用户名: 密码: 验证码:
钢锚板式钢—混组合索塔锚固体系受力性能理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以青岛胶州湾大桥红岛航道桥为背景,结合山东省交通科技项目《斜拉桥索塔新型锚固体系研究》(2009Y24-2),在国、内外创新性地提出了钢锚板式钢-混组合索塔锚固体系。在收集各种钢-混组合索塔锚固体系构造形式及研究资料的基础上,采用理论分析、足尺节段模型试验的方法对钢锚板式钢-混组合索塔锚固体系的传力机理、承载能力及设计方法进行了研究。
     采用弹塑性有限元数值方法对钢锚板式钢-混组合索塔锚固体系在对称及单侧索力作用下的传力机理进行了研究。数值模拟采用精细化有限元模型,特别考虑了钢与混凝土间的接触非线性和摩擦力以及普通钢筋的作用。研究得到了对称及单侧索力加载全过程中斜拉索索力传递路径和钢锚板、横隔板、竖隔板、底座、侧板、混凝土、PBL剪力键分别承担的水平力和竖向力的大小与比例;同时还得到了不同位置PBL剪力键所承担的水平力和竖向力分布规律及其穿孔钢筋的有效工作长度。
     进行了钢锚板式钢-混组合索塔锚固体系足尺节段模型试验研究,采用与实桥相同的斜向加载方式。试验加载工况包括成桥索力工况、运营索力工况、超载工况和偏载工况,其中超载(对称加载)和偏载工况(单侧加载)均加载至2.2倍成桥恒载索力,加载至最大索力时,结构未达到其极限承载能力,表明钢锚板式钢-混组合索塔锚固体系具有较高的安全储备;对各工况加载过程中钢锚板应力和位移、混凝土应力、PBL剪力键穿孔钢筋应力进行了测试,将测试结果与有限元数值分析结果进行了对比,结果表明采用本文有限元数值方法可以较好的模拟结构的实际受力状态。
     对钢锚板式钢-混组合索塔锚固体系的极限承载能力进行了弹塑性有限元数值分析。得到了对称及单侧索力作用下锚固体系的极限荷载及破坏形态,同时得到了锚固体系在加载全过程中的变形、应力以及混凝土裂缝发展规律。
     进行了对称及单侧索力加载时锚板厚度、横隔板厚度及位置、侧板厚度、竖隔板厚度、PBL剪力键列数及其穿孔钢筋直径等参数变化对钢锚板式钢-混组合索塔锚固体系受力性能的影响分析。结果表明,锚固体系内各构件承担的水平力和竖向力以及其应力大小对锚板厚度、PBL剪力键列数的变化最为敏感;锚固体系对钢锚板厚度变化较为敏感。
     在上述研究成果的基础上,对钢锚板式钢-混组合索塔锚固体系构造进行了设计优化,对优化后锚固体系的受力情况及传力机理进行了数值分析。结果表明,优化后锚固体系受力安全可靠、传力更为明确,PBL建立键传递的荷载较优化前显著增大。提出了优化后钢锚板式钢-混组合索塔锚固体系的设计方法。通过分析影响PBL剪力键承载力的主要因素,提出了适用于钢锚板式钢-混组合索塔锚固体系中PBL剪力键的承载力计算公式;采用弹性理论推导了耳板销铰接触面应力的简化计算方法,可用于钢锚板厚度的设计。
Based on the Hongdao Channel Bridge of Qingdao Jiaozhouwan Bridge and supported byShandong provincial transportation science-technology project of Research on the New Typeof Cable-pylon Anchorage System of Cable-stayed Bridge(2009Y24-2), steel-concretecomposite anchorage system with steel anchor slab was introduced domestically and overseasin this paper creatively. On the basis of collecting structural form and research data ofdifferent types of steel-concrete composite anchorage system, the load-transfer mechanism,load-bearing capacity and design method of this new cable-pylon anchorage system werestudied through the approaches of theoretical analysis and full-scale test.
     Elastic-plastic finite element numerical analysis was adopted to research load-transfermechanism of the anchorage system under symmetrical and unilateral cable force. Thenumerical simulation with a refined finite element model took the nonlinear contact andfriction between steel slab and concrete and the effect of the reinforcement into consideration.Through this research the load-transfer path of stayed-cable force and the horizontal andvertical force supported by steel anchor slab, diaphragms, vertical diaphragm, base plate,lateral plate, concrete and PBL shear connectors under symmetrical and unilateral cable forcewere found out. Besides, the transferring patterns of horizontal and vertical force of PBLshear connectors in different locations and the effective length of perforated steel wereobtained.
     The full scale test of steel-concrete composite anchorage system with steel anchor slabadopting the loading method which was the same as the loading method of real bridge wascarried out. The loading operating mode of the test included the cable force of finished bridgestate, operation state, overload state and partial loading state. The structure did not reach itslimit load-bearing capacity under the maximum cable force of the overload state(symmetricalloading) and partial loading state (unilateral loading)which were2.2times as large as thecable force of finished bridge state. It indicates that the anchorage system existed with ahigher safety stock. The test of the stress and displacement of steel anchor slab, the stress ofconcrete and perforated rebar under different loading operating mode were carried out. Bycomparing the results of the test and the numerical analysis, the result demonstrates that theresult obtained from the numerical simulation method adopted by this paper reflects the realstress state of the structure.
     The limit load and failure mode under symmetrical and unilateral cable force wereobtained by the elastic-plastic finite element analysis of limit load-bearing capacity of thisanchorage system. The deformation and stress of the anchorage system and the pattern ofcrack propagation in concrete were also get.
     The influence on the stress performance of steel-concrete composite anchorage systemwith steel anchor slab produced by the variation of the thickness of anchor slab, the thicknessand location of diaphragms, the thickness of vertical diaphragm and lateral plate, the numberof columns of PBL shear connectors and diameter of the perforated steel was studied. Theresult shows that the thickness of anchor slab and the number of columns of PBL shearconnectors have the most effect on the stress of every component of the anchorage system aswell as the proportion of the horizontal and vertical force supported by them. And theanchorage system is more sensitive to the variation of the thickness of steel anchor slab.
     Based on the research above, the construction of steel-concrete composite anchoragesystem with steel anchor slab was optimized. Numerical analysis of the optimized anchoragesystem was carried out to study the working condition and load-transfer mechanism. Theresult demonstrates that the optimized anchorage system is safety under design load, and theload transfer is more limpid, the load transferred by PBL shear connectors increasessignificantly. the design method of optimized steel-concrete composite anchorage system withsteel anchor slab were put forward. By studying the main factors that influenced theload-bearing capacity of PBL shear connectors, the calculation formula of the load-bearingcapacity of PBL shear connectors in the anchorage system was proposed. Simplifiedcalculation method of the contact stress of the pin hinge located in the wing slab was alsodeduced on the basis of the elastic theory, which could be applied to the design of thethickness of steel anchor slab.
引文
[1]林元培.斜拉桥[M].北京:人民交通出版社,2004
    [2]申卫.郑州黄河公铁两用大桥索塔锚固区受力特性试验研究[D].长沙:中南大学,2010
    [3]代璞,唐继舜,谢海清.犍为岷江大桥换索工程[J].四川建筑,2005,25(1):120-122
    [4]王静梅,窦文俊.重庆嘉陵江石门大桥大跨度预应力砼单索面斜拉桥设计[J].城市道桥与防洪,1988,(1):26-30
    [5]林祥威.长沙湘江北大桥桥梁美学设计之我见[J].公路,1991,(1):10-11
    [6]车宇琳,李敏秋.新南昌八一大桥设计方案[A].中国土木工程学会桥梁及结构工程学会第十二届年会论文集(上册)[C].广州,1996:122-127
    [7]丁立新,沈建钢,陈海泳.江阴五星桥主桥不对称斜拉桥设计[J].桥梁建设,2006,(6):44-46
    [8]黄大健,周立志,韩振勇.吉林临江门大桥施工工艺及施工控制[A].中国土木工程学会桥梁及结构工程学会第十二届年会论文集(上册)[C].广州,1996:299-303
    [9]程为和.广东省南海县西樵大桥设计简介[A].中国土木工程学会市政工程专业委员会第一次城市桥梁学术会议论文集[C],重庆,1987:26-32
    [10]白国良,史庆轩,杨应华等.咸阳渭河大桥斜拉桥结构地震反应分析[J].西安建筑科技大学学报(自然科学版),2000,32(4):329-333
    [11]程庆国,金东灿,吴亮明等.48+96+48米预应力混凝土铁路斜拉桥的设计计算和试验研究[J].中国铁道科学,1980,2(1):1-22
    [12]马景含,雷慧锋,张晓林等.大里营转体施工刚性索铁路斜拉桥的研究与设计[J].铁道标准设计,1998,(2):4-9
    [13]梁文希.澳大利亚格里岛大桥设计、施工简介[J].国外公路,1997,17(3):33-36
    [14]林国雄.高塔斜拉索锚固结构设计讨论[R].2011
    [15]白光亮.大跨度斜拉桥索塔锚固区结构行为与模型试验研究[D].成都:西南交通大学,2006
    [16]刘应贵.环向预应力体系在索塔中的应用及其试验研究[D].成都:西南交通大学,2003
    [17]卓卫东,房贞政.预应力混凝土桥塔斜索锚固区空间应力分析[J].同济大学学报(自然科学版),1999,27(2):203-206
    [18]王锋君,项贻强.斜拉桥索塔节段足尺模型试验与分析研究[J].桥梁建设,2001,(2):8-11
    [19]李立峰,邵旭东,增田胜.斜拉桥小尺寸预应力索塔的布束设计及试验研究[J].公路,2000(10):1-3
    [20]单炜,李玉顺,于玲等.异形截面斜拉桥索塔锚固区节段足尺模型试验研究[J].中国公路学报,2005,18(3)
    [21]邵长专,宋军,耿波.闽江大桥索塔锚固区分析[J].华东公路,2011,191(5):7-10
    [22]项贻强,易绍平,杜晓庆等.南京长江二桥南汊桥斜拉索塔节段足尺模型的研究[J].土木工程学报.2000,33(1):15-22
    [23]高宗余.青洲闽江大桥结合梁斜拉桥设计[J].桥梁建设,2001,(4):13-17
    [24]林元培,章曾焕.杨浦大桥主塔拉索锚固区预应力平面设计与足尺试验[J].海威姆预应力技术,2001,(1):9-12
    [25]韩富庆,杨成斌,娄建等.安庆长江公路大桥索塔锚固区受力分析[J].合肥工业大学学报(自然科学版),2002,25(6):1167-1170
    [26]王存国.甬江特大桥索塔锚固区有限元分析及节段模型试验[D].成都:西南交通大学,2010
    [27]李雄晖.军山长江大桥索塔锚固区足尺节段模型试验研究[J].交通科技,2001,185(2):24-27
    [28]刘兆丰,孟鑫,赵人达等.长寿长江公路大桥索塔节段足尺模型试验研究[J].公路交通科技,2009,26(8):77-83
    [29]李军,姚建军.重庆忠县康家沱长江大桥索塔锚固区环向预应力设计和受力分析[J].公路交通科技,2005,(7,增刊):46-50
    [30]汪捍东,刘洪.宜宾长江大桥索塔拉索锚固区试验[A].四川省公路学会桥梁专委会2007年技术交流会论文集[C].成都,2007:307-311
    [31]刘世建.#字型预应力体系在索塔锚固区的应用及试验研究[D].重庆:重庆交通大学,2008
    [32]刘钊,孟少平,刘智等.润扬大桥北汊斜拉桥索塔节段足尺模型试验研究[J].土木工程学报,2004,37(6):35-40
    [33]彭苗,陈升平,余天庆等.巴东长江大桥索塔锚固区节段模型试验与空间应力分析[J].武汉理工大学学报(交通科学与工程版),2004,28(5):759-762
    [34]刘士林,冯云成,吴永昌等.珠江黄埔大桥北汊主桥设计[J].公路,2009,(10):279-283
    [35]项贻强,陈国强.鄱阳湖口大桥索塔节段足尺模型试验与分析研究[J].中国公路学报,2000,13(4):74-48
    [36]伍波,常国强,张峰.彭溪河特大桥索塔锚固区段足尺模型试验研究[J].公路交通技术,2008,(6):61-65
    [37]项敬辉,华龙海,李伟钊.天津海河大桥斜拉索塔锚固区应力分析[J].中国市政工程,2011,151(1):58-74
    [38]郑纲.沈阳市富民桥索塔锚固区足尺节段模型试验研究[J].桥梁建设,2004,(增刊):75-78
    [39]王锋君,项贻强.斜拉桥索塔节段足尺模型试验与分析研究[J].桥梁建设,2001,(2):8-11
    [40]王鹏.金华江大桥索塔锚固区节段足尺模型试验研究[J].华东公路,2005,155(5):50-54
    [41]武志军,姚伟发,吴文清.徐州市和平路跨铁路站场斜拉桥索塔锚固区足尺模型试验[J].中外公路,2008,28(2):117-120
    [42]乔建东,刘桂林.紫金斜拉桥索塔锚固段足尺模型试验研究[J].铁道标准设计,2008,(11):54-57
    [43]范立础.世界斜拉桥的新进展—加拿大安娜雪丝岛(Annacis Island)桥[J].重庆交通学院学报,1985,13(2):1-11
    [44]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996
    [45]张喜刚,刘玉擎.组合索塔锚固结构[M].北京:人民交通出版社,2010
    [46]福州至银川高速公路九江长江公路大桥(B2标段)土建主体工程施工招标文件图纸[Z].江西省交通规划设计院,湖北省交通规划设计院,2009
    [47]厦漳跨海大桥工程两阶段施工图设计[Z].重庆交通科研设计院,福建省交通规划设计院,中交第一公路勘察设计研究院有限公司,2009
    [48]丁望星,姜友生.荆岳长江公路大桥设计[J].桥梁建设,2011,(4):57-61
    [49]张洪金,贺健,马骉.闵浦大桥主塔设计[J].上海公路,2009,(1):20-30
    [50]王昌将,陈向阳,史方华等.金塘大桥结构设计与创新[J].公路,2011,(8):93-96
    [51]高宗余.武汉天兴洲公铁两用长江大桥总体设计[J].桥梁建设,2007,(1):5-9
    [52]高宗余.东海大桥主航道桥斜拉桥总体设计[J].世界桥梁,2004,(增刊):6-8,16
    [53]杨忠明,王庆曾.灌河特大桥钢锚梁安装[J].桥梁建设,2006,(增刊1):60-62
    [54]张剑英,袁建兵,卢永成等.东海大桥港桥连接段颗珠山大桥设计[A].第十七届全国桥梁学术会议论文集(上册)[C].重庆,2006,159-166
    [55]朱庆菊,徐向军,魏云祥.哈尔滨松花江大桥索塔钢锚梁焊接变形的控制措施[J].钢结构,2011,26(3):55-58
    [56]烟台市滨海公路海阳段丁字河口大桥索塔钢锚梁锚固试验研究索塔锚固区试验报告[R].上海:同济大学,2010
    [57]韦华,李小刚,蒋鹰冲等.黄墩大桥索塔锚固区传力途径和受力分析[J].城市道桥与防洪,2009,(12):59-64
    [58]励晓峰,陈何峰,郑本辉.桂林南洲大桥索塔钢锚梁结构受力分析[J].建筑结构,2008,38(9):106-107
    [59]胡贵琼,童智洋,郑平伟等.鄂东长江公路大桥索塔锚固区节段模型试验研究[J].桥梁建设,2009,(增刊2):55-60
    [60]金增洪.法国诺曼底大桥简介[J].国外公路,1996,16(4):26-31
    [61]苏庆田,曾明根,吴冲.上海长江大桥索塔钢锚箱模型试验研究[J].工程力学,2008,25(10):126-132
    [62]曾明根,苏庆田,邵长宇等.公轨共用大跨斜拉桥索塔锚固区节段试验研究[J].中国铁道科学,2008,29(4):53-57
    [63]宁波象山港公路大桥施工图设计[Z].中交公路规划设计院有限公司,2009
    [64]董学武,周世忠.希腊里翁-安蒂里翁大桥的设计与施工[J].世界桥梁,2004,(4):1-4
    [65]王应良,高宗余.欧美桥梁设计思想[M].武汉:中国铁道出版社,2008
    [66]华有恒.试论香港汀九斜拉桥设计构思的特色和探讨[J].桥梁建设,1997,(3):27-33
    [67]杭州湾跨海大桥施工图设计—第二卷北航道桥[Z].中交公路规划设计院有限公司,2003
    [68]青银高速公路济南黄河大桥施工图设计[Z].山东省交通规划设计院,2005
    [69]杭州湾跨海大桥施工图设计—第三卷南航道桥[Z].中交公路规划设计院有限公司,2003
    [70]杨春,杜春林,邓宇.重庆嘉悦大桥总体设计[J].世界桥梁,2008,(4):16-18
    [71]冯凌云,苏庆田,吴冲.大跨度斜拉桥混凝土索塔钢锚箱的计算模型研究[J].现代交通技术,2005,(4):26-29
    [72]汪昕,吕志涛.斜向索力下钢-混凝土组合索塔锚固区荷载传递与分配关系分析[J].东南大学学报(自然科学版),2006,36(4):585-589
    [73]曾丁,王国亮,徐晴等.斜拉索锚板方位对斜拉桥索塔节段应力分布影响的数值模拟分析[J].公路交通科技,2006,23(3):49-52
    [74]郑舟军,田晓彬,余俊林等.内置式钢锚箱索塔锚固区受力机理分析[J].中国公路学报,2010,23(5):84-89
    [75]杨允表,兰昌荣.大跨度斜拉桥索塔钢锚箱锚固体系横向受力分析方法[J].世界桥梁,2011,(1):42-45
    [76]余锋,姚清涛,游新鹏.斜拉桥索塔锚固区受力性能数值模拟及分析[J].中外公路,2011,31(2):103-107
    [77]姚建军,刘孝辉,李琦等.忠县长江大桥索塔锚固区模型试验与裂纹预测[J].桥梁建设,2009,(2):32-35
    [78]刘钊,孟少平,吕志涛.两座大型斜拉桥索塔锚固区模型试验及对比研究[J].中国工程科学,2003,5(12):48-54
    [79]马威,余天庆,童智洋等.珠江黄埔大桥北汊桥索塔锚固区足尺节段模型试验研究[J].华东公路,2007,(2):25-27
    [80]李兴华,安群慧,王戒躁.芜湖长江大桥索塔锚固区模型试验研究[J].中国铁道科学,2001,22(5):103-106
    [81]福建省厦漳跨海大桥索塔锚固结构试验研究报告[R].西安:长安大学,2012
    [82]张奇志,叶俊能.杭州湾跨海大桥通航孔桥索塔锚固区节段模型试验研究[A].中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议[C].杭州,2005:753-758
    [83]张奇志,李明俊.斜拉桥钢-混组合索塔锚固区节段模型试验研究[J].桥梁建设,2006,(3):16-19
    [84]俞先林,张奇志.钢-混组合索塔锚固结构节段模型试验研究[J].铁道建筑,2008,(8):16-18
    [85]青银高速公路济南黄河大桥主桥索塔锚固区合理构造和模型试验研究报告[R].上海:同济大学桥梁工程系,2008
    [86]刘德军,徐亚光,童登国等.斜拉桥钢-混凝土组合索塔锚固结构节段模型试验研究[J].钢结构,2009,24(9):14-21
    [87] Velendanda M R, Hosain M U. Behaviour of perfobond rib shear connector: push-outtests[J]. Canadian Journal of Civil Engineering,1992,19(l):1-10
    [88] Oguejiofor E C, Hosain M U. Behavior of perfobond rib shear connectors in compositebeams: full-size tests [J]. Canadian Journal of Civil Engineering,1992,19(2):224-235
    [89] Oguejiofor E C, Hosain M U. Tests of full-size composite beams with perfobond ribconnector [J]. Canadian Journal of Civil Engineering,1995,22(1):80-92
    [90] Oguejiofor E C, Hosain M U. A parametric study of perfoband rib shear connectors [J].Canadian Journal of Civil Engineering,1994,21(4):614-625
    [91] Isabel V, Cruz P J S. Experimental analysis of perfobond shear connection between steeland lightweight concrete [J]. Journal of Constructional Steel Research,2004,60:465-479
    [92] Studnicka J, Machacek J, Krpata A, et al. Perforated shear connector for composite steeland concrete beams[A]. Composite Construction in Steel and Concrete Ⅳ[C]. Banff,2000:367-378
    [93] Nishido T, Fujii K, Ariyoshi T. Slip behavior of perfobond rib shear connectors and itstreatment in FEM[A]. Composite Construction in Steel and Concrete Ⅳ[C]. Banff,2000:380-390
    [94] Adrian L C, Aurel S. Cyclic performances of shear connectors [A]. CompositeConstruction in Steel and Concrete Ⅵ[C]. Colorado,2008:52-64
    [95] Al-Darzi S Y K, Chen A R, Liu Y Q. Parametric studies of push-out test with perfobondrib connector[C]. China-Japan Joint Seminar on Steel and Composite Bridges,2009,2(4):103-111
    [96]聂建国,沈聚敏,袁彦声等.钢-混凝土组合梁中剪力连接件实际承载力的研究[J].建筑结构学报,1996,17(2):21-28
    [97]胡建华,叶梅新,黄琼. PBL剪力连接件承载力试验[J].中国公路学报,2006,19(6):65-72
    [98]胡建华,侯文崎,叶梅新. PBL剪力键承载力影响因素和计算公式研究[J].铁道科学与工程学报,2007,4(6):12-18
    [99]胡建华,蒲怀仁. PBL剪力键钢混结合段设计与试验研究[J].钢结构,2007,22(2):62-67
    [100]李小珍,肖林,张迅等.斜拉桥钢-混凝土结合段PBL剪力键承载力试验研究[J].钢结构,2009,24(9):22-27
    [101]黄翔,李力,岳磊.某大跨径斜拉桥钢-混结合段PBL剪力键承载力研究[J].桥梁建设,2010,(3):19-23
    [102]肖林,李小珍,卫星. PBL剪力键静载力学性能推出试验研究[J].中国铁道科学,2010,31(3):15-20
    [103]林磊,郑建荣.钢—混凝土组合梁剪力连接件试验研究[J].科学技术与工程,2011,11(5):1125-1127,1134
    [104]石宵爽,王清远,欧阳雯欣等. PBL剪力连接件粘结滑移性能的静载推出试验研究[J].工程力学,2012,29(1):168-175
    [105]白玲,史志强,史永吉.剪力键布置方式对连续组合梁桥受力特性的影响[J].中国铁道科学,2003,24(2):67-71
    [106]张清华,李乔,唐亮.剪力连接件的三维非线性仿真分析方法[J].西南交通大学学报,2005,40(5):595-599
    [107]周翔海,杜娟.波纹钢腹板组合箱梁桥PBL剪力连接件研究[J].淮阴工学院学报,2011,20(1):51-54
    [108]张清华,李乔,卜一之. PBL剪力连接件群传力机理研究(Ⅰ)—理论模型[J].土木工程学报,2011,44(4):71-77
    [109]张清华,李乔,卜一之. PBL剪力连接件群传力机理研究Ⅱ:极限承载力[J].土木工程学报,2011,44(5):101-108
    [110]夏嵩,赵灿晖,张育智等. PBL传剪器极限承载力的试验研究[J].西南交通大学学报,2009,44(2):166-170
    [111]王振海,赵灿晖,李乔. PBL剪力键荷载-滑移关系试验研究[J].西南交通大学学报,2011,46(4):547-552
    [112]王振海,李乔,赵灿晖. PBL剪力键破坏形态及极限承载力试验研究[J].防灾减灾工程学报,2011,31(5):517-522
    [113]宗周红,车惠民.剪力连接件静载和疲劳试验研究[J].福州大学学报(自然科学版),1999,27(6):61-66
    [114]刘玉擎,周伟翔,蒋劲松.开孔板连接件抗剪性能试验研究[J].桥梁建设,2006,(6):1-4,43
    [115]张清华,李乔,唐亮.桥塔钢-混凝土结合段剪力键破坏机理及极限承载力[J].中国公路学报,2007,20(1):85-90
    [116] Leonhardt F, Andra W, Andra H P, et al. New improved bonding means for compositeload bearing structures with high fatigue strength [J]. Betonund Stahlbetonbau,1987,82(12):325-331
    [117] Tetsuya H, Kaoru M, Hirokazu H, et al. Study on shear strength equations anddesign method of perfobond strip [J]. Journal of Structural Engineering,2002,48A(3):1265-1272
    [118] Kenji H, Masayuki O. Shear strength of perfobond rib shear connector under theconfinement [J]. Proceeding of JSCE,1999,633:193-203
    [119] Oguejiofor E C, Hosain M U. Numerical analysis of push–out specimens withperfobond rib connectors [J]. Computers&Structures,1997,62(4):617-624
    [120] Zienkiewicz O C, Too J, Taylor R L. Reduced integration technique in general analysisof plates and shells[J]. International Journal for Numerical Methods in Engineering,1971,3:275-290
    [121] Pawsey S F and Clough R W. Improved numerical integration of thick slab finiteelements[J]. International Journal for Numerical Methods in Engineering,1971,3:575-586
    [122] Bathe K J, Dvorkin E N. A formulation of general shell elements-the use of mixedinterpolation of tensorial components[J]. International Journal for Numerical Methods inEngineering,1986,22(6):697-722
    [123] Charles W R, Robert C. Shear connector requirements for embedded steel sections[J].Journal of Structural Engineering, ASCE,1999,125(2):142-151
    [124] Bryson J O, Mathey R G. Surface condition effect on bond strength of steel beamsembedded in concrete[J]. J. of ACI,1962,59(3):397-406
    [125] Ollgaard H G, Slutter R G, Fisher J G. Shear strength of stud connectors in lightweightand normal-weight concrete[J].AISC-Joumal,1971,8(2):55-64
    [126] Viest I M. Investigation of stud shear connectors for composite concrete and steelT-beams[J]. Journal of American Concrete Institute,1956,27(2):875-891
    [127] Chapman J C, Balakrishman S. Experiments on composite beams[J].The StructuralEngineer,1964,42(11):369-383
    [128] Slutter R G, Driscoll G C. Flexural strength of steel-concrete composite beams[J].Journal of the Structural Division, ASCE,1965,91(2):71-99
    [129] Valente I, Paulo J S, Cruz. Experimental analysis of perfobond shear connection betweensteel and lightweight concrete[J]. Journal of Constructional Steel Research,2004,60:465-479
    [130] Leonhardt. Development and testing of a new shear connector for steel concretecomposite bridges[A]. Fourth international bridge engineering conference[C].1995, VolZ:137-145
    [131] Okubo Nobuhito, Kurita Akimitsu, Komatsu Keiichi, et al. Experimental study on staticand fatigue characteristics of grouped stud. Japanese Journal of Structure Engineering[J],JaPan.2002,Vol48(A):1391-1398
    [132] Okada J, Lebet J P. Strength and behavior of grouped stud connectors[A]. Proceedings ofthe sixth International Association for Cooperation and Research of Steel-ConcreteComposite Structures International Conference[C]. Los Angeles, USA.2000,Vol1:321-330
    [133] Gander J, Jacobson R. Structural behaviors of concrete-filled steel tubes.ACI StructuralJoumal,1967,64(38):404-413
    [134] Neogietal. Concrete-filled tubular steel columns under eccentric loading[J]. Journal ofStructural Engineering Division,1969,47(5):187-295
    [135] Furlong R W. Strength of steel-encased beam columns[J].Journal of structuralEngineering Division,1967,93(5):113-124
    [136] Knowles R B, Park R. Axial load design for concrete filled tubes[J]. Journal of StructuralEngineering Division,1970,96(10):2125-2153
    [137] Nkayma Hirotka, Kaneshige Kazuyoshi, Takemoto Shinji,et al. An application of amulti-objective programming technique to construction accuracy Control ofCable-Stayed Bridges[J]. European Journal of Operational Research.1995,87(3):731~738
    [138] Allam S M, Datta T K. Seismic Behaviour of Cable-Stayed Bridges andMulti-Component Random Ground Motion[J]. Engineering Structures,1999,21(l):62-74
    [139] Das Animesh, Dutta Anjan,Talukdar SudiP. Efficient Dynamic Analysis of Cable-StayedBridges under Vehicular Movement using Space and Time Adaptivity[J]. Finite Elementsin Analysis and Design,2004,40(4):407-424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700