用户名: 密码: 验证码:
面向注塑机械的四自由度机械臂研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国注塑机产业的迅速发展,对注塑机的自动化程度要求越来越高,现代化的注塑机都开始配备机械手。目前,注塑机械手都是针对卧式注塑机开发的,很难被用于立式注塑机;此外,注塑机开模周期变短对注塑机机械手的响应速度和定位精度提出了更高的要求。传统注塑机械手多采用气压或直流伺服驱动。气压驱动速度快,但运动平稳性差,定位精度低;直流伺服调速性能好且定位精度高,但结构复杂。交流伺服作为一种日渐成熟的驱动技术,其最突出特点就是快速响应和精确定位,且体积小、结构简单,被广泛用于机器人及医疗器械等需要快速精确定位的场合。
     考虑到上述现状,本课题定位于为立式注塑机研制一款采用交流伺服驱动的注塑机机械臂,使其能够快速精确定位,满足立式注塑机的工作需求。课题中,注塑机械臂系统主要包括机械系统和控制系统两大部分。
     在机械系统方面,本文首先对机械臂的机械本体结构及关节传动系统进行设计,在对整体结构进行优化分析后试制了物理样机。其次,利用MATLAB对机械臂的运动学进行分析,建立机械臂关节变量(位置及速度)与末端执行机构变量(位置及速度)之间的关系,在此基础上确定出机械臂的工作空间。
     在控制系统方面,课题采用永磁同步电机作为关节驱动电机,对关节交流伺服系统的硬件控制电路进行设计。同时,以PID控制策略和磁场定向空间矢量控制策略为基础,对关节伺服系统的控制算法进行研究,实现了关节伺服系统中机械环和电流环的同周期控制,提高关节伺服系统的响应速度和定位精度。
     最后,对整个机械臂系统进行了组装和调试,通过关节位置环控制实验和关节速度环控制实验,测试了整个机械臂系统的性能。实验证明,课题中设计的机械臂能够按照给定的位置或速度指令平稳精确地运行,达到了课题的研究目的。
With fast development of the injection molding machine industry in our country, the requirement of automation level of the injection molding machine is tend to higher and higher, and more and more advanced injection molding machine begin to equip machine manipulator. Presently, the machine manipulator is mainly designed for horizontal injection molding machine and it is hard to apply for vertical injection molding machine; Furthermore, the action cycle of the injection molding machine becomes shorter, which requires the machine manipulator of the injection machine must have high speed response and high positioning precision. The traditional drive mode of the injection molding machine is gas drive or dc servo drive. Gas drive has a good speed response, but it has poor motion stability and positioning precision; dc servo drive has a good speed response and positioning precision, but its structure is too complicated. As a new drive mode, ac servo is extensively applied in the robot / medical equipment and other fields where fast speed response and high positioning precision are needed for its excellent speed response and positioning precision.
     Considering the actuality mentioned above, the paper mainly focus on the development of manipulator driven by ac servo for vertical injection molding machine, and the manipulator should has the ability of fast and precise positioning. In the subject, manipulator arm system of the injection molding machine mainly includes two parts: machine system and control system.
     For machine system, firstly, the mechanical noumenon and the joint transmission mechanism of the manipulator were designed, and the physical prototype was made after the optimization and analysis of the whole mechanical structure. And then, kinematics analysis was completed by using MATLAB software and the relationship between the joint variable (position or speed) and actuating mechanism variable (position or speed) was build, based on which the working space was also confirmed.
     For control system, permanent magnet synchronous motor was used to drive the joints of manipulator, and the hardware control circuit of the joint ac servo system was designed. At the same time, based on the PID control strategy and field-oriented vector control strategy, the control algorithm of the joint ac servo system was researched and the same cycle control was achieved in machine-loop and current-loop, which greatly improved the response speed and positioning precision of the joint servo system.
     At last, the whole manipulator system was assembled and debugged, and experiments for the joint position loop control and joint speed loop control were implemented to test the performance of the manipulator. The experiment results indicated that the manipulator can work placidly and accurately, which validates that the manipulator reached the aim of the subject.
引文
1廖正品.中国塑料工业“十五”回顾与“十一五”发展思路.中国塑料橡胶.2006, (6-7):20-23.
    2王淑湘等.塑料机械.机械工业年鉴.北京机械工业出版社.2004:149-150.
    3彭斐.注塑机专用机械手控制器设计.机电工程.2006,23(2):16-18.
    4王茂兵,郑晓存.注塑机专用机械手的研究和应用.中国制笔.2007,(1):34.
    5杨建平,边际.机械手自动给料系统.长春工业大学学报.2004,25(3):66-68.
    6徐杰,刘鸿飞,郗安民,徐行.异步伺服驱动的直角坐标机械手控制系统设计与实现.机器人技术与应用.2003,(6):38-41.
    7万志强.注塑机机械手控制系统设计.南昌大学硕士学位论文.2007:1-4.
    8钟汉如.注塑机控制系统.化学工业出版社.2003.
    9王亚辉,何耀民.机器人的应用现状及发展趋势.经济师.2005,(8):246-247.
    10李勇成.基于PLC的步进电机控制在工业机械手中的应用.科技信息. 2008, (18):30-31.
    11马光,申桂英.工业机器人的现状及发展趋势.组合机床与自动化加工技术. 2002,(3):48-50.
    12陈佩云,金茂菁,曲忠萍.我国工业机器人发展现状.机器人技术与应用.2001,(1):2-4.
    13张杨林.国内工业机器人市场及发展趋势.大众科技.2006,(6):191-192.
    14牟文杰.机械手在注塑生产中的应用.中国塑料.2000,14(10):86-89.
    15许振伟.永磁交流伺服系统及其控制策略研究.浙江大学博士学位论文. 2003:1-8.
    16林伟杰.永磁同步电机伺服系统控制策略的研究.浙江大学博士学位论文. 2005:2-4.
    17黄声华,吴芳.永磁交流伺服系统国内外发展概况微特电机.2008, (5):52-54.
    18 LI Wei. Design of a Hybrid Fuzzy Logic Proportional plus Conventional Integral-derivative Controller. IEEE Trans on Fuzzy Systems.1998, 4(6): 449-463.
    19 Singh B, etc. Hybrid Fuzzy Logic Proportional plus Conventional Integral Derivative Controller for Permanent Magnet Brushless DC Motor. Proceedings on Industrial Technology.2004, (3): 185-191.
    20 Ghandakly A, OwedM R. Design of an Adaptive Speed Controller for DC Brushless Motors. Proceedings on Industry Applications Conference.1995, (2): 626-633.
    21焦竹青,屈百达,徐保国.一种具有高稳定性能的新型永磁同步电机调速系统.微电机.2007, 40(3):44-46.
    22梁迎春,吴海涛,林益平.永磁同步电动机研究现状评述.微电机.2007, (11):51-53.
    23 S.Devasia. Should Model-based Inverse Inputs be used as Feed-forward Under Plant Uncertainty. IEEE, Trans. Automat. Control. 2004, 47(11): 1865-1870.
    24 D. Croft,G. Shedd,S. Devasia. Creep, Hysteresis and Vibration Compensation for Piezoactuators.Atomic Force Microscopy Application.2003, 123(35):35-43.
    25 Zhong.L, etc. Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives. IEEE Transactions on Power Electronics. 1997,12 (3):528-36.
    26窦儒振.高性能永磁交流伺服系统及其新型控制策略的研究.天津大学博士学位论文.2002:7-8.
    27孙丹.高性能永磁同步电机直接转矩控制.浙江大学博士学位论文.2004:132-134.
    28 Takahashi, etc. A New Quick-response and High-efficiency Control Strategy of an Induction Motor. IEEE Trans and Application.1986, 22(5):820-827.
    29 Depenbrock, M. Direct Self-control (DSC) of Inverter Fed Induction Machine. 18th Annual IEEE Power Electronics Specialists Conference.1987:632-641.
    30 Tiitinen, P. M.Surandra. The Next Generation Motor Control Method, Direct Torque Control. In Proceedings of the 1996 International Conference on Power Electronics.1996, (7):37-43.
    31 Griva.G, etc. Wide Speed Range DTC Drive Performance with New Flux Weakening Control for Induction Motor Drives. 29th Annual IEEE Power Electronics Specialists Conference.1998, (2):1599-1604.
    32 Damiano, A, etc. An Adaptive Speed Sensorless Observer for Induction Motor Drives. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. 1998, 3(1): 592-596.
    33 Zolghadri, M.R., etc. Direct Torque Control System for Synchronous Machine. 7th European Conference on Power Electronics and Applications. 1997, (3):694-699.
    34 Zhong, L, etc. Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives. IEEE Transactions on Power Electronics. 1997, 12(3): 528-536.
    35 Rahman, M.F., etc. A Direct Torque Controlled Permanent Magnet Synchronous Motor Drive Without a Speed Sensor. In IEEE International Electric Machines and Drives Conference. 1999, (1):123-125.
    36 Hague, M.E., L. etc. A Sensorless Speed Estimator for Application in a Direct Torque Controller of an Interior Permanent Magnet Synchronous Motor Drive, Incorporating Compensation of Offset Error. 33rd Annual IEEE Power Electronics Specialists Conference. 2002, 1(1):276-81.
    37 Rahman, M.F., etc. A Direct Torque-controlled Interior Permanent-magnet Synchronous Motor Drive without a Speed Sensor. IEEE, Transactions on Energy Conversion.2003, 18(1):17-22.
    38 Oskar Wallmark, etc. Sensorless Control of Salient PMSM Drives in the Transition Region. IEEE, Transactions on Industrial Electronics. 2006, 53(4):1179-1187.
    39 Shinji Shinnaka. New Sensorless Vector Control Using Minimum-Order Flux State Observer in a Stationary Reference Frame for Permanent-Magnet Synchronous Motors. IEEE, Transactions on Industrial Electronics. 2006, 53 (2):388-398.
    40 Mohamed Boussak. Implementation and Experimental Investigation of Sensorless Speed Control with Initial Rotor Position Estimation for Interior Permanent Magnet Synchronous Motor Drive. IEEE, Transactions on Power Electronics. 2005, 20(6):1413-1422.
    41 Jul-Ki Seok, etc. Sensorless Speed Control of Non salient Permanent-Magnet Synchronous Motor Using Rotor-Position-Tracking PI Controller. IEEE, Transactions on Industrial Electronics. 2006, 53(2):399-405.
    42 Huang, M.C, etc.The Comparison of Sensorless Estimation Techniques for PMSM between Extended Kalman Filter and Flux-linkage Observer. Applied Power Electronics Conference and Exposition. 2006, (19-23):654-659.
    43 Roth, B. Performance Evaluation of Manipulators from a Kinematics Viewpoint. NBS Special Publications.1975, (459):39-61.
    44 Longman. R. Satellite-mounted Robot Manipulators—New Kinematics and Reaction Moment Compensation. International Journal of Robotics Research. 1997, 6(3):87-103.
    45 Dubowsky. S. The Kinematics, Dynamics and Control of Free-flying and Free-floating Space Robotic Systems. IEEE Transactions on Robotics & Automation. 1993, 9(5):531-543.
    46 S.K.Agrawal, A.Fattah. Reactionless Space and Ground Robots Novel Designs and Concept Studies. Mechanism and Machine Theory.2004, 39(1):25-40.
    47 M. Annapragada, S.K.Agrawal. Design and Experiments on a Free-floating Planar Robot for Optimal Chase and Capture Operations in Space. Robotics and Autonomous System.2002, 26(4):281-297.
    48杨新刚.弧焊机器人结构设计与运动学、轨迹规划研究.西安理工大学硕士论文.2005:31-35.
    49 Y. X. Su, C. H. Zheng, B. Y. Duan. Automatic Disturbances Rejection Controller for Precise Motion Control of Permanent-Magnet Synchronous Motors. IEEE Transactions on Industrial Electronics. 2005, 52(3):814-823.
    50 Seok-Beom Lee. Closed-Loop Estimation of Permanent Magnet Synchronous Motor Parameters by PI Controller Gain Tuning. IEEE Transactions on Energy Conversations. 2006, 21(4):863-870.
    51 Calogero Cavallaro, etc. Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches. IEEE Transactions on Industrial Electronics. 2005, 52(4):1153-1160.
    52 Jong Sun Ko, Yong-Jae Lee. In-Dong Kim .Precision Speed Control of PMSM using Disturbance Observer and System Parameter Compensator. 2003 IEEE 34th Annual. 2003, 1(15-19):251 -255.
    53 Xie Yue, King-Jet Tseng. Observer-Based Robust Adaptive Control of PMSM with Initial Rotor Position Uncertainty Industry Applications. IEEE Transactions. 2003, 39(3):645–656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700