用户名: 密码: 验证码:
刚构—连续梁组合体系冲击系数分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对于大跨径的复杂桥型冲击系数研究仍处于探索阶段,尤其是对刚构-连续梁组合体系桥梁冲击系数的研究较少。中外学者对冲击系数的研究大多仅限于单因素的影响分析。《公路桥涵设计通用规范》(JTG D60-2004)中冲击系数计算公式仅考虑结构基频惟一因素,并没有考虑车辆的动力性能及路面的不平整度等因素。因此,研究刚构-连续梁组合体系的冲击系数具有重要的理论意义与工程实用价值。
     本文以陕西某刚构-连续梁组合体系为依托工程,建立了4跨~6跨墩脚固结和桩土耦合作用六种主要桥梁分析模型,考虑3轴二系悬挂弹簧车辆模型,通过正交试验分析,对其展开了冲击系数的敏感性参数研究。共分为24种工况,考虑了车桥频率比、路面不平整度、车体质量、桥梁跨数、行车速度、车辆行驶方式、桥梁刚度、车辆阻尼比和下部结构计算模型这9个影响因素,给出了影响该桥主梁控制截面挠度、弯矩和主墩控制截面水平位移、弯矩冲击系数的敏感性参数及其最大值的参数组合。在此基础上,通过最大值参数组合工况的计算分析,绘制了该桥的冲击系数最大值包络曲线,给出了刚构-连续梁组合体系的冲击系数范围。分析表明,车辆行驶速度、桥梁结构频率和桥面不平度是该类桥梁冲击系数的主要影响因素。以路面不平整度为分项标准,车速和桥梁频率为自变量,通过回归分析,首次给出了针对A、B、C三种路面等级的刚构-连续梁组合体系主梁和主墩冲击系数近似计算公式,并用该公式与各国规范进行了对比分析。
     其研究结论可供该类桥梁的设计参考,也可为其他桥梁动力特性分析提供借鉴。
Currently, the research about impact coefficient of complex long-span bridge is still in exploration stage, the research carried out for the composite structure of the rigid frame and continuous beam was especially less. Almost all the researches of impact coefficient at home and abroad are confined to single factor analysis. In the General Code for Design of Highway Bridges and Culverts (JTG D60-2004), the calculation formula of impact coefficient only considers the single factor of basic structure frequency without vehicle dynamic performance and pavement unevenness. Therefore, study on the impact coefficient of composite structure of the rigid frame and continuous beam has very important academic significance and practical value.
     This paper based on a composite structure of the rigid frame and continuous beam in Shaanxi province, building 6 different models from 4 spans to 6 spans, which contains the effects of pier-bottom consolidation and pile-earth coupling. In order to discuss the sensitivity parameters of impact coefficient, three axes two-line suspension vehicle model has been used and the analysis of the orthogonal experiment has employed. The calculation divided into 24 conditions, contains nine factors including the axle frequency ratio, pavement unevenness, body quality, bridge span number, driving speed, vehicle driving mode, bridge stiffness, damping ratio and the substructure calculation. The analysis shows the deflection of girder control section, bending moment and horizontal displacement of main piers control section, the bending moment impact coefficient parameter sensitivity and its maximum assembly parameter. Based on the above factors, the maximum impact coefficient curves are given and impact coefficient range of composite structure of the rigid frame and continuous beam has been provided according to the analysis results in the maximum parameters load combinations condition. The result shows that the vehicle speed, basic structure frequency and pavement unevenness are main influencing factors for the impact coefficient. In the article, pavement unevenness is considered to be the sub-item standard, speed and basic structure frequency is the argument. By means of regression analysis, the impact coefficient approximate formulas are given for the first time to direct at A, B and C three surface levels for the girder and main piers of the composite structure of the rigid frame and continuous beam, and the formula is compared with prescripts and standards of other countries to obtain its advantages and disadvantages.
     The research conclusions can be used for the design of the rigid frame and continuous beam, and also can be used as reference for dynamic analysis in other bridges.
引文
[1]I E Harik.A M Shaabam. H Gesund United States Bridge Failures [J] Journal of Performance of Constructed Facilities,1990, (4):272-277
    [2]孙莉,刘钊.2000~2008年美国桥梁倒塌案例分析与启示[J].世界桥梁,2009(3):46-49
    [3]宋一凡,贺拴海.《弯桥结构动力性能评估分析理论与方法研究》的研究报告.长安大学,2008
    [4]周勇军,赵小星,贺拴海,宋一凡.弯钢箱梁桥的动力分析及模态试验.郑州大学学报:工学版,2005,26(4):20-24
    [5]周勇军,贺拴海,宋一凡,赵小星.基于锤击法的弯连续刚构模型桥动力试验.振动、测试与诊断,2007,27(3):212-215
    [6]Stokes G G. Discussions of a Differential Equation Related to the Breaking of Railway Bridges [J].Trans, Cambridge Phil. Soc.V 8.Part5,1896:12-16
    [7]Chatterjee P K. Datta T K et al. Vibration of continues bridges under moving vehicles [J] Journal of Sound Vibration.1994,169(5):619-632
    [8]Kolousek V etal.Civil Engineering Structures Subjected to Dynamic Load [M].SVTL, Bratislava,1967:54-58
    [9]Andersen L, Nielsen S R K, Iwankiewicz R. Vehicle moving along an infinite beam with random surface irregularities on a Kelvin foundation[J].Journal of AppliedMechanics, 2002:69-75
    [10]Kawatani M, Kobayashi Y, Takamori K. Non-stationary random analysis with coupling vibration of bending and torsion of simple girder-bridge under moving vehicle [J]. Structural Engineering Earthquake Engineering JSCE,1998,15(1):107-114
    [11]Marchesiello S, Fasana A, Garibaldi L, et al. Dynamic of multi-span continuous straight bridges subject to multi-degrees of freedom moving vehicle excitation[J]. Journal of Sound and Vibration,1999,224(3):541-561
    [12]Wang T L, Huang D Z. Cable-stayed bridge vibration due to road surface roughness [J]. Journal of Structural Engineering ASCE 1992,188(5):1354-1373
    [13]A.Wiriyachai,K.H.Chu,V.K.Garg,Bridge Impact due to Wheel and Track Irregularities [J] Journal of Engineering Mechanics Division,Vol.108,No.4,1982
    [14]A.Wiriyachai, K.H.Chu, V.K.Garg, Impact Study by Various Bridge Models[J]. Earthquake Engineering and Structual Dynamics, Vol.10, No.1,1982
    [15]Bhatti M.H.:Vertical and Lateral Dynamics Response of Railway Bridges due to Nonlinear Vehicle and Track Irregulates,Ph.D. Thesis [J].Illinois Institute of Technology, Chicago,Illinois,1982
    [16]Wang T.L., et al. Dynamics Response of Highway Tracks duo to Road Surface Roughness [J] Journal of Computers and Structures,1993,49(6)
    [17]Wang T.L.,Impact and Fatigue in Open-deck Steel Truss and Ballasted Prestressed Concrete Railway Bridge,Ph.D. Thesis [J], Illinois Institute of Technology, Chicago, Illinois,1984
    [18]Wang T.L.Impact in a Railway Truss Bridge [J], Journal of Computers and Structures, 1993,49(6)
    [19]Wang T.L,M.shahawy.Impact in Highway Prestressed Concrete Bridges [C]. Computers and Structures Vol.44, No.3,1992
    [20]Olsson M.:On the Foundational Moving Load Problems [J]. Journal of Sound and Vibration,1991,145(2)
    [21]Tanabe M.Yamada Y:Model Method for Interaction of Train and Bridge [J]. Journal of Computers and Structures,1987,27(1)
    [22]Bogaert Van:Dynamics Response of Trains Crossing Large Span Double-track Bridges [J]. Journal of Constructional Steel Research,1993,24(1)
    [23]Green M.F., Cebon D.Dynamics Response of Highway Bridges to Heavy Vehicles Loads: Theory and Experimental Validation [J]. Journal of Sound and Vibration,1994,170(1)
    [24]Piotr o, Yozo F. Interaction of Nonconservative 1DContinuum and Moving MDOF Oscillator[J]. J EngrgMesh, ASCE,2001,127(11):1082-1088
    [25]Wang T L, Huang D Z, Mohsen S. Dynamic Re-sponse of Multigirder Bridge[J]. J Struct Engrg, ASCE,1992,118(8):2222-2238
    [26]鲍卫刚,张海龙,刘菊玖.关于桥梁所承受的冲击计算方法的研究[J].桥梁建设,2000,第一期:24-26
    [27]盛国刚,彭献,李国习.连续梁桥与车桥耦合振动系统冲击系数的研究[J].桥梁建设,2003,vol.6
    [28]宋一凡,贺拴海.公路桥梁冲击系数的影响因素分析[J].西安公路交通大学学报,2001,vol.2
    [29]刘菊玖,张海龙.桥梁冲击系数反应谱的理论分析[J].公路,200,7,第七期:77-79
    [30]刘菊玖,马光瑞.桥梁冲击系数反应谱的理论分析[J].广东公路交通,2003,第一期:29-32
    [31]李玉良,孙福中,李晓红.公路桥梁冲击系数随机自变量的概率分布及冲击系数谱[J].公路,1996,vol.9
    [32]周新平.基于有限元的弯桥车桥耦合振动分析方法[D].长安大学硕士论文
    [33]陈榕峰.公路桥梁车桥耦合主要影响因素仿真分析方法研究[D].长安大学硕士论文
    [34]宋一凡,陈榕峰.基于路面不平整度的车辆振动响应分析方法[J].交通运输工程学报,2007,7(4):39-43
    [35]王亚堃.大跨度自锚式悬索桥车桥耦合振动数值分析[D].长安大学硕士论文,2008
    [36]蒋培文.基于ANSYS的高墩大跨连续刚构桥车桥耦合振动有限元数值分析方法[D].长安大学硕士论文,2009
    [37]韩万水.风——汽车——桥梁系统空间耦合振动研究[D].博士论文
    [38]韩万水,陈艾荣.风环境下大跨度斜拉桥上的车辆驾驶舒适性评价[J].中国公路学报,2008,21(2):54-60
    [39]马麟,刘健新,韩万水.基于改进谐波合成法的杭州湾跨海大桥风场模拟研究[J].郑州大学学报:工学版,2008,29(1):56-60
    [40]韩万水,陈艾荣.风-汽车-桥梁系统空间耦合振动研究[J].土木工程学报,2007,40(9):53-58
    [41]韩万水,陈艾荣.高墩大跨刚构桥施工阶段的抗风分析.同济大学学报[J]:自然科学版,2007,35(2):166-170
    [42]韩万水,陈艾荣.考虑桥塔风场效应的斜拉桥抖振时域分析[J].工程力学,2007,24(1):123-128
    [43]韩万水,陈艾荣.杭州湾跨海大桥风载内力试验及计算方法.同济大学学报[J]:自然科学版,2006,34(8):995-1000
    [44]韩万水,陈艾荣.大跨度斜拉桥抖振时域分析理论实例验证及影响因素分析[J].土木工程学报,2006,34(8):66-71
    [45]韩万水,陈艾荣.风环境下行驶于大跨度桥梁上的车辆安全评价及影响因素研究[J].空气动力学学报.
    [46]王达.基于有限元模型修正的大跨度悬索桥随机车流车—桥耦合振动分析[D].长安 大学博士论文
    [47]余志生.汽车理论[M](第四版).北京:机械工业出版社,2006
    [48]全伟.下部结构设计参数对大跨径连续刚构桥抗震性能影响分析[D].长安大学硕士论文,2004
    [49]牛蔚然,邱燕.工程寻优问题的正交分析方法及其应用[J].山东电力技术,2002,(2)
    [50]华中生,唐昊.正交试验设计方法在汽车制动系统试验设计中的应用[J].运筹与管理,2002,(12)
    [51]胡亮,杨大锦.Excel与化学化工试验数据处理[M].北京:化学工业出版社化学与应用化学出版中心,2004,212-257
    [52]李学斌,余小领,李斌.运用Excel进行正交表的构建[J].河南科技学院学报(自然科学版),2008年12月,36(4):110-113
    [53]韦勇,阳杰,容一鸣.汽车减震器阻尼系数与悬架系统阻尼比的匹配[J].武汉汽车工业大学学报,2000,22(6):22-25
    [54]肖晓春,迟世春等.地震荷载下桩土相互作用简化计算方法及参数分析[J].大连理工大学学报,2002,42(6):719-723
    [55]彭献,殷新锋,方志.变速车辆与桥梁的耦合振动及其TMD控制[J].湖南大学学报(自然科学版),2006,26(5):19-21,37
    [56]赵发章,王解军.阻尼对行车荷载下大跨桥梁振动的影响[J].冰川冻土,2004(4):461-465
    [57]黄立葵,盛灿花.车辆动荷系数与路面平整度的关系[J].公路交通科技,2006,23(3):27-30
    [58]周华飞,蒋建群,毛根海.路面不平整引起的车辆动荷载分析[J].中国市政工程,2002,3(99):10-13
    [59]于清,曹文源.不平整路面上的汽车动荷载[J].重庆交通学院学报,2003,22(4):31-34
    [60]郭成超,陶向华,王复明.车速和路面不平度特性对车路相互作用的影响[J].华北水利水电学院学报,2004,25(3):42-45
    [61]王元丰,许士杰.桥梁在车辆作用下空间动力响应的研究[J].中国公路学报,2000,13(4):38-41
    [62]严志刚,盛洪飞,陈彦江.桥面平整度对大跨度钢管混凝土拱桥车辆振动的影响[J].中国公路学报,2004,17(4):41-44
    [63]陈魁编.应用概率统计[M].北京:清华大学出版社,2006,(4)
    [64]苏金明,阮沈勇.MATLAB实用教程(第二版)[M].电子工业出版社,2008,2
    [65]张期星.直线梁桥汽车冲击系数的研究[D].华东交通大学硕士论文,2008
    [66]宋一凡.公路桥梁动力学[M].人民交通出版社,2000
    [67]张雄,王天舒.计算动力学[M].清华大学出版社,2007
    [68]王新敏.ANSYS工程结构数值分析[M].人民交通出版社,2007
    [69]邓凡平.ANSYS10.0有限元分析自学手册[M].人民邮电出版社,2007
    [70]博弈创作室.APDL参数化在限元分析技术及其应用实例[M].水利水电出版社,2004
    [71]曹雪琴.桥梁结构动力分析[M].中国铁道出版社,1987
    [72]彭献,刘子建,洪家旺.匀变速移动质量与简支梁耦合系统的振动分析[J].工程力学,2006,23
    [73]JTG D60-2004,公路桥涵设计通用规范[P].人民交通出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700