用户名: 密码: 验证码:
平面阵连续波雷达自适应数字波束形成系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与机械扫描雷达相比,相控阵雷达具有许多优点,例如可同时形成多个波束、波
    束可灵活捷变等。但常规相控阵雷达不具有抗有源干扰的能力,而采用自适应数字波
    束形成技术,则可以使其具有自适应对抗有源干扰的能力。大型相控阵天线的阵元数
    往往较多,阵元级自适应处理的设备量和计算量非常大,此时,子阵级自适应处理是
    在系统性能和成本之间的折衷选择。连续波雷达的峰值功率与平均功率相等,其发射
    机易于固态化,从而可以减小体积、便于瞬时开关机及机动。此外,连续波雷达还具
    有低截获概率的特性。本文研究了连续波平面阵雷达自适应波束形成系统的若干关键
    问题,主要内容包括:
     对于自适应DBF雷达,天线系统和信号处理性能密切相关;同时,天线也是影响
    相控阵雷达系统成本的一个重要因素。本文从信号处理的角度分析论证了两种具有低
    成本特性的相控阵雷达天线:随机稀布阵列和多馈源空间馈电阵列。给出了一种随机
    稀布阵子阵划分的原则及子阵级差波束的综合方法。通过比较两者的优缺点,我们认
    为,在现有器件及工艺条件下,对X波段,多馈源空馈阵是一种较好的选择。
     众所周知,阵列误差是影响阵列信号处理性能的一个重要因素。因此,阵列误差
    校正对自适应DBF雷达十分重要。本文从空馈阵模型出发,提出了一种阵列幅、相误
    差、传输系数误差和移相器误差联合校正的方法。该方法利用方向已知的信号源,和
    移相器结合实现了误差的联合校正。计算机仿真结果表明该方法可以达到较好的误差
    校正性能。虽然该方法是针对空馈阵提出的,但适用于其它具有子阵结构的系统。
     连续波雷达有其本身的特点,该体制下的自适应DBF算法和脉冲体制雷达有所不
    同。本文分析了连续波雷达自适应DBF的特点,将Fudge等人的阻塞矩阵导数约束算
    法推广到平面阵情形,并详细分析、对比了该法和导数约束LCMV算法在雷达系统应
    用中的主要性能,相应给出了一种雷达应用中基于GSLC结构的自适应波束形成算法
    的设计方法。
     平面阵的角误差信号具有方位和俯仰二维方向信息耦合的特点。本文提出了一种
    导数约束二维方向信息分离的算法,使二维角度估计问题简化为一维角度估计问题,
    简化了实现方案,且测角精度高于常规的一阶逼近算法。如果和阻塞矩阵导数约束算
    法结合,该方法可以用来进行上支路固定方向图权系数的优化,而不需额外消耗系统
    自由度。
     在实际应用中,干扰源和雷达平台的相对运动会导致干扰到达角展宽,从而使自
    适应处理性能下降。本文在现有抗运动干扰算法基础上,提出了一种基于GSLC结构
    
     11
     的抗运动干扰的自适应波束形成算法,分析了相关参数的选择方法。该法在运动干扰
     环境下可以获得较好的性能。
     自适应盲波束形成方程o已另夕卜种解决阵列误差问题的有效方法,它往往不需额
     外的约束条件,从而可以达到近似最优的性能。本文先从通信应用出发,提出了一种
     基于周期平稳信号话相关特性的盲自适应波束形成方法。该法在未知阵列流型的情况
     下,通过估计信号导向矢量来达到增强信号、抑制干扰的目的。在此基础上,本文讨
     论了盲波束形成方法在连续波雷达中的应用。
     除了阵元幅、相误差以外,阵列各通道的不一致性也会导致阵列信号处理性能的
     下降。本文J山区信应用出发,提出了一种基于中频信号周期平稳特性的自适应盲均衡
     算法,该法在通信应用中可以获得较好的性能。在此基础上,我们提出了一种连续波
     空债阵雷达的自适应通道均衡方案。结果表明,上述盲均衡算法在雷达阵列通道均衡
     中可以获得较好的性能,并月石田纪了通常的自适应阵列通道均衡算法对硬件实现条件
     的严格要求,简化了债电系统和控制电路的设计复杂度。
     最后,本文研究了连续波平面阵自适应DBF系统的总体实现方案,结合自适应处
     理算法,在分析比较现有器件性能的基础上,基于模块化设计思想给出了一种设计方
     案,完成了系统电路的设计。
Abstract
    ComPared with a mechedtal scanning haar a phased mp radar has mp adVantages,
    such as sforultaneOus multiple beam and flekibly conbolled beam. Howevf, the haonal
    phased arra for can not caneel achve interference. With the teCboque of adaghve digital
    beaxn-fonnin rpBF), the ndhotal phed N radar could hav this ability For lnye
    N with mny sensors, sensor level adaPtiv PrOCessing is comPUdsonally expenSbe and
    resultS in high coSt. In this case, the subW level adaPtive ProceSsing is a bethe tradcoff
    Wn System --ce and cosL The Peak POwe of CW for is equal tO its average
    POwe and itS tIanSndtter can be easily realed with solid State COmPOenL Therefore, it has
    small volume, good mobility and can be tal on or offconVedentiy. In addihon. the CW
    M also has the proPerty of low probability of IntercePhon (LPD' Some key Problems on
    the planar phased arra adaPtive DBF system for X band CW the are reasehed in thes
    dissertation. the main work is sununarized as follows:
    For the adaPtve DBF ler the anenn System is closely related ed signal ProCessing
    tecndque and is an driPOrtan faCor in the System cost. In chaPter l, tWo kinds of low coSt
    phased W anenna systeIn. namely sparse mp and mulh-bo pe fed axray are
    analyzed and comPared. A principle for SUbanay division and a differenee beaIn Synthesis
    method at submp level for SParse anay are ProPOsed. The authr conSders that the multi-
    feed sPace feed W is more sultable for X band for Under mpnt condion.
    It is well known tha the mp ermr may grealy degrade the perfOnnanee of adaPtive
    N signal Processing, so the arra error calibration is very twrtan for adaPve DBF
    ler In thes dissertaion, by means of a edbndion source and mp senSOs PhaSe Shifter
    we proPOsed a algorithIn for joint1y calibhan the sensors amPitude and PhaSe ermr, sPace
    twt parameter error and Phase shifter error for space fed anay The algorithIn also
    holds in other anas with subarra de.
    The adaPive DBF aIgorithIn for CW ed is qulte differen from that for the Pulse ed
    Aner analyzing the featUr of the CW radar we advanced a SPatial blocking fiiter derivative
    conSwt algorithm for planar W based on Fudge's 1inear anay algorithIn, and comPared
    itS pefformance with derivative conStrained LCMV algorithm. The shaulthen bo
    indcate tha the proPOsed algorithIn is bettr than the derivthee constrained LCMV
    algorithIn because it avoids the signal caneellation and adaPtive Inain beam distonion
    
    
    effectively without the gain loss and broadening main beam.
     The azimuth and element angle are coupled in the monopulse angle estimation for the planar array. We proposed a derivative constrained beamforming algorithm for separating the two-dimension angle information and simplifying the 2-D angle estimation algorithm to l-D angle estimation algorithm. Moreover, it can result higher angle estimation precision than the first order approximation algorithm.
     In practical applications, the relative motion between radar platform and interference can broaden the direction angle of interference signals and severely degrade the performance of adaptive array if the weights adjustment is not fast enough. In chapter 6, we advanced an adaptive beainforming algorithm with GSLC structure and robustness against janlmer motion. The simulation results indicate that the proposed algorithm performs better than the conventional GSLC algorithm in moving interference scenarios.
     Adaptive blind beamforming algorithm is also an effective method for extracting the required signal in the existence of array errors. We proposed a blind adaptive beamforming algorithm based on the signal抯 self-coherence property. Employing the estimated array manifold, the required signal can be extracted while eliminating the interference. We also discuss the application of the algorithm to CW radar.
     Besides sensor amplitude and phase error, mismatch between channels can also degrade the performance of adaptive arrays. In chapter 8, we proposed an adaptive blind equalization algorithm based on the cyclostationaiy pro
引文
[1] 西本真吉,山岸文夫,相控阵雷达的发展动向(译文),雷达与对抗,1998,No.2,pp:10-16
    [2] W. Sander, Experimental phased-array radar ELRA: antenna system, IEE Proc. Pt.F, Vol. 127,No.4,1980,pp:285-289
    [3] G. Van Keuk, W. Fleskes, Adaptive control of multiple target tracking with the ELRA phased radar, IEEE IRC'80, Washington DC, USA
    [4] U. Nickel, Adaptive beamforming for phased array radars, IEEE IRS'98, Munich, Germany Sep.,1998, pp:897-906
    [5] P. Barton, Digital beam forming for radar, IEE Proc. Pt.F, Vol.127, No.4,1980, pp:266-277
    [6] B. Wardrop, Experimental linear phased array with partial adaptivity, IEE Proc., Pt. F, Vol. 130,No.1, 1983,pp118-124
    [7] Hiroshi Miyauchi, Development of DBF radar, IEEE International conference on phased array technique, 1996
    [8] Masaaki Kanno, Digital beam forming for conformal active array antenna, IEEE international conference on phased array technique, 1996
    [9] Enji Rai, Historical overview of phased array antenna for defense application in Japan, IEEE international conference on phased array technique, 1996
    [10] I. Chiba, Digital beam forming(DBF) antenna system for mobile communications, International conference on phased array technique, 1996
    [11] Special issue on adaptive arrays, IEEE Trans. AP, Vol.12, Mar. 1964
    [12] Special issue on adaptive arrays, IEEE Trans. AP, Vol.24, Sep. 1976
    [13] Special issue on adaptive arrays, IEEE Trans. AP, Vol.34, Mar. 1986
    [14] Special issue on adaptive systems and applications, IEEE Trans. CAS,Vol.34,July, 1987
    [15] J. D. Marr, A selected bibliography on adaptive antenna arrays, IEEE Trans. AES, Vol.22,1986,pp:781-788
    [16] O. L. Frost,An algorithm for linearly constrained adaptive array processing, Proc. IEEE,Vol.60,1972,pp:926-935
    [17] B. Widrow, Adaptive antenna systems, Proc.IEEE,Vol.55,1967,pp:2413-2159
    
    
    [18] W. F. Gabriel, Adaptive arrays--an introduction, Proc. IEEE, Vol.64,1976, pp:239-272
    [19] R. J. Mailous, Phased array theory and technology, Proc. IEEE, Vol.70,1982, pp:246-291
    [20] B. D. Van Veen, K. M. Buckley, Beamforming: a versatile approach to spatial filtering, IEEE AES Mag., Vol.5,1987, pp4-24
    [21] R. A. Monzingo, T. W. Miller, Introduction to adaptive arrays, John Wiley and Sons Inc. ,1980
    [22] J. E. Hudson, Adaptive array principles, Peter Peregrinus Ltd., London, 1981
    [23] B. Widrow, S. D. Steams, Adaptive signal processing, Prentice-Hall, 1985
    [24] S. Haykin, Array signal processing, Prentice-Hall, 1985
    [25] R. T. Compton, Adaptive antenna: concepts and performance, Prentice-Hall, 1987
    [26] D. H. Johnson,D. E. Dudgeon, Array signal processing: concepts and techniques , Prentice-Hall, 1993
    [27] Alfonso Farina, Antenna-based signal processing techniques for radar systems, Artech House, Boston, London, 1992
    [28] D. R. Farrier, Gain of an array of sensor subject to processor perturbations, IEE Proc. Pt.F, Vol.130,1983, pp:251-254
    [29] S. J. Yu, and J. H. Lee, Effect of random weight errors on the performance of partially adaptive array beamformers, Signal Processing, Vol.37, No.3,1994, pp:365-379
    [30] R. Mitzberg, Effect of errors in adaptive weights, IEEE Trans. AES, Vol.12, 1976 pp:363-369
    [31] D. J. Ramsdale and R. A. Howerton, Effect of element failure and random errors in amplitude and phase on side-lobe level attainable with a linear array, J. Acoust Soc. Am. Vol.68, No.3,1980
    [32] L. C. Godara, The effect of phase shifter errors on the performance of an antenna array beamformer, IEEE Ocean. Engr., Vol.10,1985, pp:278-284
    [33] A. M. Vural, Effects of perturbations on the performance of optimum adaptive arrays, IEEE Trans. AES, Vol.15,1978, pp:76-87
    [34] R. J. Compton, The effect of random steering vector errors in the Applebaum adaptive array, IEEE Trans. AES, Vol.18,1982, pp:392-400
    [35] L. C. Codara, Error analysis of the optimal array processors, IEEE Trans. AES, Vol.22, 1986,pp:395-408
    [36] N. K. Jablon, Adaptive beamforming with generalized sidelobe canceller in the presence of array imperfections, IEEE Trans. AP, Vol,34,1986,pp:996-1021
    
    
    [37] N.K. Jablon, Effect of element errors on half-power beamwidth of the Capon adaptive beamformer, IEEE Trans. CAS, Vol.34,No.7, 1987,pp:743-752
    [38] H. Steyskal, Array error effects in adaptive beamforming, Microwave Journal, Vol.34, No.9,1991,pp:101-112
    [39] I. J. Gupta, A. Ksienski, Effect of mutual coupling on the performance of adaptive arrays, IEEE Trans. AP, Vol.31, No.5, 1983,pp:785-791
    [40] 王永良,吴仁彪,通道不一致性、互耦对最优处理器性能的影响,系统工程与电子技术,Vol.15,No.2,1993,pp:49-55
    [41] K. Gerlach, The effects of IF bandpass mismatch errors on adaptive cancellation, IEEE Trans. AES, Vol.26,No.3,1990, pp:455-468
    [42] Application of adaptive to suppress strong jammers in the presence of weak signal, IEEE Trans. AES, Vol.9, 1972,pp:260-271
    [43] L. C. Codara, A robust adaptive array processor, IEEE Trans. CAS, Vol.34,1987, pp:721-730
    [44] H. Cox, etl., Robust adaptive beamforming, IEEE Trans. ASSP, Vol.35,1987, pp:1365-1376
    [45] B. D. Van Veen, Adaptive convergence of linearly constrained beamformers based on the sample covariance matrix, IEEE Trans. SP, Vol.39,1991,pp: 1470-1473
    [46] K. J. Raghunath, V.U. Reddy, Finite data performance analysis of MVDR beamformer with and without spatial smoothing, IEEE Trans. SP, Vol.40, I992, pp:2726-2736
    [47] J. L. Krolik, N. Swingler, On the mean-square error performance of adaptive minimum variance beamformers based on the sample covariance matrix, IEEE Trans. SP, Vol.42, 1994, pp:445-448
    [48] 张林让,廖桂生,保铮,色噪声环境下自适应波束形成,电子学报,Vol.26,1998,pp:81-84
    [49] W. S. Youn, C. K. Un, Fast adaptive beamforming robust to array imperfections, Signal Processing, Voi.34, No. 1,1993,pp: 109-121
    [50] B. D. Carlson, Covarianee matrix estimation errors and diagonal loading in adaptive arrays, IEEE Trans. AES, Vol.24, No.4,1988,pp:197-401
    [51] K. Gerlach, Adaptive array transient sidelobe levels and remedies, IEEE Trans. AES, Vol.26, No.3,1990, pp:560-568
    [52] S. P. Applebaum, D. J. Chapman, Adaptive arrays with main beam constrains, Signal Processing, Vol.34, No. 1, 1993, pp: 109-121
    [53] M. H. Er, A. Contoni, Derivative constrains for broad-band element space antenna
    
     array processors, IEEE Trans. ASSP,Vol.31, No.12,1983, pp: 1378-1393
    [54] K. M. Buckley, L. J. Griffiths, An adaptive generalized sidelobe canceller with derivative constrain, IEEE Trans.AP, Vol.34, No.3,1986, pp:311-319
    [55] A. K. Luthra, A solution to the adaptive nulling problem with a look-direction constrain. in the presence of coherent jammers, IEEE Trans.AP, Vol.34, No.5,1986,pp:702-710
    [56] M. H. Er, A. Cantoni, A unified approach to the design of robust narrow-band antenna array processors, IEEE Trans.AP, Vol.38, No.1,1990, pp:17-23
    [57] M. H. Er, A robust formulation for an optimum beamformer subject to amplitude and phase perturbations, Signal Processing, Vol.19, No.l, 1990, pp: 17-26
    [58] I. Claesson, S. Nordholm, A spatial filtering approach to robust adaptive beaming, IEEE Trans. AP,Vol.40,No.9,1992, pp:1093-1096
    [59] G. T. Zunich, L. J. Griffiths, A robust method in adaptive array processing for random phase errors, ICASSP'91, Toronto, pp:1357-1360
    [60] B. D. Van Veen, Minimum variance beamforming with soft response constrains, IEEE Trans. SP, Vol.39,1991, pp:1964-1972
    [61] K. C. Huamg, C. C. Yeh, Performance analysis of derivative constraint adaptive arrays with pointing errors, IEEE Trans. AP, Vol.40,1992, pp:975-981
    [62] A. Cantoni, X. G. Lin,and K. L. Teo, A new approach to the optimization of robust antenna array processors, IEEE Trans. AP, Vol.41,1993, pp:403-411
    [63] A. M. Haimovich ,Y. Bar-Ness, An eigenanalysis interference canceller, IEEE Trans. SP, Vol.39,1991, pp:76-84
    [64] A. M. Haimovich, The eigencanceller: a new space-time interference canceler, Proc. IRC'94, Atlanta, pp:194-198
    [65] A. M. Haimovich, The eigencanceller: adaptive radar by eigenanalysis methods, IEEE Trans. AES, Vol.32,1996, pp:532-542
    [66] A. M. Haimovich, Asymptotic distribution of the conditioned signal-to-noise ratio in an eigenanalysis-based adaptive array, IEEE Trans., Vol.33, No.3,1997,pp:988-997
    [67] A. M. Haimovich and M. Berin, Eigenanalysis-based space-time adaptive radar: performance analysis, IEEE Trans. AES, Vol.33, No.4,1997,pp:1170-1174
    [68] C. H.Gierull, Statistical analysis of the eigenvector projection method for adaptive spatial filtering of interference, BEE Proc. Pt.F, Vol.144, No.2,1997,pp:57-62
    [69] D. D. Feldman and L. J. Griffiths, A constraint projection approach for robust adaptive beamforming, ICASSP'91, Toronto, pp:1381-1384
    [70] W. S. Youn, C. K. Un, Eigenstructure method for robust array processing, Electronic
    
     Lett. Vol.26,1990, pp:678-680
    [71] J. W. Kim, C. K. Un, An adaptive array robust to beam pointing error, IEEE Trans. SP, Vol.40, No.6,1992,pp:1852-1854
    [72] H. Subbaram, K. Abend, Interference suppression via orthogonal projections: a performance analysis, IEEE Trans. AP, Vol.41,1992, pp:l 187-1193
    [73] L. Chang, C. C. Yeh, Effect of pointing errors on the performance of the projection beamformer, IEEE Trans. AP, Vol.41, No.8,1993, pp: 1045-1056
    [74] J. W. Kim, C. K. Un, A robust adaptive array based on signal subspace approach, IEEE Trans. SP, Vol.41, No.11, 1993,pp:3166-3171
    [75] D. D. Feldman, L. J. Griffiths, A projection approach for robust adaptive beamforming, IEEE Trans. SP, Vol.42, No.4,1994,pp:867-876
    [76] J. L. Yu and C. C. Yen, Generalized eigenspace-based beamformers , IEEE Trans. SP, Vol.43, No.ll, 1995, pp:2453-2461
    [77] D. D. Feldman, An analysis of the projection method for robust adaptive bearnforming, IEEE Trans. SP, Vol.44, No.7,1996, pp:1024-1030
    [78] S. J. Yu, J. H. Lee, The statistical performance of eigenspace-based adaptive array beamformers, IEEE Trans. AP, Vol.44, No.5,1996,pp:665-671
    [79] C. C. Lee, J. H. Lee, Robust adaptive beamforing under steering vector errors, IEEE Trans. AP, Vol.45, No.1, 1997, pp:168-175
    [80] C. C. Lee, J. H. Lee, Eigenanalysis interference cancellers with robust capabilities, Signal Processing, Vol.58,1997, pp: 193-202
    [81] C. C. Lee, J. H. Lee, Eigenspace-based adaptive array bearnforming with ribust capabilities, IEEE Trans. AP, Vol.45,No.l2, pp:1711-1716
    [82] C. C. Lee, J. H. Lee, An efficient technique for eigenspace-based adaptive interference cancellation, IEEE Trans. AP, Vol.46,No.5,1997, pp:694-699
    [83] R. Gooch and J. Lundell, The CM arrays: an adaptive beamformer for constant modulus signals, ICASSP'86, Tokyo, 1986, pp:2523-2526
    [84] J. F. Cardoso, A., Souloumiac, Blind beamforming for non-Gaussion signal, IEE Proc. Pt. F Vol.140, No.6,1993,pp:363-370
    [85] M. C. Dogan, J. M. Mendel, Cumulant-based blind optimum beamfonning, IEEE Trans. AES, Vol.130, No.3,1994, pp:722-740
    [86] L. Castado, A. R. Figueiras-Vidal, An adaptive bearnforming technique based on cyclostationary signal properties, IEEE Trans. SP, Vol.43, No.7,1995, pp:1637-1650
    [87] Q. Wu, K. M. Wong, Blind adaptive beamfonning for cyclostationary signal , IEEE
    
    Trans. SP Vol.44, No. 11, 1996, pp:2757-2767
    [88] 刘宏伟,张守宏,廖桂生,一种基于信号谱自相关特性的盲波束形成方法,西安电子科技大学学报,Vol.24,No.1,1997,pp:58-65
    [89] D. Iglesia, A. Dapena and L. Castedo, Using fractional cyclic moment of CPFSK signals in blind adaptive beamforming, ICASSP'97
    [90] M. Wax, Yosef Anu, A new least squares approach to blind beamforming, ICASSP'97
    [91] E. Gonen, J. M. Mendel, Applications of cumulants to array processing____part Ⅲ: blind beamforming for coherent signal, IEEE Trans. SP, Vol.45, No.9, 1997, pp:2252-2264
    [92] A. J. Paulraj, C. B. Papadias, Space-time processing for wireless communications, IEEE SP Mag., Nov. 1997, pp:49-83
    [93] L. J. Godara, Application of antenna arrays to mobile communications, Part Ⅰ: Performance improvement, feasibility, and system considerations, Proc. IEEE, Vol.85, No.7, 1997, pp:1031-1061
    [94] L. J. Godara, Application of antenna arrays to mobile communications, Part Ⅱ: beam-forming and direction-of-arrival considerations, Proc. IEEE, Vol.85, No.8, 1997, pp:1195-1245
    [95] C. E. Hein, et.al, The design of a GaAs systolic array for an adaptive null steering beamforming controller, Computer, July, 1987
    [96] K Teitelbaum, A flexible processing for a digital adaptive array radar, IEEE AES Mag. 1991, pp:18-21
    [97] 吴洹,张玉洪,吴顺君,用于阵列处理的自适应均衡器的研究,现代雷达,Vol.16,No.1,1992
    [98] 雷达阵列信号处理的自适应均衡技术,西安电子科技大学雷达信号处理重点实验室技术报告,1994,12
    [99] 孙晓兵,保铮,中频信号采样与正交相干检波,系统工程与电子技术
    [100] 孙晓兵,保铮,中频正交采样的理论与实现,机载雷达研讨会,北京,1992,12
    [101] H. Liu, A. Ghafoor, A new quadrature sampling and processing approach, IEEE Trans. AES, Vol.25, No.5, 1989
    [102] R. L. Mitchill, Creating complex signal samples from a band-limited real signal, IEEE Trans. AES, Vol.25, No.3, 1989
    [103] L. E. Corey, A survey of Russian low cost phased-array technology, IEEE International conference on phased array techniques, 1996
    [104] 汪茂光,吕善伟,刘瑞祥,阵列天线的分析与综合,西安电子科技大学出版社,1989
    
    
    [105] 郭燕昌 等,相控阵与频率扫描天线原理,国防工业出版社,1978
    [106] 暥焕强,束咸荣,郭燕昌,用适当随机法设计密度加权面阵天线,第九届天线学术年会,无锡,1994
    [107] 李建新,阵列多台阶稀疏技术,电子学报,Vol.27,No.3,1999,pp:79-80
    [108] J. M. Ferrier, B. Carrara, P. Granger, Antenna subarray architecture and antijamming constraints, ICR'94, pp:466-469
    [109] R. L. Howard, D. D. Aalfs, E. J. Holder, A hybrid partitioning architecture for ADBF in monopulse arrays, IRC'97, 1997.10,pp:65-69
    [110] T. Robert Hill, Phased array feed systems:a survey, Phased-Array Antenna, pp:197-211
    [111] N. S. Wong, R. Tang and E. E. Barber, A mutielement high power monopulse feed with low sidelobe and high aperture efficiency, IEEE Trans. AP, Vol.22, No.3, 1974, pp:402-407
    [112] K. K. Chan, et. al., Space-fed lens phased array for advanced radar systems, IRC'89, pp:70-75
    [113] 谭启武,高效数字波束馈源,火控雷达技术,1995.9,pp:83-86
    [114] 熊继衮,新型相控阵天线系统初探,现代防御技术,1994.1,pp:18-25
    [115] 张光义,相控阵雷达系统,国防工业出版社,1995
    [116] 吴祖权,有源相控阵雷达阵面监测方法及其实验研究,现代雷达,Vol.20,No.5,1998.8,pp:1-7
    [117] Y. Rockah,P. M. Schultheiss, Array shape calibration using source in unknown locations---part Ⅰ: near field sources, IEEE Trans. ASSP, Vol.35, No.3, 1987,pp:286-299
    [118] Y. Rockah,P. M. Schultheiss, Array shape calibration using source in unknown locations---part Ⅱ: near field sources and estimator implementation, IEEE Trans. ASSP, Vol.35, No.6, 1987,pp:724-735
    [119] J. T. Lo, S. L. Marple, Eigenstructure method for array sensor location, ICASSP'87, pp:2260-2263
    [120] A. Paulraj , T. Kailath, Direction of arrival estimation by eigenstructure method with unknown sensor gain and phase, ICASSP'85, pp:640-643
    [121] A. J. Weiss, B. Friedlander, Eigenstructure methods for direction finding with sensor gain and phase uncertainty, Circuits, Systems & Signal Processing, Vol.9, No.3, 1990, pp:271-300
    [122] A. J. Weiss, B. Friedlander, Array shape calibration using sources in unknown locations---a maximum likelihood approach, IEEE Trans. ASSP, Vol.37, No.12, 1989, pp:12-14
    
    
    [123] C. Y. Patrick, Z. Yifeng, A self-calibration algorithm for cyclostationary signals and its uniqueness analysis, ICASSP'95, 1995, pp:1892-1895
    [124] 邱晓辉,朱兆达,阵列互耦的近场校准方法,信号处理,Vol.14,1998(增刊),pp:111-113
    [125] 贾永康,保铮,吴洹,一种阵列天线阵元位置、幅度及相位误差的有源校正方法,电子学报,Vol.24,No.3,1996,pp:47-52
    [126] 刘宏伟,张守宏,多馈源空间馈电阵列误差校正,电子学报,已录用
    [127] C. Y. Tseng, Minimum variance beamforming with phase-independent derivative constrains, IEEE Trans. AP, Vol.40, No.3,1992, pp:285-294
    [128] I. Thng, A. Cantoni, and Y. H. Leung, Derivative constrained optimum broad-band antenna arrays, IEEE Trans. SP, Vol.41, No.7, 1993, pp:2376-2388
    [129] C. Y. Tseng, L. J. Griffiths, Adaptive broadband beamforming using phase-independent derivative constraint techniques, ICASSP'93, VoI.Ⅳ,pp:536-539
    [130] G. L. Fudge, D. A. Linebarger, Spatial blocking filter derivative constrains for the generalized sidelobe canceller and MUSIC, IEEE Trans. SP, Vol.44, No. 1, 1996, pp:51-61
    [131] M. D. Zoltowski, Synthesis of sum and difference patterns possessing common nulls for monopulse bearing estimation with line array, IEEE Trans. AP, Vol.40, 1992, pp:25-37
    [132] R. L. Haupt, Simultaneous nulling in sum and difference patterns of a monopulse antenna, IEEE Trans. AP, Vol.33, No.5, 1985, pp:505-509
    [133] F. R. Castella, Adaptive antenna nulling for a phased array radar, In Proc. International Conference Radar'92, pp:320-323
    [134] R. C. Davies, L. E. Brennan and I. S. Redd, Angle estimation with adaptive arrays in external noise field, IEEE Trans. AES, Vol.12, 1976, pp:179-186
    [135] U. L. Nickel,Monopulse estimation with adaptive arrays, IEE Proc., Pt. F, Vol. 140, No.5, 1993, pp:303-308
    [136] U. L. Nickel, Monopulse estimation with subarray-adaptive arrays and arbitrary sun and difference beams, lEE Proc. Pt.F, Vol. 143, No.4,1996,pp:232-238
    [137] A. B. Gershman, G. V. Serebryakov, Constrained Hung-Turner adaptive beam-forming algorithm with robustness to wideband and moving jammers, IEEE Trans. AP, Vol.44, No.3, 1996, pp:361-371
    [138] E. K Hung, R. Turner, A fast beamforming algorithm for large arrays, IEEE Trans. AES, Vol. 19, No.7, 1983, pp:598-607
    [139] A. B. Gershman, U. L. Nickel, Adaptive beamforming algorithms with robustness against jammer motion, IEEE Trans. SP, Vol.45, No.7, 1997, pp:1878-1885
    
    
    [140] B. G. Agee, S. V. Schell, W. A. Gardner, Spectral self-coherence restored: a new approach to blind adaptive signal extraction using antenna arrays, Proc. IEEE, Vol.78, No.4,1990, pp:753-767
    [141] W. A. Gardner, Statistical spectral analysis: a nonprobabilistic theory, Englewood Ciffs, NJ:Prentice-Hall, 1988
    [142] G. Gelli, L. Paura, Blind signal extraction based on high-order cyclostationary properties, ICASSP'97
    [143] Liu Hongwei, Zhang Shouhong, Wang Jun, BUnd equalization algorithm based on cyclostionary property of IF signal, ICSP'98, Oct,1998, Beijing, pp:498-501
    [144] Shahid U.K. Qureshi, Adaptive equalization ,Proc.of IEEE,Vol.73,No.9,1985
    [145] R.D.Gitlin and F.R.Magee, Self orthogonalizing adaptive equalization algorithms, IEEE Trans.Comniun., 1977
    [146] Y.Sato, A Method of Self-Recovering Equalization for Multiple Amplitude Modulation Schemes, IEEE Trans. Commum.,Vol.23,1975
    [147] D.Godard, Self-recovering Equalization and Carrier Tracking in Two Dimension Data Communication System ,IEEE Trans. Commun.,Vol.28,No.11,1980
    [148] D.Hatzinakos,et al.,Blind EquaUzation on using a Tricepstrum Based Algorithm, IEEE Trans. Commun.,Vol.39,No.5,1991
    [149] B.Porat and B.Friedlander, Blhid EquaHzation of Digital Communication Channels Using High-order Moments ,IEEE Trans. SP,Vol.39,No.2,1991
    [150] F.Gustafsson and B.Wahlberg, Blind Equalization by Direct Examination of the Input Sequences, IEEE Trans. Commun.,Vol.43,No.7,1995
    [151] C.R.Johnson, et al., Godard Blind Equalizers Misbehavior with Corrected Sources: Two Examples ,In Moroccan Journal of Control, Computer Science, and Signal Processing, 1992
    [152] L. E. Pellon, A double Nyquist digital product detector for quadrature sampling, IEEE Trans. SP, Vol.40, No.7,1992, pp:1670-1681
    [153] E. C. Dufort, Pattern synthesis based on adaptive array theory, IEEE Trans. AP, Vol.37, No.8,1989, pp: 1011-1018
    [154] C.A.Olen, A numerical pattern synthesis algorithm for array, IEEE Trans. AP, Vol.38, No.10,1990,pp:1666-1676
    [155] Y. Lou, Channel estimation standard and adaptive blind equalization, IEEE Trans. COMM, Vol.43, No.2,1995, pp:182-186
    [156] 吴仁彪,机载相控陈雷达时空二维自适应滤波的理论及实现,西安电子科技大
    
    学博士学位论文,1993,12
    [157] 贾永康,阵列信号处理稳健性研究——利用时域特性及其它信息,西安电子科技大学博士学位论文,1996
    [158] 于宏毅,循环平稳信号波达方向估计的算法和性能研究,西安电子科技大学博士学位论文,1999.1
    [159] 徐金标,自适应均衡算法研究,西安电子科技大学博士学位论文,1997
    [160] 张林让,自适应阵列处理稳健方法研究,西安电子科技大学博士学位论文,1998
    [161] 程云鹏,矩阵论,西北工业大学出版社,1989
    [162] 孙继广,矩阵扰动分析,科学出版社,1987
    [163] 张贤达,现代信号处理,清华大学出版社,1994
    [164] 张贤达,信号处理中的线性代数,科学出版社,1997
    [165] 张贤达,时间序列分析—高阶统计量方法,清华大学出版社,1995
    [166] 石镇,自适应天线原理,国防工业出版社,1991
    [167] 龙腾,高速实时数字信号处理技术的新进展,第三届青年学术年会,北京,1998.8,pp:405-407
    [168] TMS320C4X User's Manual, Texas Instrument Inc.,1993
    [169] TMS320C62X User's Manual, Texas Instrument Inc., 1997
    [170] ADSP2106X User's Manual, Analog Device Inc., 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700