并且有可能进一步实现工业化生产,同时也为我们的下一步应用奠定了坚实的理论基础。
     (2)首次使用制备的碳纳米颗粒结合单标记荧光探针构建荧光传感平台,研究了单标记荧光探针和碳纳米颗粒的作用机制,通过数据分析提出了碳纳米颗粒和DNA之间是π-π堆积和静电排斥共同作用的机制,且碳纳米颗粒可以很好的对单链DNA和双链DNA进行区分,依据这些原理构建了基于碳纳米颗粒-荧光探针的传感平台实现了对DNA, Hg~(2+),三磷酸腺苷(ATP)和凝血酶(Thrombin)高灵敏度、高选择性检测,本荧光传感体系不需要双标记,同时排除了由于非标记使用的嵌入剂的不稳定性而造成检测器的不可重复性、检测灵敏度低的缺点,实现了荧光恢复的增强体系,消除了溶液中其他因素对荧光淬灭造成的影响。而且碳纳米颗粒和DNA之间的π-π堆积和静电排斥作用,以及碳纳米颗粒近似球形的结构,这些都有利于提高检测的灵敏度。
     (3)核酸适配体结合小分子后的各向异性变化很小,很难达到灵敏的检测,由于DNA通过π-π堆积作用于碳纳米颗粒表面,而且碳纳米颗粒还可以对单双链DNA进行区分,依据这些理论和实验基础我们结合碳纳米颗粒和荧光各向异性技术发展了一种信号放大荧光各向异性的方法,对ATP和Apyraze实现了高灵敏度、高选择性的实时检测。这是首次基于荧光共振能量转移结合碳纳米材料和荧光各向异性技术应用于检测方面的报道,同时可以实现信号降低和信号增强检测,这种基于碳纳米颗粒放大各向异性方法的有效性、简易性和多样性会促使荧光各向异性技术的进一步发展。
     (4)通过DNA和表面活性剂修饰(SDS、Tween20、DTAB)能够使未氧化的碳纳米颗粒在水溶液中具有很好的分散性,从而催化双氧水氧化3,3',5,5'-四甲基联苯二胺(3,3',5,5'-tetramethylbenzidine,TMB)显色,本方法相比于其他碳纳米材料催化TMB显色反应,具有材料便宜,显色时间短,催化效率高等特点。依据碳纳米颗粒的催化性能的比较,发现SDS修饰的碳纳米颗粒的催化活性最高,接着考察了SDS修饰的碳纳米颗粒对H_2O_2的检测。本实验原理可以对与H_2O_2有关的其他物质的分析检测提供新的思路。
Carbon material, a kind of relatively common and special materials in earth, cannot only form the hardest material, diamond, but also can form a flexible graphite. Theresearch and applications of carbon material have been the forefront of technologicalinnovation domain, especially carbon nanotubes (CNTs) and graphene, due to theirexcellent performance in electromagnetism, optical, thermodynamics and mechanics,have shown good prospect of application in chemistry, physics, materials science,biology, and many other fields, having caused a huge response to the scientificcommunity and risen in the research upsurge of carbon materials, and become thefocus of research in the various fields. Carbon nanoparticles also have the similarstructure of graphite, but most of the research is based on the smaller carbonnanoparticles (carbon quantum dot). However, the properties and application researchof the larger carbon nanoparticles have not been reported.
     This thesis is devoted to the functionallization of carbon nanoparticles. Combinedwith our research in fluorescence sensing, an important design of the development ofanalytical chemistry is to a specific target analyte and produce a measurable signal.Due to high sensitivity, good selectivity and facility for detection, the fluorescencesensor has made great development in recent years. The part of signal conduction isone of the most important factors to the performance of fluorescent sensor, thereforethe research and development of conductive material with good selectivity, highsensitivity, stability and reversibility is worth exploring and perfecting. Based oncarbon nanotubes and graphene as the sensing platform, here we study the properties ofcarbon nanoparticle and the interaction mechanism between carbon nanoparticles andnucleic acid probe to design carbon nanoparticles as fluorescence sensing platform, atthe same time, we also explore the further development of the carbon nanoparticles incatalytic. The main works are as follows:
     (1) Using a way of burning candle to get carbon ash of insoluble water, weobtain the carbon nanoparticles dispersion in water by our improved method, then thedetailed characterization analysis are carried on through SEM, AFM, DLS, XPS,Raman, FTIR and pH titration. The results show that the prepared carbon nanoparticleshave a relatively good content of oxygen, basically one of every six carbon is oxidizedthrough the calculation.This method is a simple, effective to prepare oxidized carbonnanoparticles, which may realize industrialized production, and it also lay a solid theoretical foundation for our next application.
     (2) Combined with single-labeled fluorescent probes, we use prepared carbonnanoparticles to construct fluorescent sensing platform, Moreover, the interactionmechanism between fluorescent probes and carbon nanoparticles is studied. Theunderlying sensing mechanism, in contrast to those of common carbon nanostructuresand metal nanoparticles, is based on competition of electrostatic repulsion and π-πstacking interactions.Thus it can be very well to distinguish single-stranded DNA anddouble-stranded DNA. According to these principles, we design sensing platformwhich can realize high sensitivity, high selectivity detection of DNA, Hg~(2+), adenosinetriphosphate (ATP) and thrombin (Thrombin). Besides the sensing system need not thedouble mark. Meantime, it also ruled out instability caused by non-markers embeddedagent result in not repetitive and low detection sensitivity. Moreover it is a system offluorescence enhancement, thus the effect of solution and other factors on thefluorescence quenching are eliminated. The sensitivity and accuracy of detection areincreased. At the same time, the interaction mechanism of π-π stacking andelectrostatic repulsion between carbon nanoparticles and DNA, as well as theapproximation spherical structure of carbon nanoparticle, which are beneficial toimprove sensitivity of detection.
     (3) After binding small molecule, the anisotropic of the aptamer changes a little,thus it is difficult to achieve a high sensitive detection. Here, according to theinteraction mechanism of DNA binding to the carbon nanoparticles on the surface by π-πstacking interactions in the third chapter, we combined carbon nanoparticles andfluorescence anisotropy technique to develop a method of signal amplifyingfluorescence anisotropy on the basis of the theory and experiment. The high sensitivityand selectivity detection for ATP and apyraze is realized. This is the first reported thebinding of carbon nano-materials and fluorescence anisotropy applied in detection. Atthe same time, the approach is extremely versatile in that both signal-off and signal-ondetections can be easily realized. The effectiveness, simplicity and diversity of thecCNPs-FA approach will enable the development of a class of probes for rapid, sensitive,and selective detection of biomolecule.
     (4) The unburnt carbon nanoparticles modified by some DNA and surfactant (SDS,Tween20, DTAB) can dispersion in water easily. Carbon nanoparticle can catalyticperoxidase to oxidize the3,3',5,5'-tetramethylbbenzidine (TMB): thereby producing acolor change, in contrast to other carbon nanomaterial, carbon nanoparticles as catalystis not time-consuming, non-expensive, high catalytic efficiency and so on. On the basisof the catalytic properties of carbon nanoparticles modified by different surfactant, carbon nanoparticles modified SDS with the highest catalytic activity is selected forthe detection of H_2O_2. We also believe that this principle can be used to other analyticsassociated with H_2O_2for detection.
引文
[1] Kroto H W, Heatll J R, O’Brien S C, et al. C60: Buckminstefullerene. Nature,1985,318(6024):162-163
    [2] Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58
    [3] Novoselov K S, Geim A K, Morozov S V, et a1. Electric field effect in atomically thincarbon films. Science,2004,306(5696):666-669
    [4] Shioyama H, Akita T. A new route to carbon,2003,41(1):179-181
    [5] Viculis L M, MaCk J J, Kaner R B. A chemical route to carbon nanoscrolls. Science,2003,299(5611): l361-1361
    [6] Wan X, Huang Y, Chen Y S. Focusing on energy and optoelectronic applications: ajourney for graphene and graphene oxide at large scale. Acc. Chem. Res,2012,45(4):598-607
    [7] Lee C G, Wei X D, Kysar J W, et a1.Measurement of the elastic properties and intrinsicstrength of monolayer grapheme. Science,2008,321(5887):385-388
    [8] Service R F. Carbon sheets an atom thick give rise to grapheme dreams. Science,2009,324(5929):875-877
    [9] Balandin A A, Ghosh S, Bao W Z, et a1.Superior thermal conductivity of single-layergrapheme. Nano Lett.,2008,8(3):902-907
    [10] Novoselov K S, Jiang Z, Zhang Y, et a1. Room-temperature quantum hall effect ingrapheme. Science,2007,315(5817):1379-1379
    [11] Wang Y, Huang Y, Song Y, et a1.Room temperature ferromagnetism of graphene.Nano Lett.,2009,9(1):220-224
    [12] Park S J, Ruoff R S. Chemical methods for the production of graphenes. Nat.Nanotech-nol.,2009,4(4):217-224
    [13] Geim A K, Novoselov K S. The rise of graphene. Nature Mater.2007,6(3):183-191.
    [14] Li D, Kaner R B. Graphene-Based Materials. Science,2008,320(5880):1170-1171
    [15] Geim A K. Graphene: Status and Prospects.Science,2009,324(5934):1530-1532
    [16] Lui C H, Liu L, Mak K F. Ultraflat graphene. Nature,2009,462(7271):339-341
    [17] Kim J Y, Cote L J, Kim F L, et a1.Visualizing graphene based sheets by fluorescencequenching microscopy. J.Am.Chem.Soc.2010,132(1):260-267
    [18] Balandin A A, Ghosh S, Bao W Z, et a1. Superior thermal conductivity of single-layergraphene. Nano Lett,2008,8(3):902-907
    [19] Lu C H, Li J, Yang H H, et al. General approach for monitoring peptide-proteininteractions based on grapheme-peptide complex. Anal.Chem.,2011,83(19),7276-7282
    [20] Stankovich S, Dikin D A, Dommett G H, et a1.Graphene-based composite materials.Nature,2006,442(7100):282-286
    [21] Rao C N R, Sood A K, Subrahmanyam K S, ea al. Graphene: the newtwo-dimensional nanomaterial. Angew. Chem. Int. Ed.2009,48(42):7752-7777
    [22] Dreyer D, Park S J, Bielawski C W, et a1.The chemistry of graphene oxide. Chem.Soc.Rev.,2010,39(1):228-240
    [23] Szabo T, Berkesi O, Dekany I, et a1. Evolution of surface functional groups in a seriesof progressively oxidized graphite oxides. Chem.Mater.,2006,18(11):2740-2749
    [24] Boehm H P, Scholz W. New results on the chemistry of graphite oxide.Carbon.1968,6(2):226-226
    [25] Szabo T, Tombacz E, llles E, et a1. Enhanced acidity and pH-dependent surface chargecharacterization of successively oxidized graphite oxides. Carbon.2006,44(3):537-545
    [26] Left A, Buchsteiner A, Pieper J, et a1. Hydration behavior and dynamics of watermolecules in graphite oxide. J. Phy.Chem.Solids.,2006,67(5-6):1106-1110
    [27] Jeong H K, Lee Y P, Lahay, et a1. Evidence of graphitic AB stacking order of graphiteoxides. J. Am.Chem.Soc.,2008,130(4):1362-1366
    [28] Lerf A, He H, Forster M, et a1.Structure of graphite oxide revisted. J Phys Chem B,1998,102(23):4477-4482
    [29] Barinov A, Malcioglu O B, Fabris S, et a1. Initial stages of oxidation on graphiticsurfaces: Photoemission study and density functional theory calculations.J Phys ChemC,2009,113(21):9009-9013
    [30] Cai W W, Piner R D, Stadermann F J, et a1.Synthesis and solid-state NMR structuralcharacterization of C-13-labeled graphite oxide.Science,2008,321(5897):1815-1817
    [31] Brodie B C.Sur le poids atomique du graphite.Ann.Chim.Phys.1860,59(3):466-472
    [32] Staudenmaier L.Verfahren zur darstellung der graphitsature.Ber. Dtsch.Chem.Ges.,1898,31(2):1481-1487
    [33] Hummers W S, Offeman R E. Preparation of graphite oxide.J.Am.Chem.Soc,1958,80(6):1339-1339
    [34] Kaczmarek H, Podgorski A. Photochem ical and thermal behaviours of poly(vinylalcohol)/graphite oxide composites. Polym. Degrad. Stabil,2007,92(8):939-946
    [35] Shioyama H. Cleavage of graphite to graphene.J. Mater.Sci. Lett.,2001,20(6):499-500
    [36] Hannes J L I, schniepp C, Michael J M, et a1.Functionalized single graphene sheetsderived from splitting graphite oxide. J.Phys.Chem.B,2006,110(17):8535-8539
    [37] Subrahnlanyam S, Vivekchand S R C, Govindaraj A, et a1.A study of graphenesprepared by different methods: characterization, properties and solubilization. J.Mater.Chem.,2008,18(13):1517-1523
    [38] Horiuchi S, Gotou T, Fujiwara M, et a1.Carbon nanofilm With a new structure andproperty. Jpn.J.Appl.Phys.2003,42(9):1073-1076
    [39] Dekany I, Kruger-Grasser R, Weiss A.Selective liquid sorption properties ofhydrophobized graphite oxide nanostructures.Colloid&Polym.Sci.,1998,276(3):570-576
    [40] Wu Z S, Ren W C, Gao L B, Liu B L, et a1.Synthesis of high-quality graphene with apre-determined number of layers. Carbon,2009,47(2):493-499
    [41] Chen G H, Weng W G, Wu D J, et a1. Preparation and characterization of graphitenanosheets from ultrasonic powdering technique.Carbon,2004,42(4):753-759
    [42] Pisana S, Lazzeri M, Casiraghi C, ea a1.Break down of the adiabatic Born-Oppen-heimer approximation in graphene.Nature Mater.,2007,6(3):198-201
    [43] Novoselov K S, Geim A K, Morozov S V, et a1.Two-dimensional gas of masslessdiracfermions in graphene. Nature,2005,438(7065):197-200
    [44] Zhang Y B,Tan Y W, Stormer H L, et a1. Experimental observation of the quantumhall effect and berry’s phase ingraphene. Nature,2005,438(7065):201-204
    [45] Novoselov K S, Jiang Z, Zhang Y, et a1. Room-temperature quantum hall effect ingraphene. Science,2007,315(5817):1379-1379
    [46] Berger C, Song Z M, Li X B, et a1. Electronic confinement and coherence in Patternedepitaxial graphene. Science,2006,312(5777):1191-1196
    [47] Ghosh S, Calizo I, Teweldebrhan D, et a1. Extremely high thermal conductivity ofgraphene: Prospects for thermal management applications in nanoelectronic circuits.Appl. Phys.Lett.,2008,92(15):151911-151913
    [48] Zhang G, Yuan Y, Liu Z H, et al. Biosensing platform based on fluorescence resonanceenergy transfer from upconverting nanocrystals to graphene oxide. Angew. Chem. Int.Ed.2011,50(30),1-5
    [49] Stoller M D, Park S, Zhu Y, et a1. Graphene-based ultracapacitors.Nano Lett.,2008,8(10):3498-3502
    [50] Simon P, Gogotsi Y. Materials for electrochemical capacitors.Nature Mater,2008,7(11):845-854
    [51] Yoo E, Kim J, Hosono E, et a1. Large reversible Li storage of graphene nanosheetfamilies for use in rechargeable lithium ion batteries. Nano Lett.,2008,8:2277-2282
    [52] Wang X, Zhi L, Mullen K. Transparent conductive graphene electrodes fordye-sensitized solar cells. Nano Lett.,2008,8(8):323-327
    [53] Li X, Zhang G, Bai X, et a1. Highly conducting graphene sheets and langmuirbiodgettfilms. Nature Nanotech,2008,3(9):538-542
    [54] Dua V, Surwade S P, Ammu S, et a1. All--organic vapor sensor using inkjet-ptintedreduced graphene oxide. Angew.Chem.Int. Ed.,2010,49(12):2154-2157
    [55] Duan W H, Gu B L, Wu J, et a1. Adsorption of gas molecules on graphene nanoribbonsand its implication for nanoscale molecule sensor. J.Phy.Chem.C,2008,112(35):13442-l3446
    [56] Sakhaee-Pour A, Ahmadian M T, Vafai A. Potential application of single-layeredgraphene sheet as strain sensor. Solid State Commun.2008,147(3-4):336-340
    [57] Qian M, Feng T, Ding H, et a1.Electron field emission from screem-printed graphemefilms. Nanotechnology,2009,20(42):425702-425706
    [58] Wu Z S, Pei S F, Ren W C,et a1. Field Emission of Single-Layer Graphene FilmsPrepared by Electrophoretic Deposition. Adv.Mater.,2009,21(17):1756-1760
    [59] Eda G, Emrah Unalan H, Rupesinghe N, et a1. Field emission from graphene basedcomposite thin films. Appl. Phy. Lett.,2008,93(23):3502-3504
    [60] Eda G, Chhowaila M. Graphene-based composite thin films for electronics.Nano Lett,2009,9(2):814-818
    [61] Stoller M D, Park S, Ruoff R S, et al. Graphene-based ultracapacitors. Nano Lett,2008,8(10):3498-3502
    [62] Dikin D A, Stankovich S, Zimney E J, et a1. Preparation and characterization ofgmphene oxide paper. Nature,2007,448(7152):457-460
    [63] Wen Y Q, Xing F F, He S J, et a1. A graphene-based fluorescent nanoprobe for silver (I)ions detection by using graphene oxide and a silver-specific Oligonucleotide.Chem.Commun,2010,46(7):2596-2598
    [64] Wang H L, Hao Q L, Yang X J, et a1. Graphene oxide doped polyaniline for super-capacitors.Electrochem.comm.2009,11(6):1158-1161
    [65] Mkhoyan K A, Contryman A W, Silcox J, et al. Atomic and electronic structure ofgraphene-oxide. Nano Lett,2009,9(3):1058-1063
    [66] Szabo T, Homok V, Schoonheydt R A, et a1. Hybrid langmuir-blodgett monolayers ofgraphite oxide nanosheets. Carbon,2010,48(2):1676-1680
    [67] Yu W, Xie H Q, Bao D. Enhanced thermal conductivities of nanofluids containinggraphene oxide nanosheets. Nanotechnology,2010,21(5):055705
    [68] Ito J, Nakamura J, Natori A. Semiconducting nature of the oxygen-adsorbed graphemesheet. J Appl Phys,2008,103(11): l13712-113715
    [69] Boukhvalov D W, Katsnelson M I. Modeling of graphite oxide. J.Am. Chem.Soc.,2008,130(32):10697-10701
    [70] Hamada N, Savada S,Oshiyarna A, et a1. New one:dimensional conductors:graphiticmicrotubules. Phys.Rev Lett,1992,68(10):1579-1581
    [71] Kiang C H, Goddard W A, Beyers R, et a1. Carbon nantubes with single:1ayer walls.Carbon,1995,33(7):903-914
    [72] Odom T, Huang J, Kim P, et a1. Atomic structure and eIectronic properties of single:walled carbon nanotubes. Nature,1998,391(6662):62-64
    [73] Ye Y, Ahn C C, Witham C, et a1. Hydrogen adsorption and cohesive energy of single:walled carbon nanotubes. Appl. Phys. Lett.1999,74(16):2307-2309
    [74]潘晖,曹全喜,佟丽英,碳纳米管应用研究.微纳电子技术,2002,39(9):14-18
    [75] Moonsub S, Nadine W S K, Robert J C, et al. Functionalization of carbon nanotubes forBiocompatibility and Biomolecular Recognition. Nano Lett.2002,2(2):285-288
    [76] Ebbesen T W, Ajayan P M. Large scale synthesis of carbon nanotubes Nature,1992,358(6383):220-222
    [77] Cheng H M, Li F, Sun X, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbonsChem. Phys. Lett.,1998,289(5-6):602-610
    [78] Franklin N, Dai H J. A enhance chemical vapor deposition method to extensivesingle-walled nanotube networks with directionality. Advanced Materials,2000,12(12):888-890
    [79] Iijima S, lchihashi T. Single-shell carbon nanotubes of1-nm diameter. Nature,1993,363(6430):603-605
    [80] Guo T, Nikolaev P, Rinzler A Q, et al. Self-Assembly of Tubular Fullerenes. J. Phys.Chem.,1995,99(27):10694-10697
    [81] Kong J, Cassell A, Dai H J. Chemical vapor deposition of single-walled carbonnanotubes. Chem Phys Lett,1998,292(4-6):567-574
    [82] Wenjie L, Marc B, Dolores B, et a1. Fabry: Perot interference in a nanotube electronwaveguide. Nature,2001,411(6838):665-669
    [83] Frank S P, Ponchara P, Wang Z L, et a1. Carbon nanotube quantum resistors. Science,1998,280(5370):1744-1746
    [84] Tong Z K, Zhang L, Wang N, et al. Superconductivity in4angstrom single walledcarbon nanotubes. Science,2001,292(5526):2462-2465
    [85] Walters D A, Ericson L M, Casavant M J, et a1. Elastic strain of freely suspendedsingle: wall carbon nanotube ropes. Appl. Phys. Lett.,1999,74(25):3803-3805
    [86] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, andtoughness of nanorods and nanotubes. Science,1997,277(5334):197l-1975
    [87] Georgakilas V, Pellarini V F, Prato M, et al, Supramolecular self-assembled fullerenenanostructures, Proc Natl Acad Sci USA,2002,99(8):5075-5080
    [88] Guo Y G, Li C J, Wan L J, et al. Well-defined fullerene nanowire arrays, Adv FunctMater,2003,13(8):626-630
    [89] Liu H B, Li YL, Jiang L,et al. Imaging as-grown [60] fullerene nanotubes by templatetechnique, J. Am. Chem. Soc.,2002,124(45):13370-13371
    [90] Gan H Y, Liu H B, Li Y L, et al. Fabrication of fullerene nanotube arrays using atemplate technique, Carbon,2005,43(1):205-208
    [91] Miyazawa K Hamamoto K, Nagata S, et al. Structural investigation of the C60/C70whiskers fabricated by forming liquid-liquid interfaces of toluene with dissolvedC60/C70and isopropylalcohol. J Mater Res,2003,18(5):1096-1103
    [92] Ji H X, Hu J S, Tang Q X, et al. Controllable preparation of submicrometersingle-crystal C60rods and tubes through concentration depletion at the surfaces ofseeds, J.Phys. Chem. C.,2007,111(28):10498-10502
    [93] Wang L, Liu B B, Liu D, et al. Synthesis of thin, rectangular C60nanorods usingm-xylene as a shape controller, Adv Mater,2006,18(14):1883-1888
    [94] Nikolaos K, Nikos T. Current progress on the chemical modification of carbonnanotubes. Chem. Rev.2010,110(9):5366-5397
    [95] Banerjee S, Hemraj-Benny T, Wong S S, et al. Covalent surface chemistry ofsingle-walled carbon nanotubes. Advanced Materials,2005,17(1):17-29
    [96] Liu J, Rinzler A G, Dai H, et al. Fullerene pipes. Science,1998,280(22):1253-1256
    [97] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbonnanotubes. Science,1998,282(5386):95-98
    [98] M A Hamon, J Chen, H Hu, et al. Dissolution of single-walled carbon nanotubes. Adv.Mater.,1999,11(10):834-840
    [99] Sun Y P, Huang W J, Lin Y, et al. Soluble dendron-functionalized carbon nanotubes:preparation, characterization, and properties.Chem. Mater,2001,13(9):2864-2869
    [100] Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbon nanotubes. AccChem Res,2002,35(2):1105-1113
    [101] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbonnanotubes. Science,1998,282(5386):95-98
    [102] Zhao B, Niyogi S, Hamlon M A, et al. Chromatographic purification and properties ofsoluble single-walled carbon nanotubes. J. Am. Chem. Soc.,2001,123(47):11673-11677
    [103] Basiuk V A, Basiuk E V, Blesa S. Direct amidation of terminal carboxylic groups ofarmchair and zigzag single-walled carbon nanotubes. Nano Lett,2001,1(11):657-661
    [104] Ellis A V, Vijayamohanan K, Goswaimi R, et al. Hydrophobic anchoring ofmonolayer-protected gold nanoclusters to carbon nanotubes. Nano Lett,2003,3(3):279-282
    [105] Banerjee S, Wong S S. Functionalization of carbon nanotubes with a metal-containingmolecular complex. Nano Lett,2002,2(1):49-53
    [106] Prigodich A, Alhasan A, Mirkin C. Selective enhancement of nucleases by polyvalentDNA-functionalized gold nanoparticles. J. Am. Chem. Soc.2011,133(7):2120-2123
    [107] Baker S E, Cai W. Confocal covalently bonded adducts of deoxyribonucleic acid (DNA)oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization. NanoLett,2002,2(12):1413-1417
    [108] Hazani M, Naaman R, Hennrich F, et a1. Fluorescence imaging of DNA-functionalizedcarbon nanotubes. Nano Lett,2003,3(2):153-155
    [109] Mickelson E T, Huffman C B, Rinzler A G, et al. Fluorination of single-wall carbonnanotubes. Chem. Phys. Lett.,1998,296(1-2):188-194
    [110] Touhara H, Okino E. Property control of carbon materials by fluorination. Carbon,2000,38(2):241-267
    [111] Touhara H, Inahara J, Mizuno T, et al. Property control of new forms of carbonmaterials by fluorination. J. Fluorine Chem.,2002,114(2): l81-l88
    [112] Kawasaki S, Komatsu K, Okino F, et al. Fluorination of open-and closed-endsingle-walled carbon nanotubes. Phys. Chem. Chem. Phys,2004,6(8):1769-1772
    [113] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbonnanotubes. Science,1998,282(5386):95-98
    [114] Lee W H, Kim S J, Lee W J, et al. X-ray photoelectron spectroscopic studies of surfacemodified single-walled carbon nanotube material. Appl. Surf. Sci.,2001,181(1-2):121-127
    [115] Bahr J, Yang J, Kosynkin D, et al. Functionalization of carbon nanotubes byelectrochemical reduction of aryl diazonium salts. J. Am. Chem. Soc.,2001,123(27):6536-6542
    [116] Strano M S. Probing chiral selective reactions using a revised kataura plot for theinterpretation of single-walled carbon nanotube spectroscopy. J. Am. Chem. Soc.,2003,125(51):16148-16153
    [117] Dyke C A, Tour J M. Unbundled and highly functionalized carbon nanotubes fromaqueous reactions. Nano Lett,2003,3(9):1215-1218
    [118] Mickelson E T, Chiang C B, Margrave J L, et al. Solvation of fluorinated fingle-wallcarbon nanotubes in alcohol solvents. J. Phys. Chem. B,1999,103(21):4318-4322
    [119] Saini R K, Chiang I W, Smalley P H, et al. Covalent sidewall functionalization ofsingle wall carbon nanotubes. J. Am. Chem. Soc.,2003,125(12):3617-3621
    [120] Kamaras K, Itkis M E, Hu H, et al. Covalent bond formation to a carbon nanotubemetal. Science,2003,301(5639):1501-1501
    [121] Hu H, Zhao B, Hamon M A, et al. Sidewall functionalization of single-walled carbonnanotubes by addition of dichlorocarbene. J. Am. Chem. Soc.,2003,125(48):14893-14900
    [122] Tomonari Y, Murakami H, Nakashima N. Solubilization of single-walled carbonnanotubes by using polycyclic aromatic ammonium amphiphiles in water-strategy forthe design of high-performance solubilizers.Chem.-Eur. J.2006,12(15):4027-4034
    [123] Wang D, Ji W X, Li Z C, et al. A biomimetic “polysoap” for single-walled carbonnanotube dispersion. J. Am. Chem. Soc.,2006,128(20):6556-6557
    [124] Kyatskaya S, Mascaros J R G, Bogani L, et al. Anchoring of rare-earth-basedsingle-molecule magnets on single-walled carbon nanotubes. J. Am. Chem. Soc.,2009,131(42):15143-15151
    [125] Marega R, Accorsi G, Meneghetti M, et al. Cap removal and shortening ofdouble-walled and very-thin multi-walled carbon nanotubes under mild oxidativeconditions.Carbon,2009,47(3):675-682
    [126] Alivisatos A P, Johnsson K P, Peng X G, et al. Organization of “nanocrystal groups”using DNA. Nature,1996,382(6592):609-611
    [127] Mirkin C A, Letsinger R L, Mucic R C, et al. DNA-based method for rationallyassembling nanoparticles into macroscopic materials. Nature,1996,382(6592):607-609
    [128] Arkin M R, Stemp E D, Holmlin R E, et al. Rates of DNA-mediated electron transferbetween metallointercalators. Science,1996,273(5274):475-480
    [129] Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation ofcarbon nanotubes. Nat. Mater,2003,2(5):338-341
    [130] Johnson R R, Kohlmeyer A, Johnson C A, et al. Free energy landscape of a DNAcarbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett,2009,9(2):537-541
    [131] Williams K A, Veenhuizen P T, Beatriz G, et al. Carbon nanotubes with DNArecognition. Nature,2002,420(6917):761-761
    [132] Wu Z, Zhen Z, Jiang J H, et al. Terminal protection of small-molecule-linked DNA forsensitive electrochemical detection of protein binding via selective carbon nanotubeassembly. J.Am. Chem.Soc.,2009,131(34):12325-12332
    [133] Xu Y, Pehrsson P E, Chen L W, et al. Controllable redox reaction of chemically purifiedDNA single walled carbon nanotube hybrids with hydrogen peroxide. J.Am. Chem.Soc.,2008,130(31):10054-10055
    [134] Richard C, Balavoine F, Schultz P T, et al. Supramolecular self-assembly of lipidderivatives on carbon nanotubes. Science,2003,300(5620):775-778
    [135] O′Connell M J, Bachilo S M, Huffman C B, et al. Band gap fluorescence fromindividual single-walled carbon nanotubes. Science,2002,297(5581):593-596
    [136] Islam M F, Rojas E, Bergey D M, et al. High weight fraction surfactant solubilizationof single-wall carbon nanotubes in water. Nano Lett.,2003,3(2):269-273
    [137] Wang H, Zhou W, Derek L,et al. Dispersing single-walled carbon nanotubes withsurfactants: a small angle neutron scattering study. Nano Lett,2004,4(9):1789-1793
    [138] Tabakman S M, Welsher K, Liu Z, et al. PEG branched polymer for functionalization ofnanomaterials with ultralong blood circulation giusepe prencipe. J.Am.Chem.Soc.,2009,131(13):4783-4787
    [139] Hasan T, Scardaci V, Tan P H, et al. Dispersibility and stability improvement ofunfunctionalized nanotubes in amide solvents by polymer wrapping. Ferrari Physica E,2008,40(7):2414-2418
    [140] Song Y J, Wang X H, Qu X, et al. Label-free colorimetric detection of single nucleotidepolymorphism by using dingle-walled carbon nanotube intrinsic peroxidase-likeactivity. Chem. Eur. J.2010,16,3617-3621
    [141] Song Y J, Xu C, Qu X, et al. Light regulation of peroxidase activity by spiropyranfunctionalized carbon nanotubes used for label-free colorimetric detection oflysozyme.Chem Commun.,2011,47(32):9083-9085
    [142] Song Y J, Qu K, Qu X, et al. Graphene oxide: intrinsic peroxidase catalytic activity andits application to glucose detection. Adv. Mater.2010,22,1-5
    [143] Watson J D, Crick F H C. A structure for deoxyribose nucleic acid. Nature,1953,171(4356):737-738
    [144] Wang K, Tang Z, Tan W, et al. Molecular engineering of DNA: molecular beacons.Angew. Chem. Int. Ed.,2009,48(5):856-870
    [145] Phillips J A, Lopez-Colon D, Tan W, et al. Applications of aptamers in cancer cellbiology. Anal. Chim. Acta,2008,621(2):101-108
    [146] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNAligand to bacteriophage T4DNA polymerase. Science,1990,249(4968):505-510
    [147] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specificligands. Nature,1990,346(6287):818-822
    [148] Willner I, Shlyahovsky B, Zayats M, et al. DNAzymes for sensing: nanobiotechnologyand logic gate applications. Chem. Soc. Rev.2008,37(6):1153-1165
    [149] Famulok M, Hartig J S, Mayer G. Functional aptamers and aptazymes in biotechnology,diagnostics, and therapy. Chem. Rev.2007,107(9):3715-3743
    [150] Li H,Zhou B,Lin Y, et a1. Selective interactions of porphyrins with semiconductingsingle-walled carbon nanotubes.J.Am. Chem. Soc.,2004,126(4):1014-1015
    [151] Shi J, Hu Y Q, Hua Y X. Self-assembly of platinum nanoparticle/multiwalled carbonnanotube multilayer film on Au substrate electrode.Electroanalysis,2008,20:1483-1489.
    [152] DimitrOevic N M, Saponjic Z v’Rabatic B M, et a1.Assembly and charge transfer inhybrid Ti02architectures using biotin-avidin as a connector. J.Am.Chem.Soc.,2005.127(5):1344-1345
    [153] Yang R H, Jin J Y, Chen Y, et al. Carbon nanotube-quenched fluorescentoligonucleotides: probes that fluoresce upon hybridization. J. Am. Chem. Soc.,2008,130(26):8351-8358
    [154] Yang R H, Tang Z W, Yan J L, et al. Noncovalent assembly of carbon nanotubes andsingle-stranded DNA: an effective sensing platform for probing biomolecularinteractions. Anal.Chem,2008,80(19):7408-7413
    [155] Zhang L B, Li T, Li B L, et al. Carbon nanotube-DNA hybrid fluorescent sensor forsensitive and selective detection of mercury (II) ion. Chem. Commun.,2010,46(9):1476-1478
    [156] Zhu Z, Tang Z W, Phillips J A, et al. Regulation of singlet oxygen generation usingsingle-walled carbon nanotubes. J.Am.Chem. Soc.,2008,130(33):10856-10857
    [157] Chen H, Yu C, Jiang C M, et al. A novel near-infrared protein assay based on thedissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes. ChemCommun.,2009,(33):5006-5008
    [158] Wu Y R, Phillips J A, Liu H P, et al. Carbon nanotubes protect DNA strands duringcellular delivery. ACS Nano,2008,2(10):2023-2028
    [159] Li X, Peng Y H, Ren J S, et al. Carboxyl-modified single-walled carbon nanotubesselectively induce human telomeric i-motif formation. Proc. Natl. Acad. Sci. U.S.A.,2006,103(52):19658-19663
    [160] Wong N, Kam S, O’Connell M, et al. Carbon nanotubes as multifunctional biologicaltransporters and near-infrared agents for selective cancer cell destruction. Proc. Natl.Acad. Sci. U.S.A.,2005,102(33):11600-11605
    [161] Liu Z, Mark W, Dai H J, et al. SiRNA delivery into human T cells and primary cell withcarbon-nanotube transporters. Angew. Chem. Int. Ed.2007,46(12):2023-2027
    [162] Lu C-H, Yang H-H, Zhu C-L, et al. A graphene platform for sensing biomolecules.Angew. Chem. Int. Ed.,2009,48(26):4785-4787
    [163] Lu C-H, Li J, Liu J-J, et al. Increasing the sensitivity and single-base mismatchselectivity of the molecular beacon using graphene oxide as the “nanoquencher”. Chem.Eur. J.,2010,16(16):4889-4894
    [164] Lu C H, Li J, Yang H H, et al. Amplified aptamer-based assay through catalyticrecycling of the analyte. Angew. Chem. Int. Ed.2010,49(45):8454-8457
    [165] He S J, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolorfluorescent DNA analysis. Adv. Funct. Mater,2010,20(3):453-459
    [166] Liu C H, Wang Z, Li Z P, et al. Efficient fluorescence resonance energy transferbetween upconversion nanophosphors and graphene oxide: a highly sensitivebiosensing platform. Chem. Commun.,2011,47(16):4661-4663
    [167] Lee J, Kim Y-K, Min D-H. A new assay for endonuclease/methyltransferase activitiesbased on graphene oxide. Anal. Chem.,2011,83(23):8906-8912
    [168] Chang H X, Tang L H, Wang Y, et al. Graphene fluorescence resonance energy transferaptasensor for the thrombin detection. Anal. Chem.,2010,82(6):2341-2346
    [169] Dong H F, Zhang J, Ju H, et al. Highly sensitive multiple microRNA detection based onfluorescence quenching of graphene oxide and isothermal strand-displacementpolymerase reaction. Anal. Chem.2012,84(10):4587-4593
    [170] Wang Y, Li Z H, Hu D H, et al. Aptamer/graphene oxide nanocomplex for in situmolecular probing in living cells. J. Am. Chem. Soc.,2010,132(27):9274-9276
    [171] Po-Jung J H, Liu J W. Molecular beacon lighting up on graphene oxide. Anal. Chem.2012,84(9):4192-4198
    [172] Wang H B,Zhang Q, Chu X,et al. Graphene oxide-peptide conjugate as an intracellularprotease sensor for caspase-3activation imaging in live cells. Angew. Chem. Int. Ed.2011,50(25):7065-7069
    [173] Kost A, Tutt L, Klein M B, et al, Optical limiting with C60in polymethylethacrylate,Opt Lett,1993,18:334-336
    [174] Chabre Y D, Jurado D. Electro-chemical intercalation of lithium into solid C60. J. Am.Chem. Soc.,1992,114(2):764-766
    [175]吴振奕,杨森根,林永生等。CoC60(OH)的合成及氧化还原性能,应用化学,2004,21:81-83
    [176] Ross M M, Nelson H H,Callahan J H, et al, Production and characterization of Metallofullerenes, J. Phy. Chem.,1992,96:5231-5234
    [177] Li H, Zhang Y, Sun X, et al. Nano-C (60): a novel, effective, fluorescent sensingplatform for biomolecular detection. Small2011,7(11):1562-1568
    [178] Sheila N B, Gary A B. Luminescent carbon nanodots: emergent nanolights. Angew.Chem. Int. Ed.2010,49(38):6726-6744
    [179] Xu X Y, Robert R, Gu Y L,et al. Electrophoretic analysis and purification of fluorescentsingle-walled carbon nanotube fragments. J. Am. Chem. Soc.,2004,126(40):12736-12737
    [180] Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colourfulphotoluminescence. J. Am. Chem. Soc.,2006,128(24):7756-7757
    [181] Liu H P, Ye T, Mao C D. Fluorescent carbon nanoparticles derived from candle soot.Angew. Chem. Int. Ed.2007,46(34):6473-6475
    [182] Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging. J. Am.Chem. Soc.,2007,129(37):11318-11319
    [183] Yang S T, Wang X, Sun Y P, et al. Carbon dots as nontoxic and high-performancefluorescence imaging agents. J. Phys. Chem. C,2009,113(42),18110-18114
    [184] Yang S-T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo. J. Am. Chem.Soc.,2009,131(32):11308-11309
    [185] Selvi B R, Jagadeesan D, Suma B S, et al. Intrinsically fluorescent carbon nanospheresas a nuclear targeting vector: delivery of membrane-impermeable molecule to modulategene expression in vivo. Nano Lett,2008,8(10):3182-3188
    [186] Ray S C, Saha A, Jana N R, Sarkar R. Fluorescent carbon nanoparticles: synthesis,characterization, and bioimaging application. J. Phys. Chem. C,2009,113(43):18546-18551
    [187] Liu X, Dai Q, Chen H, et al. A one-step homogeneous immunoassay for cancerbiomarker detection using gold nanoparticle probes coupled with dynamiclightscattering. J. Am. Chem. Soc.2008,130(9):2780-2782
    [188] Furtado C A, Kim U J,Gutierrez H R,et al. Debundling and dissolution of single-walledcarbon nanotubes in smide dolvents. J. Am. Chem. Soc.2004,126(19):6095-6105
    [189] Hudson J L, Casavant M J, Tour J M. Water-soluble, exfoliated, nonroping single-wallcarbon nanotubes. J. Am. Chem. Soc.2004,126(36):11158-11159
    [190] Penicaud A, Poulin P, Derre A, et al. Spontaneous dissolution of a single-wall carbonnanotube salt. J. Am. Chem. Soc.,2005,127(1):8-9
    [191] Bendiab N, Anglaret E, Bantignies J L, et al. Stoichiometry dependence of the Ramanspectrum of alkali-doped single-wall carbon nanotubes. Phys.Rev.B,2001,64(24):245424
    [192] Shi Q, Yang D, Su Y, et al. Covalent functionalization of multi-walled carbonnanotubes by lipase. J. Nanopart. Res.,2007,9(6):1205-1210
    [193] Martell A E, Motekaitis R J. The Determination and Use of Stability Constants; VCH:New, York,1988
    [194] Niemeyer C M. Nanoparticles, proteins, and nucleic acids: biotechnology meetsmaterials science. Angew. Chem. Int. Ed.2001,40(22):4128-4158
    [195] KwonY W, Lee C H, Choi D H, et al. Materials Science of DNA. J. Mater. Chem.2009,19(10):1353-1380
    [196] Lu Y, Liu J. Smart nanomaterials inspired by biology: dynamic sssembly of error freenanomaterials in response to multiple chemical and biological stimuli. Acc. Chem. Res.2007,40(5):315-323
    [197] Wang H, Yang R,Yang L, et al. Nucleic acid conjugated nanomaterials for enhancedmolecular recognition. ACS Nano,2009,3(9):2451-2460
    [198] Willner I, Baron R, Willner B. Integrated nanoparticle-biomolecule dystems for bio-sensing and bioelectronics.Biosens.Bioelectron.2007,22(9-10):1841-1852
    [199] Russ Algar W, Massey M, Krull U J. The application of quantum dots, gold nanopar-ticles and molecular switches to optical nucleic-acid diagnostics. Anal. Chem.2009,28(3):292-306
    [200] Wang Z, Lu Y. Functional DNA directed assembly of nanomaterials for biosensing. J.Mater. Chem.2009,19(13):1788-1798
    [201] Liu J W, Cao Z H, Lu Y. Functional nucleic acid sensors. Chem. Rev.2009,109(5):1948-1998
    [202] Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allelediscrimination. Nat. Biotechnol.1998,16(1):49-53
    [203] Wiskur S L,Ait-Haddou H,Lavigne J J,et al. Teaching old indicators new tricks. Acc.Chem. Res.2001,34(12):963-972
    [204] Rong M K, Zhang X B, Yu R Q, et al. Molecular beacon-based junction probes forefficient detection of nucleic acids via a true target-triggered enzymatic recyclingamplification. Anal. Chem.,2011,83(1):14-17
    [205] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapidprotein monitoring in complex biological fluids. Proc. Natl. Acad. Sci. U.S.A.,2005,102(48):17278-17283
    [206] Wang J, Liu G D, Lin Y H, et al. Sensitive immunoassay of a biomarker tumor necrosisfactor-α based on poly (guanine)-functionalized silica nanoparticle label. Anal. Chem.,2006,78(19):6974-6979
    [207] Cheng Y Q, Li Z P, Zhang X, et al. Homogeneous and label-free fluorescence detectionof single-nucleotide polymorphism using target-primed branched rolling circleamplification. Anal. Biochem,2008,378(2):123-126
    [208] Shang L B, Li T, Li B L, et al. Carbon nanotube-DNA hybrid fluorescent sensor forsensitive and selective detection of mercury(II) ion. Chem. Commun,2010,46(9):1476-1478
    [209] Zhu Z, Tang Z W, Phillips J A, et al. Regulation of singlet oxygen generation usingsingle-walled carbon nanotubes. J. Am. Chem. Soc.2008,130(33):10856-10857
    [210] Heller M J. DNA microarray technology: devices, systems, and applications. Annu RevBiomed Eng.2002,4:129-153
    [211] Puolakkainen M H, iltunen B E,Reunala T, et a1.Comparison of performances of twocommercially available tests, a PCR assay and a ligase chain reaction test,in detectionof urogenital Chlamydia trachomatis infection. J.Clin. Microbiol.1998,36(6):1489-1493
    [212] Johnson R R, Johnson A T C, Klein M L. Probing the structure of DNA carbonnanotube hybrids with molecular dynamics. Nano Lett.2008,8(1):69-75
    [213] Jung S W, Cha M, Park J Y, et al. Dissociation of single-strand DNA: single-walledcarbon nanotube hybrids by watson crick base-pairing. J. Am. Chem. Soc.2010,132(32):10964-10966
    [214] Swathi R S, Sebastiana K L. Resonance energy transfer from a dye molecule tographene.J. Chem. Phys.2008,129(5):054703
    [215] Swathi R S, Sebastian K L. Long range resonance energy transfer from a dye moleculeto graphene has (distance)4dependence. J. Chem. Phys.2009,130(8):086101-086105
    [216] Kuznetsov S V, Ren C C, Woodson S A,et al. Loop dependence of the stability anddynamics of nucleic acid hairpins. Nucleic Acids Res.2008,36(4):1098-1112
    [217] Carré A, Lacarriére V, Birch W J. Colloid Interface Sci.2003,260(1):49-55
    [218] Sigel H. A quantitative appraisal of the ambivalent metal ion binding properties ofcytidine in aqueous solution. Pure Appl. Chem.2004,76(10):1869-1886
    [219] Urano Y, Kamiya M, Kanda K, et al. Evolution of fluorescein as a platform for finelytunable fluorescence probes. J. Am. Chem. Soc.2005,127(13):4888-4894
    [220] Jeng E S, Moll A E, Roy A C, et al.Detection of DNA hybridization using thenear-infrared band-gap fluorescence of dingle-ealled carbon nanotubes.Nano Lett.2006,6(3):371-375
    [221] Bonnet G, Tyagi S, Libchaber A, et al. Thermodynamic basis of the chemical specificityof structured DNA probes. Proc. Natl. Acad. Sci. U. S. A.1999,96,6171-6176
    [222] Tspurkas A, Behlke M A, Rose S D, et al. Hybridization kinetics and thermodynamicsof molecular beacons. Nucleic Acids Res.2003,31(4):1319-1330
    [223] Yang R H, Jin J Y, Chen Y, et al. Carbon nanotube-quenched fluorescent oligonucleo-tides: probes that fluoresce upon hybridization.J. Am. Chem. Soc.,2008,130(26):8351-8358
    [224] He S J, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolorfluorescent DNA analysis. Adv. Funct. Mater.2010,20(3):453-459
    [225] Watson, J. D. The Double Helix: A Personal Account of the Discovery of the Structureof DNA, Weidenfeld and Nicholson, London,1968
    [226] Bloomfield V A, Crothers D M, Tinoco I. Nuclei Acids: Structures, Properties, andFunctions, University Science Books, Sausalito, CA.1999
    [227] Chen R J, Zhang Y. Controlled precipitation of solubilized carbon nanotubes bydelamination of DNA. J. Phys. Chem. B,2006,110(1):54-57.
    [228] Karachevtsev V A, Gladchenko G O, Karachevtsev M V, et al. RNA-wrapped carbonnanotubes aggregation induced by polymer hybridization. Mol. Cryst. Liq. Cryst.2008,497,339-351
    [229] Star A, Tu E, Niemann J, et al. Label-free detection of DNA hybridization using carbonnanotube network field-effect transistors. Proc. Natl. Acad. Sci. U.S.A.2006,103(4):921-926
    [230] Lakowicz J. Principles of Fluorescence Spectroscopy3rd. Springer,2006
    [231]王成刚.核酸适体技术研究进展.生物医学工程学杂志,2006,23(2):463-466
    [232]黄全跃.直接凝血酶抑制剂在急性冠状动脉综合征中的应用.中国动脉硬化杂志,2003,11(2):175-177
    [233]张莹.凝血酶活性的检测及临床意义.微循环学杂志,2005,15(2):70-72
    [234]周靓,姜葵,赫荣乔等,生物物理学报,1997,13(4):531-535
    [235]蔡晓坤,徐顺清,张志仁等.分析化学,2002.30(3):352-355
    [236] Kwon M J, Lee J, Wark A W,et al. Nanoparticle-enhanced surface plasmon resonancedetection of proteins at attomolar concentrations: comparing different nanoparticleshapes and sizes. Anal. Chem.2012,84(3):1702-1707
    [237] Hu J, Zheng P C, Jiang J H, et al. Electrostatic interaction based approach to thrombindetection by surface-enhanced raman spectroscopy. Anal. Chem.2009,81(1):87-93
    [238] Li J, Fang X, Tan W. Molecular aptamer beacons for real-time protein recognition.Bioehem.Biophys.Res.Commun,2002,292(1):31-40
    [239] Xu H, Mao X, Zeng Q, et al. Aptamer-functionalized gold nanoparticles as probes in adry-reagent strip biosensor for protein.Analysis. Anal. Chem.2009,81(2):669-675
    [240] Yang R, Tang Z, Yan J, et al. Noncovalent assembly of carbon nanotubes andsingle-stranded DNA: an effective sensing platform for probing biomolecularinteractions. Anal. Chem.2008,80(19):7408-7413
    [241] Bagalkot V, Zhang L, Levy-Nissenbaum E, et al.Quantum dot aptamer conjugates forsynchronous cancer imaging, therapy, and sensing of drug delivery based onbi-fluorescence resonance energy transfer. Nano Lett.2007,7(10):3065-3070
    [242] Atkinson D E. Cellular energy metabolism and its regulations.Academic Press: NewYork,1977
    [243] Szewczyk A, Pikula S. Adenosine5’-triphosphate: an intracellular metabolicmessenger. Biochim Biopys Acta,1998,1365(3):333-353
    [244]程叙扬,李晓玫.细胞外三磷酸腺苷的代谢及其生物学作用.中国病理生理杂志,1998,14(4):438-441
    [245] Gruenhagen G A,Lovell P, Moroz L L,et al. Monitoring real-time release of ATP fromthe molluscan central nervous system. J Neurosci Methods,2004,139(2):145-152
    [246] Ishida A,Yoshikawa T, Nakazawa T,et a1. Enhanced firefly bioluminescence assay ofATP in the presence of ATP extractants by using diethylaminoethyldextran.Anal.Biochem,2002,305(2):236-241
    [247] Wang Z, Haydon P G, Yeung E S. Direct observation of calcium-independentintercellular ATP signaling in astrocytes. Anal.Chem,2000,72(9):2001-2007
    [248] Price A K, Fischer D J, Martin R S.Deformation-induced release of ATP from eryth-rocytes in a poly (dimethylsiloxane)-based microchip with channels that mimicresistance vessels. Anal. Chem,2004,76(16):4849-4855
    [249] Bronstein I, McGrath P. Chemiluminescence lights up. Nature,1989,338(6216):599-600
    [250] Tamio K, Kenji Y, Hirofumi T. Firefly bioluminescent assay of ATP in the presence ofATP extractant by using liposome. Anal Chem,2006,78(1):337-342
    [251] Sprung R, Spragur R, Spence D. Determination of ATP release from erythrocytes usingmicrobore tubing as a model of resistance vessels in vivo. Anal Chem,2002,74(10):2274-2278
    [252] Hu L Z, Bian Z, Li H J, et al.[Ru (bpy)2dppz]2+electrochemiluminescence switch andits applications for DNA interaction study and label-free ATP aptasensor. Anal. Chem.2009,81(23):9807-9811
    [253] Freeman R, Liu X Q, Willner I. Chemiluminescent and chemiluminescence resonanceenergy transfer (CRET) detection of DNA, metal Ions, and aptamer substratecomplexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J. Am. Chem.Soc.2011,133,11597-11604
    [254] Zhou Z X, Du Y, Dong S J. Double-strand DNA-templated formation of coppernanoparticles as fluorescent probe for label-free aptamer sensor. Anal. Chem.2011,83(13):5122-5127
    [255] Zuo X L, Song S P, Zhang J, et al. A target-responsive electrochemical aptamer switch(TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc.2007,129(5):1042-1043
    [256] Zuo X L, Xiao Y, Plaxco K W. High specificity, electrochemical sandwich assaysbased on single aptamer sequences and suitable for the direct detection of smallmolecule targets in blood and other complex matrices. J. Am. Chem. Soc.2009,131(20):6944-6945.
    [257] Deng M G, Zhang D, Zhou Y Y,et al. Highly effective colorimetric and visualdetection of nucleic Acids Using an Asymmetrically Split Peroxidase DNAzyme. J. Am.Chem. Soc.2008,130(39):13095-13102
    [258] Zhen S J, Chen L Q, Xiao S J, et al. Carbon nanotubes as a Low background signalplatform for a molecular aptamer beacon on the basis of long-range resonance energytransfer. Anal. Chem.2010,82(20):8432-8437
    [259] Harris H H, Pickering I J, George G N. The chemical form of mercury in fish. Science,2003,301(5637):1203
    [260] Kaiser J. Toxicology: mercury report backs strict rules. Science,2000,289(5478):371-372
    [261] Han F X, Dean Patterson W, Xia Y J, et al. Rapid determination of mercury in plant andsoil samples using inductively coupled plasma atomic emission spectroscopy, acomparative study. Water, Air, Soil Pollut,2006,170(1):161-171
    [262] Fong B, Sai K, Tam S, et al. Determination of mercury in whole blood and urine byinductively coupled plasma mass spectrometry. J. Anal. Toxicol,2007,31(5):281-287
    [263] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) inaqueous media using DNA-functionalized gold nanoparticles. Angew.Chem.Int.Ed.,2007,46(22):4093-4096
    [264] Miyake Y, Togashi H, Ono A. Mercury-mediated formation of Thymine-HgII-Thyminebase pairs in DNA duplexes. J. Am. Chem. Soc.,2006,128(7):2172-2173
    [265] Xue X J, Wang F, Liu X G. One-step, room temperature, colorimetric detection ofmercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc.2008,130(11):3244-3245
    [266] Zhu Z, Li G, Fan C H, et al. Highly sensitive electrochemical sensor for mercury(II)ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-basedamplification. Anal. Chem.2009,81(18):7660-7666
    [267] Mansy S, Wood T E, Sprowles J C,et al. Heavy metal-nuccleotide interactions. Bindingof methylmercury(II) to pyrimidine nucleosides and nucleotides. Studies by Ramandifference spectroscopy. J. Am. Chem. Soc.1974,96(6):1762-1770.
    [268] Miyake Y, Togashi H, Tashiro M, et al. MercuryII-mediated formation ofthymine-HgII-thymine base pairs in DNA duplexes. J. Am. Chem. Soc.2006,128(7):2172-2173.
    [269] Tang Y L, He F,Yu M H,et al. A reversible and highly selective fluorescent sensor formercury(II) using poly(thiophene)s that contain thymine moieties. Macromol. RapidCommun.2006,27(6):389-392.
    [270] Yang R H, Jin J, Long L, et al. Reversible molecular switching of molecular beacon:controlling DNA hybridization kinetics and thermodynamics using mercury (ii) ions.Chem. Commun.2009,(3):322-324
    [271] Ruta J, Perrier S, Ravelet C, et al. Noncompetitive fluorescence polarizationaptamer-based assay for small molecule detection. Anal. Chem.,2009,81(17):7468-7473
    [272] Cruz-Aguado J A, Penner G. Patterned arrays of vertically aligned carbon nanotubemicroelectrodes on carbon films prepared by thermal chemical vapor deposition. Anal.Chem.,2008,80(22):8853-8855
    [273] Ye B C, Yin B C. Highly sensitive detection of mercury (II) ions by fluorescencepolarization enhanced by gold nanoparticles. Angew. Chem. Int. Ed.2008,47(44):8386-8389
    [274] Huang Y, Zhao S L, Chen Z F, et al. Amplified fluorescence polarization aptasensorsbased on structure-switching-triggered nanoparticles enhancement for bioassays. Chem.Commun,2012,48,7480-7482
    [275] Tang Z, Wu H, Cort J R, et al. Constraint of DNA on functionalized graphene improvesits biostability and specificity. Small,2010,6(11):1205-1209
    [276] Liu J H, Li J S, Jiang Y,et al. Combination of π–π stacking and electrostatic repulsionbetween carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid andsensitive detection of thrombin.Chem.Commun.,2011,47,11321-11323
    [277] Ouyang X Y, Liu J H, Yang R H, et al. A carbon nanoparticle-based low-backgroundbiosensing platform for sensitive and label-free fluorescent assay of DNA methylation.Chem.Commun.,2012,48,88-90
    [278] McCarroll M E, Agbaria R, Warner I M. In Encyclopedia of Analytical Chemistry.Wiley: New York,2000,12,10259-10305
    [279] Valuer B. Molecular fluorescence: Principles and Applications.Wiley-VCH: Weinheim,Germany,2002.
    [280] Lakowicz J R. Principles of Fluorescence Spectoscopy. Plenum: New York,1983
    [281] Xiao Y, Lubin A A, Baker B R, et al.Single-step electronic detection of femtomolarDNA by target-induced strand displacement in an electrode-bound duplex.Proc.Natl.Acad. Sci. U.S.A.,2006,103,16677-16680
    [282] Tang Z, Wu H, Lin Y,et al. Constraint of DNA on functionalized graphene improves itsbiostability and specificity. Small.,2010,6(11):1205-1209
    [283] Kaczmarek E, Koziak K, Sevigny J, et al. Identification and characterization ofvascular ATP diphosphohydrolase/CD39. J.Biol.Chem.1996,271(51):33116-33122
    [284] Song YJ, Qu K G, Qu X,et al. Graphene oxide: intrinsic peroxidase catalytic activityand its application to glucose detection. Adv. Mater.2010,22(19):1-5
    [285] Song Y J, Wang X H, Qu X G, et al.Label-free colorimetric detection of single nucle-otide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-likeactivity. Chem. Eur. J.2010,16(12):3617-3621
    [286] Li H T, He X D, Lee S T, et al.Water-soluble fluorescent carbon quantum dots andphotocatalyst design. Angew.Chem. Int. Ed.2010,49(26),4430-4434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700