用户名: 密码: 验证码:
航天器伴随飞行保持控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以航天器伴随飞行问题为研究对象,结合伴飞航天器的任务需求,重点研究航天器伴飞运动与保持控制问题,为我国未来航天器伴随飞行技术发展提供理论基础和技术支持。
     针对基于动力学和运动学分析方法建立的伴飞相对运动模型,仿真分析了模型误差,得到了空间圆构形与当地水平投影圆构形两种特殊构形的绕飞约束及轨道参数描述,比较分析了两种建模方法所得模型,为建立航天器伴飞运动模型提供有益参考。
     针对基于相对测量数据的构形参数确定方法,建立了基于最小二乘法和Kalman滤波求解构形参数的求解方法,利用最小二乘法进行了仿真,分析表明观测组数增加,误差显著减小,为航天器伴飞构形表达式确定提供了有效手段。
     分析了不同推力模式能控性,基于简单多冲量的伴飞控制策略,伴飞航天器可以得到有效的构形保持控制,精度较高,提出了利用多次沿迹向冲量与轨道面法向冲量组合实现“伴飞到停靠”模式切换的控制策略,建立了总燃耗与始末构形参数关系,推导了控制冲量作用与相对运动构形参数的关系表达式,总结了长半轴不等的伴飞构形保持控制策略,建立了长期伴飞的保持控制流程,采用基于Lyapunov的构形保持控制方法,实现了高精度伴飞保持控制。
     建立了基于Floquet模式的编队飞行相对运动构形控制方法,比较分析了基于Floquet模式的伴飞构形保持控制方法与直接消除速度偏差方法。理论分析与仿真均表明基于Floquet模式的控制方法具有很大优势,是一种考虑长期运动、具有较强鲁棒性的控制方法。
     总之,本文的研究为航天器的伴随飞行控制方法进行了较为深入的研究,其成果将为我国未来的编队飞行任务提供参考。
In this dissertation, the problem of company flying of spacecraft is the investigated object. Combining with the mission of the tributary satellite, the motion of company flying and formation maintaining control are the emphases. It would provide the significant theory and technique foundation for the development of the future company flying of spacecraft.
     The relative motion model of company flying is derived based on dynamics and kinematics analysis method.Encirclement flying constraint and orbit constraint of two special formations, one in space circle and the other in circle of local horizontal projection, are obtained by numerical calculation analysis of model error. Analysis of the model obtained from two modeling methods supplies useful reference for deriving motion model of tributary satellite.
     Formation parameter determination method based on relative measure data is proposed. Based on Least Square and Kalman Filter, method of solving formation parameter is derived. Analysis of numerical results obtained from Least Square shows that error decreases markedly along with increase of the number of measure data. Effect method is supplied for the determination of spacecraft companying formation.
     Controllability of different thrust patterns are analyzed, and based on a simple multi-impulse with fly control strategies, the effect formation maintaining control of the tributary spacecraft is obtained, and a high accuracy is proposed. The control strategy with "company flying to docking" mode switching is produced which using a combination of multiple impulse along the tracks and normal to the orbital plane. The relationship between the total fuel consumption and the configuration parameters is established. The expression of control impulse and the relative motion configuration parameters is derived. Based on the form performances, the configuration maintain strategies with different semi-axis are summarized, and the longtime formation maintaining control process is derived. In conclusion, a high-precision company flying maintaining control primary is obtained, using Lyapunov formation maintaining control method.
     Based on the Floquet pattern, the formation maintaining control method of relative motion of formation flying is derived. The formation maintaining control method of company flying base on the Floquet pattern and the method of eliminating the velocity error directly are analyzed comparatively. Theory analysis and simulation results show that the control method based on the Floquet pattern has great advantage and strong robustness, which could adapt to longtime company flying.
引文
[1] http://www.vs.afrl.af.mil/VSD/TechSat21
    [2]林来兴主编.微小卫星编队飞行及应用论文集[C].北京:国家高技术航天领域专家委员会微小卫星技术组,2000
    [3]美国国防部.空间技术指南.863航天领域专家委员会编译[M],2001
    [4] http://spacetechnology3.jpl.nasa.gov/indexm.html
    [5] Kim Luu, et al. University Nanosatellite Distributed Satellite Capabilities to Support TechSat 21[C]. AIAA/USU Small Satellite Conference, Logan UT, 23-26 Aug 99
    [6] Maurice M,Howard S,Joe M,Dace W, et al.University Nanosatellite Program.IAF Symposium,Redondo Beach[J],CA,April 19-21,1999
    [7] http:// www. mdacorporation.com/news/pr/pr2002021401.html
    [8] Massonnet, D., Thouvenot, E., Ramongassie, S., et al. A Wheel of Passive Radar Microsats for Upgrading Existing SAR Projects. In: Proceedings of IGARSS 2000, Honolulu,Hawaii, USA.
    [9] Fiedler H,.Krieger G,Mittermayer J.Comparison of Several Bostatic SAR Configuration for Spaceborne SAR Interferometry,IGARSS01,2001.
    [10] A.Moreira et al.TanDEM-X : A TerraSAR-X Add-on Satellite for Single-Pass SAR Interferometry.IGARSS,Achorage,USA,2004
    [11] M.Martin-Neira,C.Mavrocordatos,E.Colzi, study of a Constellation of Bistatic Radar Altimeters for MesoscaleOcean Applications[J].IEEE Trans.on Geosc.and R.S.,1898-1904, 1998
    [12]高云峰,宝音贺西,李俊峰.卫星编队飞行中C-W方程与轨道根数法的比较[J].应用数学和力学,2003.8
    [13]刘辉、李俊峰.卫星编队飞行的协同控制[J].清华大学学报,2006.11
    [14]孟云鹤,戴金海.近圆轨道卫星编队捕获技术研究[J].空间科学学报,2006,26(2):148-154.
    [15]孟云鹤.近地轨道航天器编队飞行控制与应用研究[D].国防科技大学研究生院,2006.6
    [16]童雄辉,才满瑞,齐艳丽,陈允宗.美俄空间攻防武器发展趋势[J].导弹与航天运载技术,2004.6
    [17]王志刚,陈士橹.伴随卫星在空间站系统中的应用[J].中国航天,2007.1
    [18]安雪滢.椭圆轨道航天器编队飞行动力学及应用研究[D].国防科技大学研究生院,2006.12
    [19] H.Schaub, K. T. Alfriend, Impulsive Spacecraft Formation Flying Control to Establish Specific Mean Orbit Elements[J]. In AAS Space Mechanics Specialist Meeting, Clearwater, Florida, Jan 23–26, 2000, Paper No. AAS-00-113.
    [20] Ulybyshev, Y.Long-Term Formation Keeping of Satellite Constellation Using Linear Quadratic Controller[J].Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, 1998, pp. 109-115.
    [21] Guibout, V. M., and Scheeres, D. J. Formation Flight with Generating Functions: Solving the Relative Boundary Value Problem[J].AIAA Paper 2002-4639, Aug. 2002.
    [22] H. Schaub. Spacecraft Relative Orbit Description Through Orbit Element Differences[C]. 14th U.S. National Congress of Theoretical and Applied Mechanics, Blacksburg, Virginia, June 23–28, 2002.
    [23] H.Schaub.Incorporating Secular Drifts into the Orbit Element Difference Description of Relative Orbits[C]. AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, Feb. 9–13, 2003, pp. 239–258.
    [24] S. R. Vadali, and S. Vaddi .Orbit Establishment For Formation Flying of Satellites[J]. Advances in the Astronautical Sciences, Vol. 105, Part I, 2000, pp. 181–194,AAS 00-111.
    [25] S.R.Vadali, H.Schaub, and K.T.Alfiend.Initial Conditions and Fuel-Optimal Control for Formation Flying of Satellites[C], Proceedings of the AIAA GN&C Conference, Aug.9–12 1999. Paper No. AIAA 99-4265.
    [26] H.Schaub, K. T. Alfriend. Impulsive Spacecraft Formation Flying Control to Establish Specific Mean Orbit Elements[C]. In AAS Space Mechanics Specialist Meeting, Clearwater, Florida, Jan 23–26, 2000, Paper No. AAS-00-113.
    [27] Mailhe, L.Schiff, C.Hughes, S. Formation Flying In Highly Elliptical Orbits Initializing the Formation[C].Proceedings of the International Symposium on Space. Dynamics, Biarritz, France, CNES, June 26-30 2000.
    [28] Nico Sneeuw, Hanspeter Schaub.Satellite clusters for future gravity field missions[C]. IAG International Symposium Gravity, Geoid and Space Missions Porto, Portugal Aug. 30– Sept. 3, 2004.
    [29] Dorigo, M. Parallel Ant System: An experimental study. Unpublished manuscript.1993.
    [30] M. Dorigo, F. Glover (Eds.), New ideas in optimization[M]. Maidenhead, UK: McGraw-Hill.
    [31] Dorigo, M., Gambardella, L. M.. A study of some properties of Ant-Q. In H.-M. Voight, W. Ebeling, I. Rechenberg, & H.-P. Schwefel (Eds.), Proceedings of PPSN-IV, 1996.
    [32] Dorigo, M., Gambardella, L. M. Ant colonies for the traveling salesman problem[J]. BioSystems, 43, 73–81.1997.
    [33] Dorigo, M., Gambardella, L. M. Ant Colony System: A cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1(1), 53–66. 1997.
    [34] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant Algorithms for Discrete Optimization. 1999 Massachusetts Institute of Technology Arti.cial Life 5:137–172 1999.
    [35] Marco Dorigo, Thomas Stutzle.The Ant Colony Optimization Metaheuristic:Algorithms, Applications, and Advances. Metaheuristics Handbook, F. Glover and G. Kochenberger (Eds.), International Series in Operations Research and Management Science, Kluwer, 2001.
    [36] S. Ramongassie, L. Phalippou, E. Thouvenot, D. Massonnet. Preliminary Design of the Payload for the Interferometric CartWheel, IGARSS 2000
    [37] D. Massonet.Capabilities and Limitations of the Interferometric Cartwheel[J].IEEE Trans.Geosci. Remote Sensing, vol. 39, no. 3, 2001
    [38] Fiedler H,.Krieger G.,Mittermayer.F.Jochim, M., Krieger ,Moreira.A.Analysis of Bistatic Configurations for Spaceborne SAR Interferometry,EUSAR,2002
    [39] Krieger G., Fiedler H., Mittermayer J.,et al. Analysis of Multistatic Configurations for Spaceborne SAR Interferometry[J].IEE Proceedings– Radar, Sonar, Navigation, Vol. 150, No. 3, pp. 87-96, 2003.
    [40] Fiedler, H., Krieger, G. Formation Flying Concepts.Intermediate Presentation to ESA TS-SWESA- SY-0002, Toulouse, June 2003.
    [41] Zink, M., Krieger, G., Amiot, T.Interferometric Performance of a Cartwheel Constellation for TerraSAR-L.Fringe Workshop, Frascati, Italy, 2003.
    [42] Fiedler, H., Krieger, G., Jochim, F.Analysis of TerraSAR-L Cartwheel constellations– Amendment. Technical Note, DLR, Oberpfaffenhofen, November 2003.
    [43] V. Sokol.RADARSAT 2/3 Orbit Report[R].MacDonald Dettwiler & Associates, January 2002.
    [44] O. Montenbruck, S. D’Amico.Space Segment Requirements for TanDEM-XFormation Flying.DLR-GSOC, TN 04-09, 2004.
    [45] Simone D’Amico,Oliver Montenbruck, Christian Arbinger, Hauke Fiedler.Formation Flying Concept for Close Remote Sensing Satellites[C].15th AAS/AIAA Space Flight Mechanics Conference Copper Mountain, Colorado January 23-27, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700