用户名: 密码: 验证码:
石膏基复合保温砂浆的制备工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国每年排放大量的工业副产石膏,存放这些固体废弃物不仅占用大量的土地而且污染环境和地下水资源。从工业废石膏的资源化利用和建筑节能出发,本文提出以脱硫石膏和氟石膏为主要原料,利用矿渣改性,并掺入普通硅酸盐水泥以及激发剂、保水剂等制备成高强、耐水的石膏基复合胶凝材料。并以石膏基复合胶凝材料为主要胶凝材料制备高性能的保温砂浆,从而提高石膏墙材的隔热保温性能。系统研究了各种因素对石膏基复合胶凝材料和保温砂浆的影响。
     本文通过实验,获得了一些重要结果,结果表明:
     1.促凝剂掺量和碱性激发剂掺量各为2%时,石膏基复合胶凝材料性能最佳,其中抗折强度为7.4MPa,抗压强度40.5MPa,软化系数为0.96,与普通石膏制品相比,强度和耐水性能提高很大。
     2.石膏基复合胶凝材料的水化产物主要为二水硫酸钙、水化硅酸钙凝胶和少量的钙矾石以及硬硅钙石(Ca6Si6O17(OH)2)。硅酸钙凝胶含量越高,材料的强度越高,耐水性能越好。
     3.石膏基复合胶凝材料硬化体结构为二水石膏、钙矾石晶体和硬硅钙石交叉共生,C-S-H凝胶包围在其周围及接触点,未反应完全的矿渣颗粒填充孔隙。这种晶胶体系结构致密。
     4.膨胀珍珠岩和EPS颗粒掺量增加使保温砂浆干表观密度减小、强度下降、软化系数变小、导热系数下降。膨胀珍珠岩与浆体材料形成互穿网络结构,结合紧密,然而,EPS颗粒表面与浆体材料不相容,结合界面疏松。炉渣的掺入改善了砂浆的和易性,提高了砂浆的强度和软化系数,增大了砂浆的导热系数。乳胶粉掺量增加使抗折强度、粘结强度和软化系数增大,但使抗压强度减小。有机硅胶粉的掺入,降低了砂浆的吸水率和吸水速率。
     5.确定合理配比,得到两组性能优良的保温砂浆。其中保温砌筑砂浆导热系数为0.23 W/m·K,抗压强度达到7.1 MPa,达到了承重保温砌筑砂浆的要求,软化系数值为0.92,超出标准53%。保温抹面砂浆导热系数为0.053W/m·K,抗压强度达到0.63MPa,超出标准32.5%,软化系数值为0.67,超出标准34%。
     6.建立了石膏基保温砂浆干表观密度和导热系数的定量关系,以及吸水率和导热系数的定量关系。
In our country large amounts of by-products waste gypsums are produced annually. It would not only take up a lot of ground, but also pollute the environment and groundwater resources. Due to the resource utilization of industrial waste gypsum and building energy conservation, gypsum-based cementing composite is prepared with high strength and water resistance by the flue gas desulphurization gypsum and fluorgypsum as base material, the slag as modified material, and additives as portland cement, activator, aquasorb etc. Then using gypsum-based cementing composite as mian cementing to prepare thermal insulation mortar in order to improve the heat preservation performance of gypsum wall materials. Influences of various factors to gypsum-based cementing composite and thermal insulation mortar are investigated systematically.
     Many significant results are obtained from this study:
     1. Both strength and water-resistance perform best while using 2%wt coagulant and 2%wt alkali activator in the gypsum-based cementing composite. The bend strength is 7.4MPa, compressive strength is 40.5MPa, and softness coefficient is 0.96. These properties improve a lot comparing with ordinary gypsum products.
     2. The hydration products of the gypsum-based cementing composite include Calcium sulfate dehydrate, calcium silicate hydrate gel(C-S-H),smack ettringite(AFt) and Ca6Si6O17(OH)2. The more content of C-S-H (gel) in gypsum-based cementing composite, the higher strength, and the better water-resistant performance.
     3. The structure of hardening gypsum-based cementing composite body is Calcium sulfate dehydrate,Ettringite and Xonotlite crosswise symbiotic crystallization, C-S-H(gel) around them with unreacted slag particles fill the pore. This crystal gel system has dense structure.
     4. With the amount of expanded perlite and EPS foam particles increasing, dry density, strength, softness coefficient and thermal conductivity decrease. The expanded perlite and paste material form interpenetrating network dense structure, however, EPS particle surface is incompatible with the paste, which will course to form a weak bonding interface. The slag can improve the workability of the morta, and also enhance strength and softness coefficient,increase thermal conductivity. Latex powders increase the bend strength, the bond strength and softness coefficient, but decrease the compressive strength.Organic silica powders reduce water absorption and water absorption rate of the mortar.
     5. Two reasonable ratio of thermal insulation mortar are determined from this research. The thermal conductivity of thermal insulation masonry mortar is 0.23W/m·K, compressive strength is 7.1MPa, which meet the requirements of load-bearing insulation masonry mortar, and softness coefficient is 0.92, which exceeds the standard parameter 53%.The thermal conductivity of thermal insulation base coat is 0.053 W/m·K, compressive strength reaches 0.63MPa, which is more than the standard one 32.5%, softness coefficient is 0.67, which is larger than the standard value 34%.
     6. In this paper, the quantitative relationship of the Gypsum-based thermal insulation mortar dry density and thermal conductivity and the quantitative relationship of the water absorption and thermal conductivity are established.
引文
[1]彭汉礼.国际上建筑石膏及其制品的研究与生产.国外建材科技1999,20(1):62-64
    [2]朱瀛波,张高科.石膏工业对发展我国新型建材的作用.中国非金属矿工业导刊,1999,(6):8-10
    [3]张全镁,邓德华.国内外墙体材料发展状况.墙材革新与建筑节能,1996,(2):32-37
    [4]涂逢祥.建筑节能技术.北京:中国计划出版社.1996,12-15
    [5]都先成.节能型外墙保温隔热材料系统研制与应用[武汉理工大学硕士学位论文].武汉:武汉理工大学,2006,9-12
    [6]嘉琪,蔡志红,尹义青.建筑节能概述.墙体保温材料及应用技术,中国电力出版社,2006:59-62
    [7]Torben ValdbjornRasmussen,Asta Nicolajsen.Assessment of the performance of organic and mineral-based insulation products used in exterior walls and attics in dwellings.Building and Environment.2007,42(2):829-839
    [8]万全.建筑节能为何20年推广不开.中国公共安全,2007,(12):33
    [9]郝东辉.我国建筑节能现状及其新技术研究[大连理工大学硕士学位论文].大连:大连理工大学,2006
    [10]邱勇.建筑外墙自保温材料及体系研究[浙江大学硕士学位论文].杭州:浙江大学,2007
    [11]陈秉政.国外建筑节能综述.华北石油设计,1995,(4):34-45
    [12]杨旗.我国建筑节能材料的应用与发展综述.攀枝花学院学报,2007,24(3):84-86
    [13]B He, V Martin, F Setterwall. Phase transition temperature ranges and storage density of paraffin wax phase change materials.Energy,2004,29(11):1785-18 04
    [14]Stovall T K, Tomlinson J J. What Are the Potential Benefits of Including Latent Storage in Common Wallboard. Journal of Solar Energy Engineering, Transactions of the ASME,1995,117(44):318-325
    [15]Tomlinson J and Heberle. Analysis of Wallboard Containing A Phase Change Material. Proceedings of the Intersociety Energy Conversion E-ngineering Conference, Reno, NV(USA),1990,6
    [16]周广德.外墙外保温系统的保温材料与技术工艺研究.中国建材科技,2007,16(1):17-19
    [17]彭家惠,陈明凤,彭志辉等.EPS保温砂浆研制及施工工艺.施工技术.2001,30(8):22-23
    [18]陈明凤,张彭成,彭家惠等.EPS保温砂浆性能的影响因素分析.新型建筑材料,2001,(7):23-26
    [19]彭家惠,陈明凤,张建新.EPS表面改性及其保温砂浆的耐候性与抗裂性.重庆大学学报,2002,1(25):24-27
    [20]Bulent Yesilata, Yusuf Isiker, Paki Turgut. Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Construction and Building Materials,2009,(23):1878-1882
    [21]肖力光,张慧萍,赵路.保温砌筑砂浆的研制.新型建筑材料,2002,(11):35-38
    [22]周强,马敬春,肖力光.新型节能保温砂浆的试验研究.长春理工大学学报,2007,30(4):93-96
    [23]杨俊晓,王洪镇,乔宏霞等.粒化高炉矿渣代砂配制保温砌筑砂浆的试验研究.粉煤灰综合利用,2009,(2):18-20
    [24]孙光萍,缪建华.HL节能型建筑外墙保温水泥砂浆的研制.混凝土与水泥制品,2002,(6):54-55
    [25]王智宇,樊杏飞,王志平等.聚合物保温砂浆的性能特点.新型建筑材料,2006,(9):35-36
    [26]杜婷.浅析我国绿色墙体材料的发展方向和途径.砖瓦世界,2006,(6):16-19
    [27]约翰·卡特,陈璧来.纸面石膏板内隔墙.新型建筑材料,1998,(10):30-30
    [28]陈燕,岳文海,董若兰.石膏建筑材料.北京:中国建材工业出版社,2003
    [29]单卫良,曹黎颖,杨波等.新型石膏复合胶凝材料的研究.新型建筑材料,2005,(12):50-51
    [30]石宗利,朱桂华,刘文伟.工业副产品石膏在墙体材料中的应用研究.中国建材,2008,(11):113-116
    [31]湛轩业,崔霞.新型轻质石膏空心大板速成墙及速成建筑体系.新型建筑材料,2002,(6):28-29
    [32]李建锡,舒艺周,唐霜露等.矿渣和石膏混合制备墙体材料的试验研究昆.明理工大学学报,2009,34(4):10-13
    [33]田贺盅.燃煤电厂烟气脱硫石膏综合利用途径及途径分析.中国电力,2006,39(2):64-69
    [34]陈燕,岳文海,董若兰.石膏建筑材料.北京:中国建材工业出版社,2003,22-54
    [35]童伟刚,姚雪荣,莫伟标.烟气脱硫石膏方法分析及脱硫石膏的应用途径.新型 建筑材料,2006,(8):55-57
    [36]彭志辉,季建新,林芳辉等.烟气脱硫石膏及其建材资源化研究.重庆环境科学,2000,22(6):27-32
    [37]施惠生,郭晓潞.脱硫石膏的热处理及其对矿渣水泥若干性能的影响.水泥,2007,(4):5-7
    [38]王方群.粉煤灰-脱硫石膏固结特性的实验研究[华北电力大学硕士学位论文].保定:华北电力大学,2003
    [39]权刘权,李东旭,张量.用化学石膏配制自流平材料的研究.化工矿物与加工,2007,(9):12-16
    [40]余淑华,陆文雄,杨瑞海等.脱硫粉刷石膏的配制与性能研究.新型建筑材料,2007,(9):82-84
    [41]陈云嫩,梁礼明.脱硫石膏胶结尾砂充填的研究.金属矿山,2003,(3):45-47
    [42]贾同春,翟学雷,赵秀云.脱硫石膏在纸面石膏板生产中的应用.新型建筑材料,2004,(8):15-16
    [43]刘民荣,李国忠,柏玉婷.聚合物改性脱硫建筑石膏的研究.武汉理工大学学报,2009,31(16):23-26
    [44]Pavel Tesareka, Jaroslava Drchalovab, Pavla Rovnanikovad et al. Flue gas desulfurization gypsum:Study of basic mechanical, hydric and thermal properties. Construction and Building Materials,2007,21(7):1500-1509
    [45]P.S.Valimbel and V.M.Malhotra. Effects of water content and temperature on the crystallization behavior of FGD scrubber sludge. Fuel,2002,81(10):1297-1304
    [46]M.Hulusi Ozkul. Utilization of citro-and desulphogypsum as set retarders in Portland cement. Cement and Concrete Research,2000,30(11):1755-1758
    [47]杨新亚,王锦华.氟石膏资源化改性处理的方法.中国专利.发明专利,200410013136.2.2005-01-26
    [48]王子利.F-1型高强氟石膏粉.中国专利.发明专利,9611 3459.3.1997-11-19
    [49]付毅.石膏渣粉煤灰快速固化及其胶结材充填特性研究:[东北大学博士学位论文].沈阳:东北大学,2001
    [50]周万良,詹炳根,龙靖华.水泥基大用量粉煤灰、氟石膏胶凝材料的研制.硅酸盐通报,2007,26(5):1040-1044
    [51]高英力,周士琼.超细粉煤灰-氟石膏在道路修补工程中的综合利用研究.环境污染治理技术与设备,2006,7(6):80-84
    [52]杨元霞.氟石膏-粉煤灰胶结材早期强度的改性研究.铁道科学与工程学报,2005,2(1):30-33
    [53]李汝奕,王佩建,成晓光等.氟石膏废渣改性生产粉刷石膏研究.环境科学与技 术,2007,30(7):79-81
    [54]张锦峰,许红升,王玉洪等.氟石膏复合保温墙材的开发与应用研究.墙材革新与建筑节能,2005,(9):25-28
    [55]张文恒,李广平,王军科.浅谈无机盐作激发剂对氟石膏砖及氟石膏彩砖技术性能的影响.轻金属,2003,(1):22-23
    [56]P.Yan, Y.You. Studies on the binder of flyash-fulorgypsum-cement. Cement and Concrete Research,1998,28(1):135-140
    [57]Fraire-Luna, P.E. Composite system fluorgypsum-blastfurnace slag-metakaolin, strength and microstructures. Cement and Concrete Research,2006,36(6): 1048-1055
    [58]姜洪义,周环,吴青.用磷石膏制备建筑胶结料.化工环保,2001,21(6):345-347
    [59]彭志辉.磷石膏中杂质影响机理及其资源化研究:[重庆建筑大学博士学位论文].重庆:重庆建筑大学,2000
    [60]彭家惠,林常青,彭志辉等.非水洗预处理磷石膏的研究.新型建筑材料,2000,(9):6-8
    [61]Manjit Singh,Mridul Garg.An improved process for the purification of phosphogypsum. Construction and Building Materials,1996,10(8):597-600
    [62]Manjit Singh, Mridul Garg. Purifying phosphogypsum for cement manufacture. Construction and Building Materials,1993,7(1):3-7
    [63]Manjit Singh. Treating waste phosphogypsum for cement and plaster manufacture. Cement and Concrete Research,2002,(32):1033-1038
    [64]Manjit Singh. Role of phosphogypsum impurities on strength and microstructure of selenite plaster. Construction and Building Materials,2005,(19):480-486
    [65]ShenWeiguo,ZhouMingkai,Zhao Qinglin.Study on lime-fly ash-phosphogypsum binder.Construction and Building Materials,2007,21(7):1480-1485
    [66]Manjit Singh,Mridul Garg.Phosphogypsum-fly ash cementitious binders-its hydration and strength development. Cement and Concrete Research,1995,25(4): 752-758
    [67]K.J.Mun,W.K.Hyoung, C.W.Lee. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator. Construction and Building Materials,2007,21(6):1342-1350
    [68]Manjit Singh, Mridul Garga. Investigation of a durable gypsum binder for building materials. Construction and Building Materials,1992,6(1):52-56
    [69]王立明,董文亮.柠檬酸废渣粉刷石膏的研制.新型建筑材料,2000,(2):42-43
    [70]施惠生,赵玉静,李纹纹.钛石膏-粉煤灰-矿渣复合胶凝材料的改性研究.粉煤 灰综合利用,2002,(2):27-30
    [71]施惠生,赵玉静,李纹纹.钛石膏与粉煤灰复合胶凝材料力学性能及耐久性研究.非金属矿,2001,24(5):25-29
    [72]徐风广,李玉华.利用锰石膏做水泥缓凝剂的研究.新型建筑材料,2001,(8):23-25
    [73]Y.Erdogan, H.Gen, A.Demirbas. Utilization of borogypsum for cement. Cement and Concrete Research,1992,22(5):841-844
    [74]T.Kavasa, A.Olgun, Y.Erdoganb. Setting and hardening of borogypsum-Portland cement clinker-fly ash blends. Studies on effects of molasses on properties of mortar containing borogypsum. Cement and Concrete Research,2005, 35(4):711-718
    [75]蔡丰礼.利用高铝煤矸石和盐石膏低温烧制阿利特-硫铝酸盐水泥熟料的研究.水泥,2001,(6):4-8
    [76]EDINGER S E. The growth of gypsum J Cryst Growth,1973,(18):217-223
    [77]沈威,黄文熙,闵盘荣.水泥工艺学.武汉:武汉工业大学出版社,1991:196
    [78]Manjit Singh, Mridul Garg. Relationship between mechanical properties and porosity of water-resistant gypsum binder. Cement and Concrete Research, 1996,26(3):449-456
    [79]杨久俊,海然,吴科如.钙矾石的结构变异对膨胀水泥膨胀性的影响.无机材料学报,2003,18(1):136-142
    [80]岳文海,赵青南.硬石膏水化硬化过程中的热力学研究.武汉工业大学学报,1988,10(3):283-289
    [81]彭家惠,张桂红,白冷等.硫酸盐激发与矿渣改性硬石膏胶结材.硅酸盐通报,2008,27(4):837-842
    [82]彭家惠,张建新,瞿金东等.Na2SO4对硬石膏水化进程及其水化产物形貌的影响.硅酸盐学报,2008,36(10):1356-1361
    [83]袁润章.胶凝材料学.武汉:武汉工业大学出版社,1989,120
    [84]Zhou Huanhai, Wu Xuequan, Xu Zhongzi et al. Kinetic study of alkali-activated slag. Cement and Concrete Research,1993,23(6):1253
    [85]孙家瑛,诸培南.矿渣在碱性溶液激发下的机理.硅酸盐通报,1988,17(6):16
    [86]王新民,薛国龙,何俊高.干粉砂浆百问.北京:中国建筑工业出版社,2006,148
    [87]朱海霞,张琳,孙顺杰等.有机硅憎水剂在保温砂浆中的应用研究.新型建筑材料,2009,(7):715-17
    [88]吴清仁,奚同庚.密度和温度对岩矿棉材料导热系数的影响及其在机立窑保温节能中的应用.云南建材,1997,(2):24-27
    [89]李文科.密度,温度,纤维直径和渣球含量对矿物棉绝热材料导热系数影响的研究.玻璃纤维,1994,(5):23-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700