用户名: 密码: 验证码:
矿震对建筑结构疲劳累积损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山开采诱发的地震(简称“矿震”)是一个严重的灾害性矿山动力现象,研究矿震对建筑结构的影响,减少和控制其损害,对国民经济建设和人民生活安全都有着重大的实际意义。目前,在结构设计方面建筑结构抗震设防都是按照天然地震烈度划分进行的,即保证在一次地震作用下建筑物达到“大震不倒、中震可修、小震不坏”的原则,但对于频繁发生的矿震作用下建筑物的安全问题,目前尚无规范可循。本论文以辽宁抚顺地区矿震为工程背景,根据抚顺市地震局提供的矿震监测资料,对频繁矿震活动规律及其对建筑结构疲劳累积损伤进行了研究,主要完成了以下工作:
     (1)对矿震的b值时序特征、能量蠕变曲线进行了分析,表明抚顺地区矿震的规模和强度有增大的趋势;对矿震频度—震级分布规律分析得到,抚顺地区矿震频度—震级分布服从古登堡—里克特关系式(G-R分布);通过研究矿震震中烈度的衰减关系,说明抚顺地区矿震烈度适合采用长短轴分别衰减的椭圆模型,并给出了相关系数值;
     (2)首次运用模糊神经网络对矿震震级进行了初步预测,建立了基于改进的模糊神经网络矿震预测模型。通过与实际监测结果相对比,取得了较好的预测效果,为矿震预测提供了新的方法;
     (3)采用BAQ—PI—321震动测试仪器配65型拾震器,首次应用动力检测技术开展了矿震对城市建筑结构影响程度实测。以抚顺榆林路4号住宅楼为对象,通过发生频繁矿震前后两次测得的结果,发现建筑结构自振周期增大,层间位移变大,而层间刚度、层间强度、层间应力、层间剪力都变小,表明频繁矿震作用对建筑结构的抗震能力有明显衰减的趋势;
     (4)对在水平低周反复荷载作用下的钢筋混凝土柱试件试验进行了分析。表明在频繁矿震作用下,钢筋混凝土框架结构柱破坏形态主要分为两种,即弯曲破坏、弯曲剪切破坏;
     (5)应用建筑工程疲劳累积损伤观点探讨了频繁矿震对建筑结构的疲劳累积损伤过程。从结构构件端部截面的转动刚度退化入手,建立了在频繁矿震作用下构件层次上的损伤模型;给出了频繁矿震作用下钢筋混凝土构件的损伤指标,并对其进行了标准化;运用疲劳累积损伤理论,建立了频繁矿震作用下钢筋混凝土框架结构层次上的损伤模型;
     (6)采用一人工设计循环荷载模拟频繁矿震荷载,首次运用ADINA有限元分析软件对钢筋混凝土框架结构的损伤演化进行了数值模拟研究,得到在循环荷载作用下各构件的损伤演化走势较为相似,即结构及构件的损伤是随着循环荷载的施加而不断增加的,结构的固有频率是随着循环荷载的施加而不断减小的,且通过数值计算可得到结构中梁构件的损伤程度大于柱构件的损伤程度,这为抗震设防提供了参考依据。
Mineral earthquake is a kind of seismic activities caused by mining. Research on effect of mineral earthquake on building structures to diminish and control the damage is of great importance for national economy and people’s safety. At present, the intensity designed for buildings and structures is divided according to natural earthquake intensity, that is, to ensure the structures can sustain a strong earthquake without collapsing, a moderate earthquake with repairable structural damage, and a minor earthquake without any damage. But for buildings and structures experiencing frequent mineral earthquake, there is no code to follow. Based on Fu Shun mineral earthquake and the motoring data from Fu Shun earthquake bureau, rules of frequent mineral earthquake and its cumulative damage in fatigue are studied in this dissertation. The main works done are as follows:
     (1) Time series feature of b value in mineral earthquake and its energy creep curve are analyzed. It is found that the scale and intensity of Fu Shun mineral earthquake tends to increase. From analysis of distribution laws of 1st magnitude frequency mineral earthquake, 1st grade frequency mineral earthquake in Fu Shun conforms to the G-R relation. Study on attenuation relations for seismic intensity in mineral earthquake source show that oval-shaped model with long-axis and short-axis attenuating respectively can apply to Fu Shun mineral earthquake intensity. And the relevant coefficients are presented as well.
     (2) Mineral earthquake predictive model based on improved fuzzy neural network is established. For the first time, the greatest magnitude is predicted using the fuzzy neural network. The results are compared well with those obtained from real monitoring. It paves a new way for predicting mineral earthquake.
     (3) Using BAQ—PI—321 seismic testing instrument equipped with seismometer, dynamic testing technique is for the first time carried out real test to determine the influence of mineral earthquake on urban buildings. A residential building at Yu Lin Road in Fushun is analyzed. From the results of twice test, it is found that the inherent vibration period and drift displacement of the building increase. While story stiffness , story strength, story stress and story shear all diminish. It demonstrates that seismic resisting capacity of buildings is on the decline under frequent mineral earthquake.
     (4) Experimental study is done of the column specimen under horizontal low reversed cyclic loading. With various axial compression ratio, the failure process and form, characteristic of resilience, skeleton curve, steel strain, etc. are studied.
     (5) From viewpoint of engineering damage, the process of damage in fatigue of building structures under frequent mineral earthquake is studied. Started from rotation factor of the structural component’s end intersection, the damage model of the components is constructed under frequent mineral earthquake. The damage index of reinforced concrete components is defined and standardized. Using linear weighted summation, the damage model of reinforced concrete frame is constructed under frequent mineral earthquake.
     (6) An artificial designed cycle loads is adopted to simulate the mineral earthquake loads. FEA analysis software ADINA is for the first time used to simulate the damage evolution of the reinforced concrete frame, and has the conclusion:the damage evolution curve trend of each Component is similar; the damage of the structure and components is growing as the cyclic load goes on; the Natural frequency of the structure reduced when Imposing cyclic loading; the damage of the beam component is further than that of the column component through numerical analysis and it provides the reference for the Earthquake Prevention.
引文
1. 张少泉,关杰,刘力强. 矿山地震研究进展. 国际地震动态,1994(2):1-6
    2. 张少泉,李世愚. 矿山震动的类型及其判别. 中国地球物理学会年刊. 石油工业出版社,1995:407-410
    3. 李铁,蔡美峰,张少泉. 高度关注采矿诱发地震的威胁. 首届城市防震减灾国际论坛会议论文集,2004:114-123
    4. 李衍久. 浑河断裂活动性与抚顺城市安全性. 北京:地震出版社,1994
    5. 李铁. 抚顺老虎台矿中尺度地震实验场建设与相关问题的研究成果介绍. 中国科学基金,2003. 17(2):107-108
    6. Glowacka. kJko. Continuous evaluation of seismic hazard induced by the deposit extraction in Slelected coal mines in Poland. Pure App Geophys,2003,129(4):523-533
    7. 张少泉,郭建明. 地震与自然破裂的整体观. 地震科学联合基金会编. 地震科学整体观研究,北京:地震出版社,1993:98-113
    8. 国家地震局科技监测司. 地震现场工作大纲和真情分析指南. 地震出版社,1990:70-85
    9. 吴庆杰,韩国刚. 抚顺石油一厂厂区裂陷变形特征及原因探讨. 岩石力学与工程学报,1990(4):286-299
    10. 赵广信,常耀广. 浑河断裂带(抚顺段)应变分析. 测绘通报,2004(5):3-6
    11. 陈善本,张修峰,唐巨鹏. 冲击矿压与地球固体潮关系的研究. 矿山压力与顶板管理,2002 (4):99-101
    12. 董瑞树,许世杰. 浅谈矿震灾害—以台吉煤矿为例. 灾害学,1990 (1):65-66
    13. 抚顺矿业集团,煤科总院抚顺分院. 虎台煤业分公司冲击地压的发生与防治. 2002:50-55
    14. 抚顺矿业集团老虎台矿. 老虎台矿防治冲击地压技术. 2004:40-42
    15. 章梦涛. 我国冲击地压预测和防治. 辽宁工程技术大学学报,2001. 21(4):434-435
    16. 陶庄煤矿,枣庄矿务局.,煤科总院,北京开采所. 陶庄煤矿构造应力作用的调查分析. 1989:10-15
    17. 李嗣均. 减少厚煤层采后地表破损及矿井深部开采技术. 煤矿开采,2001.(2):25-28
    18. 任振起. 门头沟矿震与大同-阳高地震的关系. 山西地震,1999 (34):35-38
    19. 张秀兰,李卫,许长江. 京西矿震活动特征及其与天然地震关系初探. 国际地震动态,1998 (1):14-17
    20. 纪玉杰. 北京西山侏罗纪煤田矿震与地质灾害的关系. 北京地质,2002. 14(3):11-21
    21. 吴淑才,覃子建. 贵州矿山地震活动浅析. 贵州地质,1996. 13:287-294
    22. Knoll, p. The fluid-induced tectonic rockburst of March 13, 1989 in the “Werra” Potash mining district of the GDR (first results) . Beitr. Geophys. 1990(99): 239-245
    23. Slawomir Jerzy Gibowicz and Andrzej Kijko. 矿山地震学引论,北京:地震出版社,1998
    24. 车用太,王锜,黄积刚. 矿震及其前兆初探. 中国地震,1993. 9(4):334-340
    25. Gibwicz, S. J. Seiamicity induced by mining. Advance in Geophxlca, 1990. 32:49-80
    26. Mintrop, L. Die Erdbebenstation der Westfalischen Berggewerkschaftskasse in Bochum. Ghieckauf, l909(45):357-365
    27. Hrinketal, A. Z. Z.,Application of microseismic system at Western Deep level; repr. Pap., int.Symp., 2nd. Rokburst Seismic. Mines, Minneapolis, 1988:389-402
    28. 煤炭部矿山压力科技情报中心站冲击地压分站,冲击地压机理研究与防治文集. 煤炭工业出版社 1985
    29. Spottiswoode, S. W. Perspective on seismic and mckburst research in the Sorth African gold mining indust In Selrmieity in Mines(S. J. Gibwiczed). 1989,129:673-680
    30. McWilliamss, P. C. McDonalld, M. M. and Jenkins, F. M.,Statistical analysis of a microseismic field data act Prepr.Pap. Int.Symp.2nd Rockburst Seismic Mines. Univ.Min Minneapolis, 1988:235-245
    31. Yong, R. P. Hutchins, D. A. McGaughey J. Towers, J. D. and Bostock, M.Geotomographic imaging in the study of mining induced seismicity. In 'Seismicity in Mines' (S. J. Gibwicz, ed). PureGeo 1989. 129:571-596
    32. Yong, R. P. Hutchins, D. A., Talebi, S. Chow, T. Tells, S. FarreB, L. Jasen, D. McGaughey, J.Towes, J. and Urbancic, T.Laboratory and field investigation of rockburst phenomena using con-current geotomographic imaging and acousticcroseismic techques. In 'Seismicity in Mines S.1. Gibwicz. Pure .1989. 129:571-596
    33. Kazimierczek, M. Kijewski, P. and Szeag, T. Tectonic and mining aspects of major mining tremors occuring in the Legnica-Glogow Basin. Publ.1nst. Genphys. PoL Acad. Sm. 1988.101-105
    34. MacBeth, C. D. and Panza, G. F.Model synthesis of high-frequency waves in Scotland. 1989. 353-364
    35. McGarr, A.Some application of aeismic source mechanismstudiea to assessing undergrond hazard.In Rokburst and Seismicity in Mime Symp. 1984.199-208
    36. Kiilco,Drxezla, B. and Stanhewics, T: Bimodal character of the distribution of extreme aeicmic events Polish mine; ACTA 1987. 35:157-166
    37. Gane.P. G. Hales. A. L. and Oliver. H. A. A seismic investigation of the Witwatersrand earth tremos. Bull. Seismol. Soe. Ame. 1995. 36:49-80
    38. Holub, K. Knotck, S. and Vajter, Z.Seismic activity in relation to the coal minig. In 于 Induced Seismicity and Asancited phenomena 1988. 93-106
    39. 张少泉,张兆平等. 矿山冲击的地震学研究与开发. 中国地震,1993. 6(1):1-15
    40. 章梦涛. 我国冲击地压预测和防治. 辽宁工程技术大学学报(自然科学版),2001(04):434-435
    41. 潘一山,赵扬锋,马瑾. 中国矿震受区域应力场影响的探讨. 岩石力学与工程学报, 2005(16):2847-2850
    42. 梁冰,章梦涛. 矿震发生的粘滑失稳机理及其数值模拟. 阜新矿业学院学报,1997.16(5):521-524
    43. (美)休尔斯(Surey S.)著. 材料的疲劳(第二版).北京:国防工业出版社,2000
    44. Gazaud R. Fatigue of metals. Philosophical Liabray, New York, 1953
    45. Considere M. Influence des armatures metaligues sur les proprietes des mortiers et betons. Comte Rendu de I' Academie des sciences, 1898. 127:992-995
    46. De Joly. La resistance et 1' elasticite des ciments porland. Annales des Ponts et Chausses, Memoires, 1898, 16(7):198-244
    47. Van Ornum J. L. Fatigue of cement products. Transactions, ASCE, 1903,443-445
    48. Van Ornum J. L. Fatigue of concrete. Transaction, ASCE, 1907, 294-320
    49. Clemmer H. E. Fatigue of concrete. Proceedings, ASTM, 1922, 22:408-419
    50. ACI Committee 21 S. Considerations for design of concrete structures subjected to fatigue loading. ACI Journal, 1974, 71(3):97-121
    51. ACI359-86. ASME: Code for Concrete Reactor Vessels and Containments. Boiler and Pressure Vessel Code, Section III, Division 2,1986
    52. CEB 欧洲国际混凝土委员会. 1990 年 CEB-FIP 模式混凝土结构规范. 北京:中国建筑科学研究院建筑结构研究所,1989. 12
    53. Det Norske Veritas. Rules for Classification of Fixed Offshore Installations Structures. Part3, Chapter 1, Structural Design, July, 1989
    54. Thomas T. C. H.. Fatigue of plain concrete. ACI Journal, 1981, 78(3):292-305
    55. Head A. K.. On the growth of fatigue crack. The Philosophical Magazine, 1953, 44:725
    56. Paris P. C. et. al. A rational analytic theory of fatigue. Tread in Engineering, 1961, 9-14
    57. Paris P. C. Endercan F. A critical analysis of crack propagation laws. Transaction of ASME, Journal of Basic Engineering, 1963, 85:528-534
    58. Forman R. C., et. al. Numerical analysis of crack propagation in cyclic-loaded structure. Journal of Basic Engineering, 1967, 89:459-464
    59. Hilsdorf H. K. and Kesler C. E.. Fatigue strength of concrete under varying flexural stress. AClJournal, 1966, 63(10):1059-1076
    60. Wheeler O. E. Spectrum loading and crack growth. Journal of Basic Engineering, 1972, 18-20
    61. Jan Ove Holmen. Fatigue ofstrength of Concrete Structures,bySP-75, ACIconstant and variable amplitude loading. Fatigue1982, 71-110
    62. Byung Hwan Oh. Fatigue analysis of plain concrete in flexure. Journal of Structural Engineering. 1986, 112(2):273-288
    63. Volker S. Giovanni A. P, and Victor E.loading. ACI Materials Journal, 1996,S. Fracture of concrete under variable amplitude fatigue. 93(3):272-283
    64. Bazant Z. P., and Xu K.. Size effect in fatigue fracture of concrete. ACI Materials Journal, 1991,88(4):390-399
    65. Bazant Z. P., and Schell W. F.. Fatigue fracture of higher strength concrete and size effect. ACIMaterials Journal, 1993, 90(5):472-478
    66. 吴智敏,赵国藩,黄承速. 混凝土疲劳断裂特性研究. 土木工程学报,1995.28(3):59-65
    67. 吴智敏,赵国藩,黄承速等. 疲劳荷载作用下硷裂缝扩展过程. 大连理工大学,1997. 37:545-548
    68. 丁生根,侯景鹏,卢景鹏. 混凝土疲劳断裂机理及其尺寸效应. 东北电力学院学报,2001. 21(3):14-18
    69. Y Wang, Petraski Henry J. Fatigue crack propagation in concrete. International Journal of Ftracture, 1989.41(3):55-58
    70. Baluch M. H. Qureshy A. B., Azad A. K.. Fatigue crack propagation in plain concrete. Soc for Experimental Mechanics Inc, 1987. 112-119
    71. 易成. 局部高密度钢纤维混凝土疲劳、断裂性能及结构应用研究. 哈尔滨:哈尔滨建筑大学,2000
    72. 封伯昊,张立翔,李桂青. 混凝土损伤研究综述. 昆明理工大学学报,2001. 26(3):21-30
    73. A. Fatemi and L. Yang. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. lnt. J. Fatigue, 1998. 20(1):9-34
    74. 鞠杨,樊承谋. 疲劳累积损伤理论研究. 哈尔滨建筑工程学院学报,1994. 2 7(5):115-120
    75. Paimgren A. Die Lebensdauer von Kugellagern VDL, Z. Ver Deutsch, 1924.68:339-341
    76. Miner M. A. Cumulative damage in fatigue, Journal of the Applied Mechanics, 1945. 67 (12):159-164
    77. Jinawath P. Cumulative fatigue damage of plain concrete in compression. Ph. D. Thesis University of Leeds, 1974
    78. Leeuwen J. V., and Siemes J. M.. Miner's rule with respect to plain concrete. Heron, 1979 24(1):34-52
    79. 李永强,车惠民. 混凝土弯曲疲劳累积损伤性能研究. 中国铁道科学,1998. 19(2):52-59
    80. 李朝阳,宋玉普混凝土海洋平台疲劳损伤累积 Miner 准则适用性研究闭. 中国海洋平台,2001. 16(3):1-4
    81. Holmen J.O. Fatigue of concrete of constant and variable amplitude loading. Fatigue of Concrete Structures, SP-75, ACI, Detroit, 1982, pp.71-110
    82. 吴佩刚,赵光仪,白利明. 高强混凝土抗压疲劳性能研究. 土木工程学报,1994. 27(3):33-40
    83. 周志祥,钟明全. 混凝土在变幅疲劳荷载下累积损伤理论的探讨. 国家自然科学基金青年专家研讨会论文,结构工程科学,哈尔滨. 1992:71-110
    84. 王瑞敏,宋玉普. 混凝土疲劳累积损伤准则,水利学报,1992. 184(5):72-76
    85. 张滨生,吴科如. 水泥混凝土疲劳破坏的损伤力学分析. 同济大学学报,1989. 17(1):59-69
    86. 赵永利,孙伟. 混凝土材料疲劳损伤方程的建立. 重庆交通学院学报,1999. 18(1): 17-22
    87. 赵永利,孙伟. 混凝土材料非线性多级疲劳损伤方程的建立. 重庆交通学院学报,1999.18(2):20-26
    88. 鞠杨,樊承谋,潘景龙,谢和平. 变幅疲劳荷载下钢纤维混凝土的损伤演化行为研究.实验力学,1997. 12(1):110-118
    89. 鞠杨. 钢纤维(增强)混凝土疲劳损伤行为及其累积损伤理论和疲劳寿命估算方法. 哈尔滨:哈尔滨建筑大学,1995
    90. 鞠杨,潘景龙,樊承谋. 钢纤维棍凝土疲劳损伤机理初探. 哈尔滨建筑大学学报,1997.30(3):34-40
    91. 王瑞敏. 混凝土结构的疲劳性能研究. 大连:大连理工大学,1989:21-64
    92. 李朝阳,宋玉普,赵国藩. 混凝土疲劳残余应变性能研究. 大连理工大学学报,2001. 41(3):355-358
    93. 邓宗才,张凤华. 钢纤维混凝土等幅与变幅疲劳特性的试验研究,山东建材学院学报,2000. 14 (1):45-48
    94. Oh B. H. Cumulative damage theory of concrete under variable-amplitude fatigue loading,ACI Material Journal, 1991.88(1):41-48
    95. 吴弋慧. 混凝土材料的累积损伤破坏准则明. 中国铁道科学,1994. 15(3):101-108
    96. 杜云,张春明,尾崎韧. 混凝土疲劳试验的 AE 特性研究. 辽宁工程技术大学学报,2001.20(1):46-49
    97. Wimal Suaris, Fernando. Ultrasonic pulse attenuation as a measure of damage growth during cyclic Loading of concrete. ACI Materials Journal, 1987. May-June,185-193
    98. 林燕清,欧进萍. 混凝土疲劳剩余寿命预测的变形演变决定法. 工业建筑,1999. 29(9):46-52
    99. 林燕清. 混凝土疲劳累积损伤与力学性能劣化研究. 哈尔滨:哈尔滨建筑大学,1998.5
    100. 欧进萍,林燕清. 混凝土疲劳损伤的强度和刚度衰减试验研究. 哈尔滨建筑大学学报,1998. 31(4):1-8
    101. 欧进萍,林燕清. 混凝土高周疲劳损伤性能劣化试验研究. 土木工程学报,1999. 32(5):15-22
    102. 欧进萍,林燕清. 混凝土多级等幅疲劳变形发展规律试验研究. 哈尔滨建筑大学学报,1999. 32(1):11-17
    103. 沈为,彭立华. 疲劳损伤演变方程与寿命估算一连续损伤力学的应用. 机械强度,1994. 16(2):52-57
    104. 余天庆,钱济成编著. 损伤理论及其应用. 北京:国防工业出版社,1993. 10
    105. Chaboche J. L. and Lesne P. M.. A nonlinear continuous fatigue damage model. Fatigue and Fracture of Engineering Materials and Structures, 1988, I 1(1):1-7
    106. 潘一山. 冲击地压发生和破坏过程研究[D]. 清华大学,1999
    107. 张少泉,任振启,张连城等. “中尺度地震预报实验场”的思路与方案──门头沟煤矿矿山地震的观测与应用研究[J]. 地震学报, 1996 (04):105-108
    108. 翟文杰,钟以章,姜德录等. 抚顺西露天煤矿地质灾害预测[J]. 自然灾害学报,2006 (04):51-55
    109. 赵广信,常耀广,李兰等. 辽宁抚顺市区凤翔路地裂缝诱因分析[J]. 中国地质灾害与防治学报,2004 (02):21-26
    110. 卢良玉,高常波,李天成等. 浑河断裂现今活动性及抚顺城区段的活动特点研究[J]. 东北地震研究, 2001 (02):31-34
    111. 赵广信. 常耀广. 李兰. 抚顺煤田极值矿震影响范围预测[J]. 中国地质灾害与防治学报, 2006,(03)80~83
    112. 李永靖,张向东,袁世君,庞庆研. 抚顺老虎台矿矿山地震活动趋势研究[J]. 中国矿业,2004(11 ):34-37
    113. 李永靖,张向东,兰常玉,庞庆研. 矿山地下岩层移动变形用于预测矿震的研究[J]. 中国矿业,2005(10):40-43
    114. LI Yong-jing. ZHANG Xiang-dong. Research of Prediction for Mine Earthquake Basing on Underground Rock’s Movement[J]. Progress In Safety Science. 2005(10) 127-135
    115. Gibwicz S J and Kijko A. An Intruoduction to Mining Seismology. New York: Academic Press, 400p,1994
    116. 张诚. 地震分析基础[M]. 北京:地震出版社,1996
    117. 郭志. 实用岩体力学[M]. 北京:地震出版社,1998
    118. 徐世芳,李博. 地震学辞典[M]. 北京:地震出版社,2000
    119. 张少泉,徐子君等. 地震波分析与应用[M]. 北京:地震出版社,1998
    120. Gibowicz S J and Kijko A 著. 张少泉等校. 矿山地震学引论.[M]. 北京:地震出版社,1998
    121.张向东,李永靖,兰常玉. 模糊神经网络在矿震预测中的应用. 中国地质灾害与防治学报,2005(02 ):27-31
    122. Zuberek W M. Application of the Gumbel asymptotic extreme value distributions tothe description of the AE amplitude distribution.1n:Proc.4thConf.AcousticEmission/Microseismic Activity in Geological Structures and Materials, Pennsylvania StateUniversity: 1989. 649-665
    123. Grossber S. Nonlinear neural network, Principles mechanisms and architectures,Neural Networks, 1988(1):17-61
    124. 胡守仁,余少波,戴葵. 神经网络导论[M]. 长沙:国防科技大学出版社,1993
    125. 胡上序,程翼宇. 人工神经元计算导论[M]. 北京:科学出版社,1994
    126. 施鸿宝. 神经网络及其应用[M]. 西安:西安交通大学出版社,1993
    127. 殷勤业,杨宗凯等. 模式识别与神经网络[M]. 北京:机械工业出版社,1992
    128. 赵振宇,徐用懋. 模糊理论和神经网络的基础与应用[M] 北京:清华大学出版社,1997
    129. 丛爽. 面向 MATLAB 工具箱的神经网络理论与应用. 合肥:中国科学技术大学出版社,1998
    130. 韩大建,王文东. 基于振动的结构损伤识别方法的近期研究进展[J]. 华南理工大学学报,2003.31(1):91-96
    131. 李德葆,陆海波. 试验模态分析及其应用[M]. 北京:科学技术出版社,2001
    132. 江近仁,孙景江. 砖结构的地震破坏模型[J]. 地震工程与工程振动. 1997. 7(1):20-34
    133. 洪峰. 砖结构的动力可靠性分析[D]. 哈尔滨:国家地震局程力学研究所. 1985
    134. 欧进萍,段忠东. 结构可靠度[M]. 哈尔滨:哈尔滨工业大学. 2001
    135. 崔正龙. 再生及び熔融スラグコンクリートを用いた鉄筋コンクリート構造に関する研究. 東北工業大学,日本仙台,2006.3
    136. 广泽雅也(陕西建筑设计院等编译). 钢筋混凝土柱剪切破坏的分析. 钢筋混凝土框架柱抗震性能的试验研究. 北京:地震出版社,1979,11-17
    137. 广泽雅也(陕西建筑设计院等编译). 支配钢筋混凝土柱延性的诸因素. 钢筋混凝土框架柱抗震性能的试验研究. 北京:地震出版社,1979,18-23
    138. 山田捻(陕西建筑设计院等编译). 钢筋混凝土短柱的抗剪强度、变形及其爆裂. 钢筋混凝土框架柱抗震性能的试验研究. 北京:地震出版社,1979,81-95
    139. 东洋一,广泽雅也(陕西建筑设计院等编译). 破坏形态和延性. 防止钢筋混凝土短柱破坏的综合研究. 1981,84-88
    140. 广泽雅也(陕西建筑设计院等编译). 关于粘结开裂的破坏形态. 防止钢筋混凝土短柱破坏的综合研究. 1981,98-102
    141. 东洋一,广泽雅也(陕西建筑设计院等编译). 关于剪切破坏. 防止钢筋混凝土短柱破坏的综合研究. 1981,103-115
    142. 沈聚敏,周锡元. 抗震工程学. 北京:中国建筑工业出版社,2000,164-168
    143. 郭子雄,杨 勇. 恢复力模型研究现状及存在问题. 世界地震工程,2004,20(4):47-51
    144. 李铁,蔡美峰,张少泉. 高度关注采矿诱发地震的威胁[C]. 首届城市防震减灾国际论坛会议论文集,2004:114-123
    145. 李维涛. 地震力作用下钢筋混凝土框架结构损伤演化研究[D]. 河北工业大学,2004
    146. 楼志文. 损伤力学基础[M]. 西安:西安交通大学出版社,1991
    147. 尹双增. 断裂损伤理论及应用[M]. 北京:清华大学出版社,1992
    148. 谢和平. 岩石混凝土损伤力学[M]. 北京:中国矿业大学出版社,1990
    149. Kachanov L.M.Time of the rapture process under creep conditions[J]. TVZ Akad. Nank. S. S. R. Otd. Tech.Nuak.1998:30-35
    150. 冯世平,沈聚敏. 钢筋混凝土框架结构的地震倒塌反应[J]. 地震工程与工程振动,1989. 45-47
    151. GW.Houser, Limit Design of Structure to Resist Earthquakes .Proc.IWCEE,1996. 44-48
    152. 余天庆,钱济成. 损伤理论及其应用[M]. 北京:国防工业出版社,1993
    153. 李翌新,赵世春. 钢筋混凝土及劲性钢筋混凝土构件的累积损伤模型[J]. 西南交通大学学报,1994. 412-417
    154. 甘泉. 钢筋混凝土抗震框架倒塌机制分析[D]. 西安:西安建筑科技大学,1995
    155. Y.S.Chung, C.Meyer, modeling of Concrete Damage , ACI 1989. 121-126
    156. H.Banon Seismic Damage in RC Frames, ASCE 1985. 23-28
    157. 杜修力,刘勇生. 强震持时对钢筋混凝土结构地震累积破坏的影响. 地震工程与工程振动.1992(9):P67-72
    158. Krawinkler H,Zohrei M.Cumulative damage in steel structure subject to earthquake groundmotions. Computer and Structure, 1983.(16):531-534
    159. 沈祖炎,董宝,曹文衔. 结构损伤积累分析的研究现状和存在的问题. 同济大学学报,1997 (2):135-139
    160. 李军旗. 钢筋混凝土构件损伤模型. 兰州铁道学院学报,2000 (3):13-17
    161. Kumar Satish, Usami T. Damage evaluation in steel box columns by cyclic loading tests. ASCE. 1995 (3):P456-460
    162. Darmin, Nmai,Energy Dissipation in RC Beams under Cyclic Load .ASCE,1986(8):89-93
    163. T.Zahtah, W.Hall, Earthquake EnergyAbsorption in SDOF Structures.ASCE,1984(8):47-53
    164. Lai.S.P, BiggsJM. Inelastic respones spectra for aseismic buidlding design ASCE, 1980(6):1295-1310
    165. KatoB, AkiyamaH. Earthquake resistant design for steel building. Proc6th WCEE.1977. 251-256
    166. Park.Y.J,Ang.A.H.S,WenY.K..Seismicdamage analysis of reinforced concrete building.ASCE 1985(4):722-739
    167. Park Y J,Ang A H S.Mechenicistic seismic damage model for reinforced concrete .ASCEJ of Structural Engineering. 1985. 111(4): 740-757
    168. Kumar S, Usami T.A note on evaluation of damage in steel structure under cyclic loading. JSCE, JStruc Engg,1994. 40:177-188
    169. 陈永祁,龚思礼. 结构在地震时延性和累积塑性耗能的双重破坏准则. 建筑结构学报,1986(1)35-39
    170. 董聪. 基于动力特性的结构损伤定位方法. 力学与实践. 1999 (2):62-63
    171. 邬瑞锋,蔡贤辉,李桂华. 一种析架结构损伤识别的柔度矩阵法. 计算力学学报, 2001(1):42-47
    172. 赵琪 .基于模态测试数据诊断结结构损伤. 上海大学学报,1998 (3):237-240
    173. 吴波,李惠,李玉华. 结构损伤分析的力学方法. 地震与工程振动,1997 (13)14-22
    174. 李贤兴. 钢筋混凝土空间结构的地震损伤评估. 结构工程科学发展青年专家研讨会论文集. 哈尔滨:1992. 165-174
    175. 朱伯龙,董振祥. 钢筋混凝土非线性分析[M]. 同济大学出版社,1985.
    176. 康清梁. 钢筋混凝土有限元分析[M]. 中国水利水电出版社,1996
    177. 沈聚敏,王传志,江见鲸. 钢筋混凝土有限元与板壳极限分析[M]. 清华出版社,1993
    178. 吕西林,金国芳,吴晓涵. 钢筋混凝土结构非线性有限元理论与应用[M]. 同济大学出版社,1997
    179. 江见鲸. 钢筋混凝土结构非线性有限元分析[M]. 陕西科学技术出版社,1994
    180. 张汝清,詹先义. 非线性有限元分析[M]. 重庆大学出版社,1990
    181. 朱伯芳. 有限单元法原理与应用[M]. 中国水利水电出版社,1998
    182. Bathe, K. J. Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs 1982:32-34
    183. Bathe K. J. Finite Element Procedures. Prentice-Hall. Inc. 1996:40-43
    184. William,KJ. University of Colorado, Boulder, (Private Communication) 1982:33-37
    185. William,KJ., and Wamke, E. D. "Constitutive Model for the Triaxial Behavior of Concrete", Proceedings,International Association for Bridge and Structural Engineering, Vol. 19, ISME S, Bergamo, Italy, 1975:174-178
    186. Schnobri K.J, and Suidan, M., "Finite Element Analysis of Reinforced Concrete", ASCE Journal of the Structural Division, STIO, 1973. 2109-2122
    187. RS.H. AL-Mahaidi. Nonlinear Finite Element Analysis of Reinforced Concrete Subjected to Shear Loading.Heron,26(la),1981:38-41
    188. J.Houde,M.S.Mirza.Finite Element Analysis of Shear Strength of Reinforced Concrete Beams, Shear in Reinforced Concrete, 1,SP42,ACI,Detroit,Michigan,1974:45-50
    189. Wdson, E. L. Taylor, R L, Doherty W. P, and Ghaboussi, J. "Incompatible Displacement Models", Numerical and Computer Methods in Structural Mechanics, edited by S. J. Fenves, Academic Press, Inc., N. YandLondon,1973. 43-57
    190. Zienkiewicz, O. C. The Finite Element Method, McGraw-Hill Company, London, 1977:12-17
    191. 李维涛. 地震力作用下钢筋混凝土框架结构损伤演化研究[D]. 河北工业大学,2004
    192. 尹之潜,李树祯. 多层建筑楼层变位与屈服强度的关系和控制变位防止结构倒塌问题.地震工程与工程振动,1985 (1):66-69
    193. 林加浩,丁殿明,田玉山. 串联多自由度体系弹塑性地震反应分析. 地震工程论文集,北京:科学出版社. 1982. 46-48
    194. 沈聚敏,张铜生. 钢筋混凝土剪力墙一框架结构的非弹性地震反应分析. 清华大学研究报告,1982. 38-42
    195. 孙焕纯. 平面框架结构弹塑性过程分析. 大连工学院学报,1979.(2):29-37
    196. 尹之潜,李树祯. 多层建筑楼层变位与屈服强度的关系和控制变位防止结构倒塌问题.地震工程与工程振动,1985(1)66-69
    197. 潘士吉,许哲明. 框架结构的弹塑性地震反应分析. 地震工程论文集,北京:科学出版社 1982
    198. 汪梦甫,沈蒲生. 高层混凝土结构非线性地震反应分析现状. 世界地震工程,1998(2) 1-8
    199. 顾祥林,孙飞飞. 混凝土结构的计算机仿真. 上海:同济大学出版社,2000
    200. 秦文欣. 结构地震倒塌机理和多重模糊破坏评估. 哈尔滨:哈尔滨工业大学1994
    201. Jennings P C .Response of Simply Yielding Structures to Earthquake Excitation, Ph.D. California Institute of Technology, Pasadena,1963:122-130
    202. Clough R W-Johnston S ,B. ,Effect of Stiffness Degradation on Earthquake Ductility Requirement Proceedings of Second Japan national Conference on Earthquake Enqineerring, 1966:227-232
    203. Takida T, Sozen M A,Nielson N N. Reinforced Concrete Response to Simulated Earthquakes. Journal of Structural Division, ASCE,1970:2557-2573
    204. 武滕清. 结构物动力设计. 滕加禄译. 北京:建工出版社,1987
    205. ADINA Training Manual. 亚得科技有限公司.2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700