用户名: 密码: 验证码:
转台自校正PID控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天技术的迅猛发展,对惯性导航设备性能的要求也不断提高。而转台作为其主要测试与仿真设备,相应地对其性能的要求也不断地提高。
     本文采用古典控制理论和极点配置自校正PID控制理论分别进行了转台控制系统设计,同时采用了以S型曲线算法作为转台的牵引输入。
     由于古典控制理论结构简单、设计方便,在实际控制中仍有着广泛的应用。本文应用古典控制理论中的经典PID方法设计了转台的位置回路和速率回路。其中为了调试的方便,在速率回路只采用比例环节,位置回路则采用比例、积分和微分的控制方法,并在位置回路引入了滤波器。对此系统的仿真分析说明了这种方法仍然是转台控制系统中行之有效的控制方法。
     在实际控制系统中,由于各种影响,被控对象往往存在不确定性。为了克服对象模型的不确定性,研究了自校正极点配置PID控制方法。利用最小二乘的方法在线辨识被控对象,同时实时改变控制器的参数。仿真结果证明这种方法具有良好的跟踪性能和较强的鲁棒性。
     转台的运行需要较好的平稳性,大的阶跃会造成系统控制量的输出饱和。本文详细地研究了转台的牵引输入,采用S型曲线算法的方法作为转台的牵引输入,从而避免了大阶跃问题。此牵引输入法在转台的实际控制中得到了良好的控制效果。
With the rapid development of aeronautic and astronautic technologies, the performances of the inertial navigation set need to be improved. Accordingly, the performances of the turn-table used for the testing and simulation of the inertial navigation set, also need to be improved.
     In this paper, turn-table control systems are designed separately with classical control theory and pole-assignment self-tuning PID control theory. Meanwhile, The S-curve algorithm is put forward and used as the track input of turn-table.
     Classical control theory is still widely used nowadays for its simplicity and convenience. Speed loop and position loop are both designed with traditional PID control theory. For convenience, only proportion is being used in the speed loop. Proportion, integral and differential are used, and low-pass filter is imported in the position loop. The result of simulation verifies its efficiency.
     However, in practical control systems, there’s always some uncertainty in the plant. In order to overcome the uncertainty, the pole-assignment PID control theory is proposed. At the same time, the least square theory is used to identify the plant in the real-time. And parameters of the controller are changed correspondingly. The result of simulation proves that self-tuning PID-controller based on pole-assignment control theory has good tracking and robust capacity.
     Good stability is needed while turn-table is running. The output of the controller will be saturated if a large step is input. The S-curve algorithm is elaborated here. The algorithm is used as the track input of turn-table. So the problem of large step is avoided. The result of application confirms its availability.
引文
1姜复兴,庞志成.惯导测试设备原理与设计.哈尔滨:哈尔滨工业大学出版社, 1998
    2王广雄.控制系统设计.北京:宇航出版社, 1992
    3梅晓榕.自动控制元件及线路.哈尔滨:哈尔滨工业大学出版社, 2005
    4李友善.自动控制原理.北京:国防工业出版社, 2005
    5韩曾晋.自适应控制.北京:清华大学出版社, 1995
    6赵长安,王子才.鲁棒控制系统.北京:宇航出版社. 1991
    7董锡军,姚郁,李书训.电动转台鲁棒控制系统设计.航天控制. 1999,4: 38-44
    8陶永华,尹怡欣,葛芦生编著.新型PID控制系统及其应用.北京:机械工业出版社, 1998
    9刘金琨编著.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003.1
    10谢新民,丁锋编著.自适应控制系统.北京:清华大学出版社, 2002
    11张云生,祝晓红编著.自适应控制器设计及应用.北京:国防工业出版社, 2005.5
    12李清泉.自适应控制系统理论、设计与应用.北京:科学出版社, 1990
    13徐湘元编著.自适应控制理论与应用.北京:电子工业出版社, 2007.1
    14梅生伟,申铁龙,刘康志编著.现代鲁棒控制理论与应用.北京:清华大学出版社, 2003
    15陈伯时编著.电力拖动自动控制系统.北京:机械工业出版社, 2003.7
    16李华德编著.交流调速控制系统.北京:电子工业出版社, 2003.3
    17陈艳威.单轴速率摇摆台的研制.哈尔滨工业大学硕士学位论文. 2006,6
    18王坚.三轴转台的自适应控制.哈尔滨工业大学硕士学位论文. 2007,7
    19钟于义.超低速转台控制方法的研究与实现.哈尔滨工业大学硕士学位论文. 2007,7
    20毛明瑞.转台自动化测试系统的研制.哈尔滨工业大学硕士学位论文. 2006,06
    21赵建亚.基于DSP的转台伺服控制的设计与实现.哈尔滨工业大学硕士学位论文. 2006,6
    22周耀兵.三轴转台伺服控制研究.哈尔滨工程大学硕士学位论文. 2007,1
    23柴晓辉.三轴转台伺服系统设计.哈尔滨工程大学硕士学位论文, 2007,1
    24魏军涛.双轴转台自适应控制系统设计.哈尔滨工业大学硕士论文. 2003,7
    25张鹏.自校正PID及其在加弹机温控器中的应用研究.浙江大学硕士学位论文. 2002, 6
    26吴振顺,肖原.零极点配置智能PID控制器在系统控制中的应用.哈尔滨工业大学学报. 2008,1(1): 54-57
    27 E. C. Pondicherry. An auto tuning robust speed control of Permanent Magnet Brushless DC motor. Power Electronics, 2006. IICPE 2006. India International Conference on Publication Date: 19-21 Dec. 2006
    28 M. Kubalcik, V. Bobal. Adaptive control of three - tank - system: Comparison of two methods. Control and Automation, 2008 16th Mediterranean Conference on 25-27 June 2008 Page(s): 1041– 1046
    29 V. Bobal, P. Chalupa, P. Dostal. Application of polynomial methods for design of adaptive decentralized control. Computer Aided Control Systems Design, 2004 IEEE International Symposium on 4-4 Sept. 2004 Page(s):115 - 120
    30 G. R. Duan, H. H. Yu. Robust pole assignment in high-order descriptor linear systems via proportional plus derivative state feedback. Control Theory & Applications, IET. Volume 2, Issue 4, April 2008 Page(s):277– 287.
    31 H. S. Lee, M. Tomizuka. Robust Motion Controller Design for High-accuracy Positioning Systems. IEEE Transactions on Industrial Electronics, 1996,43(1):48~55
    32 T. Umeno, Y. Hori. Robust Speed Control of DC Servomotors Using Modern Two Degrees-offreedom Controller Design. IEEE Transactions on Industrial Electronics, 1991, 38(5): 363~368
    33 B. Yao, M. Al-Majed, M. Tomizuka. High Performace Robust Motion Control of Machine Tools: an Adaptive Robust Control Approach and Comparative Experiments. IEEE /ASME Trans.Mechatronics, 1997, 2(2): 63~76
    34 H. B. Kazemian, Comperative study of a learning fuzzy PID controller and a self-tuning controller, ISA Transactions 40 (2001), pp. 245–253
    35 K. Z. Tang, S. N. Huang, K. K. Tan, T. H. Lee. Combined PID and adaptive nonlinear control for servo mechanical systems.Mechatronics, Volume 14, Issue 6,July 2004, Pages 701-714
    36 S. Bhattacharya, A. Chatterjee, S. Munshi. A new self-tuned PID-type fuzzy controller as a combination of two-term controllers. ISA Transactions, Volume 43, Issue 3, July 2004, Pages 413-426
    37 K. K. Tan, S. N. Huang, H. F. Dou, T. H. Lee, S. J. Chin, S. Y. Lim. Adaptive robust motion control for precise trajectory tracking applications. ISA Transactions, Volume 40, Issue 1, January 2001, Pages 57-71
    38 H. L. Ho, A. B. Rad, C. C. Chan, Y. K. Wong.Comparative studies of three adaptive controllers.ISA Transactions, Volume 38, Issue 1, January 1999, Pages 43-53
    39黄艳,李家霁,于东等. CNC系统S型曲线加减速算法的设计与实现.制造技术与机床, 2005(3): 55-59
    40郭新贵,李从心. S曲线加减速算法研究.机床与液压, 2002(5): 60-62
    41李晓辉.数控系统柔性加减速控制方法研究及软件开发.浙江大学硕士学位论文. 2007,5
    42 D. N. Kim, I. M. Chen, Ng. Teck-Chew Planning algorithms for s-curve trajectories[J].Adbanced intelligent mechatronics, IEEE Transaction on, 4-7 Sept. 2007 Page(s):1–6
    43 K. H. Rew, K. S. Kim. Using asymmetric S-curve profile for fast and vibrationless motion[J]. Control, Automation and Systems, International Conf- erence on, 17-20 Oct. 2007 Page(s):500–504
    44 K. Yamada, S. Komada, M. Ishida, T. Hori, Decision and Control, 1996,Proceedings of the 35th IEEE. Volume 3, 11-13 Dec. 1996 Page(s):3252 - 3257 vol.3
    45 W. H. Chen; Disturbance observer based control for nonlinear systems. Mechatronics,IEEE.ASME Transaction on Volume 9, Issue 4, Dec. 2004 Page(s):706-710
    46 J. N. Teoh, C. Du, G. Guo, L. Xie; Rejecting high frequency disturbances with disturbance obserber and phase stabilize control. Mechatronics, Volume 18, Issue 1, February 2008, Pages: 53-60
    47 K. Ohishi; Realization of fine motion control based on disturbance observer. Advanced Motion Control, 2008.AMC '08.10th IEEE International Workshop on
    26-28 March 2008 Page(s):1 - 8
    48 S. M. Baek, T. Y. Kuc; An adaptive PID learning control of DC motors. Systems, Man, and Cybernetics, 1997. 'Computational Cybernetics and Simulation'. 1997IEEE International Conference on Volume 3, 12-15 Oct. 1997 Page(s):2877 - 2882 vol.3
    49 M. H. Moradi; New techniques for PID controller design. Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on Volume 2, 23-25 June 2003 Page(s):903 - 908 vol.2
    50 P. J. Gawthrop; Self-tuning PID control structures.Getting the Best Our of PID in Machine Control (Digest No.: 1996/287), IEE Colloquium on 24 Oct. 1996 Page(s):4/1 - 4/4
    51 S. Puntunan, M. Parnichkun; Self-tuning precompensation of PID based heading control of a flying robot.Advanced Robotics and its Social Impacts, 2005. IEEE Workshop on 12-15 June 2005 Page(s):226 - 230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700