用户名: 密码: 验证码:
磁致伸缩直线位移传感器的机理研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁致伸缩直线位移传感器是一种通过检测弹性波激励和接收之间的时间差,得出被测点和接收点之间距离的传感器。在该种传感器系统中,由于永久磁铁磁场和激励磁场的叠加作用,在磁致伸缩线中会产生冲击荷载,由此引起的弹性波将向线的两端传播;弹性波的传播使磁致伸缩线局部变形,在逆磁致伸缩效应的作用下,磁畴偏转将导致检测线圈的输出信号发生变化。本研究通过电磁学、力学等领域的有关计算,构建了该种传感器中弹性波产生、传播和检测的数学模型,采用数学方法描述了电磁能向机械能转换的过程、机械能在传感器细长磁致伸缩线中的传播过程以及机械能向电磁能转换最终形成电信号的过程。
     论文第二章从磁致伸缩直线位移传感器的基本工作原理出发,分析了该种传感器中所使用的材料Ni-Span-C的磁致伸缩性能和材料特点,探讨了磁致伸缩线中磁畴的磁化问题。研究中进行了相关实验,分析了永久磁铁的空间磁场分布以及永久磁铁和磁致伸缩线的位置关系,研究了在不同强度的外磁场作用下,磁致伸缩线的磁畴发生偏转变化的特点,剖析了磁致伸缩直线位移传感器系统中的电磁现象和特点。
     论文第三章从驱动脉冲电流产生的周向磁场和永久磁铁磁场的叠加效果之角度,结合磁畴的偏转特点,研究并解明了磁致伸缩直线位移传感器中感应波的产生机理。本研究从磁致伸缩线质点所受荷载的角度,结合弹性动力学的理论,解明了磁致伸缩直线位移传感器中弹性波的产生机理,分析了扭转波的特点;在实验研究中验证了驱动脉冲电流产生的弹性波是上升沿激励的弹性波和下降沿激励的弹性波的合成效果。本研究分析了磁致伸缩线弹性波产生的局部磁场力问题,建立了合扭矩数学模型。根据该种传感器的弹性波传播机理,用数学方法分析和计算了弹性波检测的换能问题。从能量守恒的角度分析了在外磁场影响磁致伸缩线的环境下弹性波信号波形出现不同幅值的问题。结合理论模型,分析了不同激励方式下的弹性波的相位关系。建立了磁致伸缩直线位移传感器驱动脉冲电路设计方案,结合弹性波产生的条件,根据实验数据确定了驱动脉冲电流的参数。
     论文第四章基于对磁致伸缩直线位移传感器的机理研究,构建了该种传感器的精度测试平台,对传感器系统进行了测试与精度分析,并对国内外生产的部分磁致伸缩线进行了感应波和弹性波的性能测试,给出了分析结果。
The magnetostrictive linear position sensor (MLPS) is a kind of sensor that can get the distance between the measured point and the receiving point by measuring the time difference between the excitation and the receipt of elastic waves. In the MLPS system, an impact load can be generated in the magnetostrictive wire due to the joint effect of the permanent magnet and the exciting magnetic field, and at the same time, the arisen elastic waves propagate to two ends of the wire. The propagation of elastic waves can cause a local distortion in the magnetostrictive wire, and under the effect of the inverse magnetostrictive effect, the magnetic domains deflexion brings about the change of output signals of the pick-up coil. Through our calculations, we have established a mathematic model of the generation, propagation and detection of the elastic waves. We have described in a mathematic way the conversion process of electromagnetic energy to mechanical energy, the propagation process of mechanical energy in magnetostrictive wire, the transformation process of mechanical energy into electromagnetic energy and at last its conversion to the voltage signals.
     In Chapter II, according to the working principle of the MLPS, we have analysed the magnetostrictive performance as well as other characteristics of Ni-Span-C used in MLPS, and we have discussed the magnetization of domains in the magnetostrictive wire. In our study, we have made some experiments, analysed the space distribution of the permanent magnet's field, studied the characteristics of the magnetic domain's deflexion in the wire under the effect of different outer magnetic fields, and we have analysed the electromagnetic phenomena in MLPS system.
     In Chapter III, from the joint effect of the permanent magnet's field and the circumferential magnetic field induced by the driver pulse current, as well as the deflexion characteristics of the magnetic domains, we have studied the generation mechanism of the induced waves in MLPS. From the point of view of the load on particles in the magnetostrictive wire, in reference to the elastic kinetics theory, we have explained the generation mechanism of the elastic waves in MLPS and analysed the characteristics of the torsional waves. We have proved in our experiments that the elastic waves are the joint effect of the waves drived by positive edge and those by negative edge. We have analysed the local magnetic force of the elastic waves in MLPS and established the resultant torque mathematical model. According to the propagation mechanism of the elastic waves, we have analysed in a mathematic way the energy conversion in the detection of the elastic waves. From the point of view of the conservation of energy, we have analysed the phenomenon that the elastic waves can show different amplitudes under the effect of an outer magnetic field on the magnetostrictive wire. We have designed a driver pulse current circuit in the MLPS. According to the generation condition of the elastic waves and our experiment data, we have determined the parameters of the driver pulse current.
     In Chapter IV, on the basis of our study about the mechanism of the MLPS, we have made a test platform, tested the performance of the MLPS and given the precision analysis. We have made an analysis of the results after having tested the induced waves and the elastic waves of several magnetostrictive wires made in China and abroad.
引文
[1] Soon Woo Han, Ho Chul Lee, Yoon Young Kim. Noncontact damage detection of a rotating shaft using the magnetostrictive effect. Journal of Nondestructive Evaluation, 2003, 22(4): 141-150.
    [2] 杨朝虹,杨竞,李焕等.磁致伸缩液位传感器的应用与发展.矿冶,Vol.13 No.4,2004,12:83-86.
    [3] Hiroyuki Wakiwaka, Muneo Mitamura. New magnetostrictive type torque sensor for steering shaft. Sensors and actuators A, 2001, 91: 103-106.
    [4] H. Kwun, K. A. Bartels. Magnetostrictive sensor technology and its applications. Ultrasonics, 1998, 36: 171-178.
    [5] A. P. Zhukov, M. Vazquez, j. Velaizquez. The remagnetization process in thin and ultra-thin Fe-rich amorphous wires. Journal of Magnetism and Magnetic Materials, 1995, 151: 132-138.
    [6] 江小霞,钟荣龙,卢长耿.磁致伸缩位移传感器的应用.传感器技术,2003,22(1): 50-52.
    [7] 黄卉,肖定国,理华等.磁致伸缩式扭转超声波位移传感器的研究与设计.仪表技术与传感器,2002,6:4-5.
    [8] 美国MTS公司传感器资料网页,http://www.mtssensor.com/
    [9] Youngkyu Kim, Yoon Young Kim. A novel Terfenol-D transducer for guided-wave inspection of a rotating shaft. Sensors and Actuators A, 2007, 133: 447-456.
    [10] 文西芹,宁晓明,张永忠等.磁致伸缩传感器技术应用的发展.传感器技术,2003,22(2):1-7.
    [11] 常暁明,脇若弘之,山田一.长40 m磁歪線用非接触变位実用化,SICE2000,2000,103 C-4,July26-28.
    [12] 向先波,徐国华.基于单片机的磁致伸缩位移传感器数字化处理系统研究.仪表技术与传感器,2003,2:48-52.
    [13] 任开春,涂亚庆.磁致伸缩液位仪介质密度变化对测量精度的影响.仪表技术与传感器,2002,1:16-17.
    [14] 美国MTS系统公司.磁致伸缩位移传感器的技术与创新[J].传感器世界,1997,(11):15-23.
    [15] Keat G. Ong, Casey S. Mungle, Craig A. Grimes. Control of a magnetoelastic sensor temperature response by magnetic field tuning. IEEE Transactions on Magnetics, 2003, 39(5): 3319-3321.
    [16] H. Chiriac, E. Hristoforou, Maria Neagu etc. Torsion and magnetic field measurements using inverse Wiedemann effect in glass-covered amorphous wires. Sensors and Actuators A, 2000, 85: 217-220.
    [17] H. Chiriac, T. A. Ovari, Gh. Pop etc. Amorphous glass-covered magnetic wires for sensing applications. Sensors and Actuators A, 1997, 59: 243-251.
    [18] E. Hristoforou, D. Niarchos, H. Chiriac etc. A coily magnetostrictive delay line arrangement for sensing applications. Sensors and Actuators A, 2001, 91:91-94.
    [19] E. Hristoforou, D. Niarchos, H. Chiriac etc. Non-destructive evaluation distribution sensors based on magnetostrictive delay lines. Sensors and Actuators A, 2001, 92: 132-136.
    [20] A. Zhukov 1, C. Gdmez-Polo, P. Crespo etc. Axial and transverse magnetization processes of glass-coated amorphous microwires. Journal of Magnetism and Magnetic Materials, 1996, 157/158: 143-144.
    [21] M. Hardcastle, T. Meydan. Magnetic domain behaviour in magnetostrictive torque sensors. Sensors and Actuators A, 2000, 81: 121-125.
    [22] Fernando Seco, Jose Miguel Martin, Jose Luis Pons, Antonio Ramon Jimenez. Hysteresis compensation in a magnetostrictive linear position sensor. Sensors and Actuators A, 2004, 110: 247-253.
    [23] Fernando Seco, Jose Miguel Martin, Antonio Ramon Jimenez etc. A high accuracy magnetostrictive linear position sensor, Sensors and Actuators A, 2005, 123:216-223.
    [24] H. Wakiwaka, M. Shimada, S. Hattori etc. Elastic wave signal processing on a long displacement sensor using magneto- strictive wire. The 1 st International Symposium on LDIA'95, 1995, FA-20, 243.
    [25] 常暁明,脇若弘之,山田一.磁歪線式长距离变位用2检出方式比较.日本応用磁気学会誌,1998,22(4-2):681-684.
    [26] 常暁明,脇若弘之,山田一.磁歪線式长距离变位弹性波检出检讨.电气学会研究会资料,1999,LD-99-41:17-22.
    [27] 常暁明,脇若弘之,山田一.非接触式变位用Ni-Span-C線磁歪特性.第24回日本応用磁気学会学术讲演概要集,2000,150.
    [28] 常暁明,脇若弘之,山田一.磁歪線式非接触变位弹性波縦弹性波.日本応用磁気学会誌,2000,24(4-2):759-762.
    [29] 常暁明,脇若弘之,山田一.非接触式变位使用磁歪線熱処理影响.电气学会研究会资料,2000,MAG-00-200:17-20.
    [30] 杨维明,李福刚.磁机械效应材料在交变磁场中磁畴的振动方程.沈阳工业学院学报,1996,15(1):53-59.
    [31] E. Hristoforou, P. D. Dimitropoulos, J. Petrou. A new position sensor based on the MDL technique. Sensors and Actuators A, 2006, 132:112-121.
    [32] E. Hristoforou. Amorphous magnetostrictive wires used in delay lines for sensing applications. Journal of Magnetism and Magnetic Materials, 2002, 249: 387-392.
    [33] H. Chiriac, E. Hristoforou, Maria Neagu etc. Force measurements using Fe-rich amorphous wire as magnetostrictive delay line. Sensors and Actuators A, 2001, 91:. 223-225.
    [34] YongpingWan, DainingFang, Keh-Chih Hwang. Non-linear constitutive relations for magnetostrictive materials. International Journal of Non-Linear Mechanics, 2003, 38: 1053-1065.
    [35] Xiaojing Zheng, Le Sun. A one-dimension coupled hysteresis model for giant magnetostrictive materials. Journal of Magnetism and Magnetic Materials, 2007, 309: 263-271.
    [36] 传感器技术参数网页,http://www.bjtgtc.com/ArticleShow.asp?ArticleID=36
    [37] 传感器技术参数网页,http://www.tichn.com/product/products.pl?id=1
    [38] 闫瑞杰.磁致伸缩液位传感器机理及检测信号不确定性的实验分析研究.[学位论文],太原理工大学,1-5,2000.
    [39] H. Chiriac, E. Hristoforou, Maria Neagu etc. Fe-rich glass covered amorphous wires used as magnetostrietive delay lines. Journal of Magnetism and Magnetic Materials, 1999, 196-197: 365-366.
    [1] Chang XM, H. Wakiwaka, M. Ezawa and H. Yamada. Accuracy enhancement on a long scale sensor using magnetostrictive wire by bipolar pulse current. The 2nd International Symposium on Linear Drives for Industry Applications, 1998, 11: 151-154.
    [2] Fernando Seco, Jose Miguel Martin, Jose Luis Pons, Antonio Raman Jimenez. Hysteresis compensation in a magnetostrictive linear position sensor. Sensors and Actuators A, 2004, 110: 247-253.
    [3] Special Metals Corporation. NI-SPAN-C alloy 902. 2004, http://www.specialmetals.com
    [4] R.C.奥汉德利.现代磁性材料原理和应用.化学工业出版社,北京,2004,214-215.
    [5] Yu Shi. Quantum disentanglement in long-range orders and spontaneous symmetry breaking. Physics Letters A, 2003, 309: 254-261.
    [6] M. Vazquez. Soft magnetic wires. Physica B, 2001, 299:302-313.
    [7] X. Chang, H. Wakiwaka, H. Yamada. Comparison of two detection methods using a long-Scale displacement sensor with magnetostrictive wire. Journal of the Magnetics Society of Japan, 1998, 22, 4-2: 681-684.
    [8] E. Hristoforoua, H. Hauserb, D. Niarchos. Magnetostrictive delay line characterization. Journal of Magnetism and Magnetic Materials, 2002, 242-245: 269-272.
    [9] E. Hristoforou, H. Chiriac, M. Neagu. New load cells and torque meters based on soft magnetic amorphous alloy wires. Sensors and Actuators A, 1998, 68:307-315.
    [10] Kaneo Mohri, Tsuyoshi Uchiyama, Larissa V. Panina. Recent advances of micro magnetic sensors and sensing application. Sensors and Actuators A, 1997, 59: 1-8.
    [11] 王博文.超磁致伸缩材料制备与器件设计.冶金工业出版社,北京,2003, 132-149.
    [12] R.C.奥汉德利.现代磁性材料原理和应用.化学工业出版社,北京,2004,17.
    [13] N. I. Vlasova, G. S. Kandaurova, N. N. Shchegoleva. Effect of the polytwinned microstructure parameters on magnetic domain structure and hysteresis properties of the CoPt-type alloys. Journal of Magnetism and Magnetic Materials, 2000, 222:138-158.
    [14] 李国栋.当代磁学.中国科学技术大学出版社,合肥,1999,69-71.
    [15] 常畹明.磁歪腺用非接触式变位关研究.[学位论文],日本信州大学,98,2000.
    [16] Fawwaz T. Ulaby. Fundamentals of applied electromagnetics. Science Press and Pearson Education, Beijing, 2000, 209-212.
    [17] H. H. Stadelmaier. Magnetic properties of materials. Materials Science and Engineering, 2000, A287: 138-145.
    [18] Yoon Young Kim, Seung Hyun Cho, Ho Cheol Lee. Application of magnetomechanical sensors for modal testing. Journal of Sound and Vibration, 2003, 268: 799-808.
    [19] Chang Xiao-Ming, Yao Shi-Xuan, Hiroyuki Wakiwaka etc. The Study on the induced wave generation principle of the magnetostrictive linear position sensor, ISTM/2005 6th International Symposium on Test and Measurement, Dalian, China, 2005, 4: 3684-3687.
    [20] 王博文.超磁致伸缩材料制备与器件设计.冶金工业出版社,北京,2003,1-2.
    [21] Riichi Murayama. Study of driving mechanism on electromagnetic acoustic transducer for Lamb wave using magnetostrictive effect and application in drawability evaluation of thin steel sheets. Ultrasonics, 1999, 37: 31-38.
    [22] Eckhard Quandt, Alfred Ludwig. Magnetostrictive actuation in Microsystems. Sensors and Actuators, 2000, 81: 275-280.
    [23] M. Knobel, C. G6mez-Polo, M. Vfizquez. Evaluation of the linear magnetostriction in amorphous wires using the giant magneto-impedance effect. Journal of Magnetism and Magnetic Materials, 1996, 160: 243-244.
    [24] 杨大智.智能材料与智能系统.天津大学出版社,天津,2002,285-295.
    [25] M. Vazquez, M. Knobel, M. L. Sanchez. Giant magnetoimpedance effect in soft magnetic wires for sensor applications. Sensors and Actuators A, 1997, 59: 20-29.
    [26] 常暁明.磁歪線用非接触式变位关研究.[学位论文],日本 信州大学,11,2000.
    [27] K. H. J. Buschow. Electronic and Magnetic Properties of Metals and Ceramics (Part Ⅱ). Copyright by VCH, Ed by Cahn W, et al, 3B, 1994, 532.
    [28] 任波,陈祥光,姜波等.磁致伸缩液位传感器机理研究.传感器技术,2003,22: 15-18.
    [29] 王博文.超磁致伸缩材料制备与器件设计.冶金工业出版社,北京,2003,11-13.
    [30] W. Polanschutz. Inverse magnetostrictive effect and electromagnetic non-destructive testing methods. NDT International, 1986, 19(4): 249-258.
    [31] Seok-Jun Moona, Chae-Wook Limb, Byung-Hyun Kim etc. Structural vibration control using linear magnetostrictive actuators. Journal of Sound and Vibration, 2007, 302: 875-891.
    [32] H. Chiriac, C. S. Marinescu. New position sensor based on ultraacoustic standing waves in FeSiB amorphous wires. Sensors and Actuators, 2000, 81:174-175.
    [33] Christos Manassis, Dimitrios Bargiotas, Vassilios Karagiannis. Optimized distributed field sensor based on magnetostrictive delay lines. Sensors and Actuators A, 2003, 106: 30-33.
    [34] 赵凯华,陈熙谋.电磁学.高等教育出版社,北京,2004,93-94.
    [35] J. M. Barandiaran, J. Gutierrez, C. Gomez-Polo. New sensors based on the magnetoelastic resonance of metallic glasses. Sensors and Actuators, 2000, 81: 154-157.
    [36] E. Hristoforou. New magnetostrictive delay line arrangements for sensor applications. Sensors and Actuators, 2000, 81: 142-146.
    [37] M. Pasquale. Mechanical sensors and actuators. Sensors and Actuators A, 2003, 106: 142-148.
    [38] Vassilios Karagiannis, Christos Manassis, Dimitrios Bargiotas. Position sensors based on the delay line principle. Sensors and Actuators A, 2003, 106: 183-186.
    [39] F. Martinez a, I. Santiago a, F. Sanchez etc. Magnetostrictive delay line improvement for long range position detection. Sensors and Actuators A, 2006, 129: 138-141.
    [40] Seung Hyun Cho, Youngkyu Kim, Yoon Young Kim. The optimal design and experimental verification of the bias magnet configuration of a magnetostrictive sensor for bending wave measurement. Sensors and Actuators A, 2003, 107: 225-232.
    [41] H. Kwun, A. E. Holt. Feasibility of under-lagging corrosion detection in steel pipe using the magnetostrictive sensor technique. NDT&E International, 1995, 28(4),211-214.
    [1] SGS-THOMSON Microelectronics.L293B User's Guide. 2004.
    [2] 胡大可.MSP430超低功耗16位单片机原理与应用.北京航空航天大学出版社,北京,2000,54-60.
    [3] Analog Devices. Low Cost, Low Power Instrumentation Amplifier AD620. 1999.
    [4] 杨桂通,张善元.弹性动力学.中国铁道出版社,北京,1988,1-8.
    [5] Harry W. Shenton, Xiaofeng Hu. Damage Identification Based on Dead Load Redistribution: Methodology. J. Struct. Engrg., 2006, 132(8), 1254-1263.
    [6] A. M. Ter-Krikorov. Perturbations from a source in a three-layer atmosphere. J. Appl. Maths Meehs, 2002, 66(1): 59-64.
    [7] 吴家龙.弹性力学.高等教育出版社,北京,2001.215-217.
    [8] Muneharu Saigoa, Nobuo Tanaka. Torsional vibration suppression by wave absorption controller. Journal of Sound and Vibration, 2006, 295:317-330.
    [9] Takahiro Hayashi, Chiga Tamayama, Morimasa Murase. Wave structure analysis of guided waves in a bar with an arbitrary cross-section. Ultrasonics, 2006, 44: 17-24.
    [10] 杨维明,冯富龙.磁机械效应超声扭转振动方程.沈阳工业大学学报,1997,19(3):14-19.
    [11] E. Hristoforou. Magnetostrictive delay lines and their applications. Sensors and Actuators A, 1997, 59: 183-191.
    [12] Roberto Germano, Luciano Lanotte. Application of magnetoelastic wave for sensors of displacement. Sensors and Actuators A, 1997, 59: 337-341.
    [13] M.J.S. Lowe, D.N. Alleyne, P. Cawley. Defect detection in pipes using guided waves. Ultrasonics, 1998, 36: 147-154.
    [14] E.V. Pan'kova, G.A. Semyannikov, A.B. Khvatov etc. Elastic waves in amorphous ribbons excited by low frequency local magnetic field. Journal of Magnetism and Magnetic Materials, 2004, 272-276: 2079-2080.
    [15] 谢处方,饶克谨.电磁场与电磁波(第二版).高等教育出版社,北京,1987,126-129.
    [16] 赵凯华,陈熙谋.电磁学.高等教育出版社,北京,2003,81-84.
    [17] 哈尔滨工业大学理论力学教研室.理论力学(上册).高等教育出版社,1995,62-67.
    [18] 杨维明,王占元,肇颖.磁机械效应超声扭转波导方程分析.沈阳工业大学学报,1998,20(3):6-10.
    [19] 常晓明.磁歪線用非接触式変位關研究.[学位论文],日本信州大学,65,2000.
    [20] K.H.J. Buschow, Electronic and magnetic properties of metals and ceramics, Science Press, Beijng, 1999, 532.
    [21] M.R.J. Gibbs, Modem trends in magnetostriction study and application, Kluwer Academic Publishers, The Netherlands, lnd edn., 2001, 87-88.
    [22] A.F. Cobeno, A. Zhukov, J.M. Blanco etc. Air-flux magnetoelastic sensor based on inverse Wiedemann effect of amorphous ribbon. Sensors and Actuators A, 2003, 106: 174-178.
    [23] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill Education Co., 3rd edn., Beijing, 2004, 485-513.
    [24] 吴家龙.弹性力学.高等教育出版社,北京,2001,299.
    [25] 王彬.振动分析及应用.海潮出版社,北京,1992,220-223.
    [26] Ik Kyu Kim, Yoon Young Kim. Wireless frequency-tuned generation and measurement of torsional waves using magnetostrictive nickel gratings in cylinders. Sensors and Actuators A, 2006, 126: 73-77.
    [27] S. Potapenko. Propagation of torsional waves in a linear unbounded Cosserat continuum. Applied Mathematics Letters, 2005, 18: 935-940.
    [28] Kazumi Watanabe, Robert G. Payton. Green_s function for torsional waves in a cylindrically monoclinic material. International Journal of Engineering Science, 2005, 43:1283-1291.
    [29] F.D. Zaman, Khalid Masood. Investigation of the direct and inverse solutions for torsional waves propagating in a cylinder. Applied Mathematics and Computation, 2006, 173: 1238-1245.
    [30] M.A. Avila, R.A. Mendez-Sanchez. The method of the Poincare map for compressional and torsional waves in composite rods. Physica E, 2005, 30:174-178.
    [31] S. P. Timoshenko, J. N. Goodier. Theory of Elasticity (Third Edition). Tsinghua University Press, Beijing, 2004, 291-348.
    [32] H. Chiriac, C.S. Marinescu, T.-A. oavari. Sensor applications of amorphous glass-covered wires. Sensors and Actuators, 1999, 76:208-212.
    [33] 哈尔滨工业大学理论力学教研室.理论力学(下册).高等教育出版社,北京,1995, 146-158.
    [34] Roberto Germano, Giovanni Ausanio, Vincenzo Iannotti etc. Direct magnetostriction and magnetoelastic wave amplitude to measure a linear displacement. Sensors and Actuators, 2000, 81: 134-136.
    [35] M.L. SS.nchez, R. Valenzuela, M. Vfizquez etc. Effects of creep-induced anisotropy on circumferential magnetization in non-magnetostrictive wires. Journal of Magnetism and Magnetic Materials, 1996,163: 132-136.
    [36] H. GarcmH a-Miquel, D-X. Chen, M. VaH zquez. Domain wall propagation in bistable amorphous wires. Journal of Magnetism and Magnetic Materials, 2000, 212: 101-106.
    [37] M. Hardcastle, T. Meydan. Magnetic domain behaviour in magnetostrictive torque sensors. Sensors and Actuators A, 2000, 81: 121-125.
    [38] E. Hristoforou. Amorphous magnetostrictive wires used in delay lines forsensing applications. Journal of Magnetism and Magnetic Materials, 2002,249: 387-392.
    [39] C. Petridis, P. Dimitropoulos, E. Hristoforou. A new magnetoelastic device for sensing applications. Sensors and Actuators A, 2006,129: 131-137.
    [1] Sabina Zebrowska-LC ucyk. New approach for examination of the displacement sensor characteristics. Measurement, 2000, 28: 261-267.
    [2] E. Hristoforou, C. Tsomokou, H. Chiriac h etc. Improving the magnetostrictive delay line resolution. Sensors and Actuator A, 1997,59: 84-88.
    [3] Wie Fuyu, Fang Marman. Factors in#uencing output non-linearity error of a high-precision load sensor and the error calculation. Finite Elements in Analysis and Design, 2001, 37: 341-347.
    [4] Roberto Germano, Giovanni Ausanio, Vincenzo Iannotti etc. Direct magnetostriction and magnetoelastie wave amplitude to measure a linear displacement. Sensors and Actuators, 2000, 81: 134-136.
    [5] 董永贵.传感技术与系统.清华大学出版社,北京,2006,11-23.
    [6] MTS Systems Corporation. Available online: http://www.mts.com. 2004.
    [7] 王沫然.MATLAB与科学计算(第2版).电子工业出版社,北京,2004,169-311.
    [8] Shi-Xuan Yao, Xiao-Ming Chang: The Precision Analysis of Micrometer Controlled by Microcomputer, ISTM/2003 5th International Symposium on Test and Measurement, 2003, 1: 149-152.
    [9] 任隆良,谷晋骐.物理实验.天津大学出版社,天津,2003,18.
    [10] J.S. Buzas, L.A. Stefanski. Instrumental variable estimation in a probit measurement error model. Journal of Statistical Planning and Inference, 1996, 55: 47-62.
    [11] S. Caddemi, A. Greco. The influence of instrumental errors on the static identification of damage parameters for elastic beams. Computers and Structures, 2006, 84: 1696-1708.
    [12] 周杏鹏,仇国富等.现代检测技术.高等教育出版社,北京,2004,34-35.
    [13] F. Attivissimo, N. Giaquinto, M. Savino. Worst-case uncertainty measurement in ADC-based instruments. Computer Standards & Interfaces, 2007, 29: 5-10.
    [14] R.W. Herschy. The uncertainty in a current meter measurement. Flow Measurement and Instrumentation, 2002, 13: 281-284.
    [15] 姚世选,常晓明等.磁致伸缩式直线位移传感器的定位精度分析.传感器技术,2004,23:87-89.
    [16] Shizhou Zhang, Satoshi Kiyono. An absolute calibration method for displacement sensors. Measurement, 2001, 29:11-20.
    [17] Knut Johansen, Ingemar LundstrOm, Bo Liedberg. Sensitivity deviation: instrumental linearity errors that influence concentration analyses and kinetic evaluation of biomolecular interactions. Biosensors & Bioelectronics, 2000, 15: 503-509.
    [18] Dimitrios Bargiotas, Vassilios Karagiannis, Christos Manassis. Magnetoelastic uniformity of glass-covered wires used in magnetostrictive delay lines. Sensors and Actuators A, 2003, 106: 80-83.
    [19] Pavel Ripka, Gabor Vertesy. Sensors based on soft magnetic materials. Journal of Magnetism and Magnetic Materials, 2000, 215-216: 795-799.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700