用户名: 密码: 验证码:
量子环面上无限维李代数的结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩张仿射李代数(简写为EALA)是一类重要的李代数,它包含了我们熟知的有限型和仿射型Kac-Moody代数.这类李代数最初由文[H-KT]的作者引进研究,并被称为拟单李代数.随后,文[BGK]的作者对单边情形拟单李代数进行了详细研究.在文[AABGP]中,作者引进半格的概念,并对扩张仿射根系进行了分类,同时也给出了扩张仿射李代数的具体实现.和仿射Kac-Moody代数不同的是,扩张仿射李代数的坐标代数不但可以是多变量罗朗多项式环,还可以是某些特殊的交错代数,若当代数以及量子环面代数.
     量子环面代数作为罗朗多项式代数的非交换化的推广,已被很多学者进行了研究,如[P],[KPS],[McP]等.从量子环面C_q和它的导子代数Der(C_q)出发,可以构造很多重要的李代数.例如,在文[BGK]中,作者运用量子环面和Der(C_q)的一个由部分特殊导子组成的子代数实现了A型的扩张仿射李代数.本文从两个变量的量子环面C_q出发,讨论了C_q的斜导子李代数以及斜导子李代数的一类扩张得到的无限维李代数的结构性质.
     设R~2是二维欧氏空间,Z~2是R~2中的一个格.由映射f:Z~2×Z~2→C~*,f(a,b)=q~(a2b1-a1b2),a=(a1,a2),b=(b1,b2)∈Z~2,确定的Z~2的子加群rad(f)={a∈Z~2|f(a,b)=1,(?)b∈Z~2}称为f的根基.设q∈C~*,C_q:=C_q[x_1~(±1),x_2~(±1)]是结合于矩阵(?)的二秩量子环面,它是含单位元1的结合代数.C_q的导子代数Der(C_q)的一个子代数B=span_C{x~a(a2d1-a1d2),(0,0)≠a∈rad(f)}(?) span_C{adx~r,r∈Z~2,r(?)rad(f)}称为C_q的斜导子李代数,其中d_2=(?),i=1,2是C_q的度导子.当q=1和q不是单位根时,B分别同构于Virasoro-like代数和Virasoro-like代数的q-类似代数.作李代数的半直积(?)(q)=B(?)C_q,其中C_q是(?)(q)的理想.这个李代数可以看成是一阶Heisenberg-Virasoro代数的二阶推广.记L(q)=[(?)(q),(?)(q)],我们有(?)(q)=L(q)(?)C,其中C是(?)(q)的中心.本文主要讨论了当q≠1是p次本原单位根时,李代数L(q)的自同构群,导子代数,泛覆盖以及李代数B的Leibniz中心扩张和不变对称双线性型.具体内容组织如下:
     在第一章中,我们首先确定了李代数L(q)的自同构群,并由此得到L(q)的自同构群.主要结论是:该结果推广了[XLT],[ZhT]的结果.
     在第二章,我们计算了L(q)到它的伴随模的导子,结论为:Der(L(q))=Innder(L(q))(?) Outder(L(q)),其中dim_C Outder(L(q))=5.
     在第三章,我们给出了L(q)的泛覆盖(?),它是由L(q)的四个线性无关的C值2-上循环确定的四维覆盖中心扩张.
     在第四章中,我们计算了斜导子李代数召关于平凡模C的Leibniz二上同调群HL~2(B,C),发现该群与B的二上同调群相同,具体结论为HL~2(B,C)=CB_1+CB_2.接着证明了B的所有不变对称双线性型组成的向量空间S(B,C)是一维的,运用这个结果和文[HPL]的一个推论,我们又直接推出HL~2(B,C)=H~2(B,C).
The extended affine Lie algebras (EALA for short) are an important class of Lie algebras which includes the well-known Kac-Moody Lie algebras of finite and affine type. These kinds of Lie algebras were first introduced in the paper [H-KT], and called the quasisimple Lie algebras. In [BGK], the authors studied the quasisimple Lie algebras of simply laced cases. In the book [AABGP], the authors used the concept of a semilattice to classify the extended affine root systems, and they providedconcrete realization of EALA's as well. Different from the affine Kac-Moody Lie algebras,the coordinate algebras of EALA's not only can be the Laurent polynomial algebras of multiple variables, but also can be alternative algebras, Jordan algebras and the quantum torus.
     The quantum torus, which are the non-commutative generalization of the Laurent polynomial rings, have been studied by many researchers, such as [P],[KPS],[McP]. From the quantum torus C_q and its derivation algebra Der(C_q), one can construct many important Lie algebras. For instance, the authors in [BGK] realized the EALA's of type A by using the quantum torus along with Lie subalgebras of Der(C_q). In this thesis, we mainly discuss the structure properties of some infinite dimensional Lie algebras, which are the extension of the skew derivation Lie algebras arising from the quantum torus in two variables.
     Let R~2 be the 2-dimensional Euclidean space. Z~2 is a lattice in R~2.Let f: Z~2×Z~2→C~* be the map defined by f(a,b) = q~(a_2b_1-a_1b_2),where a = (a_1,a_2),b= (b_1,b_2)∈Z~2.The additive subgroup rad(f)={a∈Z~2|f(a,b)= l,(?)b∈Z~2} is called the radical of f.Let q∈C~*,and C_q:=C_q[(?),(?)] be the quantum torusof rank two associated to the matrix (?).It is an associative algebra withunity. The subalgebra of Der(C_q)B=span_C{x~a(a_2d_1-a_1d_2),(0,0)≠a∈rad(f)}(?)span_C{adx~r,r∈Z~2,r(?)rad(f)}is called the skew derivation Lie algebra over C_q,where d_i,i=1,2 are the degree derivations. If q=1 or q is not a root of unity, then B is isomorphic to the Virasoro-like algebra or the q-analog of the Virasoro-like algebra respectively. Let (?)(q) = B(?)C_q,the semi-direct product of the Lie algebras B and C_q,where C_q is an ideal of (?)(q).This Lie algebra can be viewed as a generalization of the rank-one Heisenberg-Virasoro algebra. Denote L(q)=[(?)(q),(?)(q)], then we have (?)(q)=L(q)(?)C,where C is the center of (?)(q).In this thesis, I first determine the automorphism group, the derivation algebra, the covering of the Lie algebra L(q), where q≠1 is a p-th primitive root of unity. Next, I compute the Leibniz second cohomology group as well as the invariant symmetric bilinear form of B. The main contents are arranged as follows:
     In chapter one, we determine the automorphism group of L(q), we get thatAs a corollary, we obtain the automorphism group of (?)(q). These results generalize those obtained in [XLT] and [ZhT].
     In chapter two, we compute the derivations from L{q) to its adjoint module L(q).The result is Der(L(q))=Innder(L(q)) (?) Outder(L(q)), where Outder(L(q)) is of 5-dimensional.
     In chapter three, we give the universal covering (?) of L(q) by showing that the covering central extension (?) is determined by four linearly independent 2-cocycles of L(q) with values in C.
     In chapter four, we study the Leibniz second cohomology group H L~2(B, C) of the skew derivaion Lie algebra B, and find that it is equal to the second cohomology group of B. Moreover, we show that the vector space consisting of the invariant symmetric bilinear forms of B is one dimensional. As a corollary, we obtain that H L~2(B, C) = H~2(B,C) by applying a result in [HPL].
引文
[AABGP] B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie algebras and their root systems, Memoir. Amer. Math. Soc., Vol.126, 1997.
    
    [ABGP] B. Allison, S. Berman, Y. Gao, A. Pianzola, A characterization of affine Kac- Moody Lie algebras, Commun. Math. Phys., 185(1997), 671-688.
    
    [ACKP] E. Arbarello, C. De Concini, V. Kac and C. Procesi, Moduli space of curves and representation theory, Commun. Math. Phys., 117(1988), 1-36.
    
    [B1] S. Berman, On derivations of Lie algebras, Canad. J. Math., 28(1976),174-180.
    
    [B2] S. Berman, On the low dimensional cohomology of some infinite dimensional simple Lie algebras, Pacific J. Math., 83(1979), 27-36.
    
    [BBi] S. Berman and Y.Billig, Irreducible representations for toroidal Lie algebras, J. Algebra, 221 (1999), 188-231.
    
    [BBS] S. Berman, Y.Billig and J. Szmigiclski, Vertex operator algebras and the representation theory of toroidal algebras, Contemp. Math., 297(2002), 1-26.
    
    [BeM] G. M. Benkart and R. V. Moody, Derivations, central extensions and affine Lie algebras, Algebras, Groups Geom., 3(1986),456-492.
    
    [BeZ] G. Benkart and E. Zalmanov, Lie algebras graded by finite root systems and intersection matrix algebras, Invent. Math.,126(1996),1-45.
    
    [BGK] S. Berman, Y. Gao and Y.S. Krylyuk, Quantum tori and the structure of elliptic quasi-simple Lie algebras, J. Funct. Anal., 135(1996), 339-389.
    
    [Bi] Y. Billig, Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canad. Math. Bull., 46(2003), 529-537.
    
    [BK] S. Berman and Y. S. Krylyuk, Universal central extensions of twisted and untwisted Lie algebras extended over commutative rings, J. Algebra, 173(1995), 302-347.
    
    [B1] R. E. Block, On torsion-free abelian groups and Lie algebras, Proc. Amer. Math. Sco., 9(1958), 613-620.
    
    [BM] S. Berman and R. V. Moody, Lie algebras graded by finite root systems and intersection matrix algebras of Slodowy, Invent. Math.,108(1992),323-347.
    
    [BS] S. Berman, J.Szmigielski, Principal realization for the extended affine Lie algebra of type sl_2 with coordinates in a simple quantum torus with two generators, Contemp. Math., 248(1999), 39-67.
    
    [Bo] R.E. Borcherds, Generalized Kac-Moody Lie algebras, J. Algebra, 115(1988),501- 512.
    
    [C] R. W. Carter, Lie Algebras of Finite and Affine Type, Cambridge University Press, 2005.
    
    [Ca] Y. Cao, Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring, J. Algebra, 189(1997), 506-513.
    
    [ChG] H. Chen and Y. Gao, BC_N-graded Lie algebras arising from fermionic representations, J. Algebra, 308(2007), 545-566.
    
    [Cox] B. L. Cox, Two realizations of toroidal sl_2(C), Contemp. Math., 297(2002), 47-68.
    
    [CP] V. Chari and A. Pressley, A new family of irreducible integrable modules for affine Lie algebras, Math. Ann., 277(1987), 543-562.
    
    [CXLT] Y. Chen, M. Xue, W. Lin and S. Tan, Structure and automorphism group of a class of derivation Lie algebras over quantum torus, Ann. Math. (Chinese), 26A(2005), 755-764.
    
    [DG] C. Dong and R.L. Griess Jr., Rank one lattice type vertex operator algebras and their automorphism group, J. Algebra, 208(1998),262-275.
    
    [DL] C. Dong and J. Lepowsky, The algebraic structure of relative twisted vertex operators, J. Pure Appl. Algebra, 110(1996), 259-295.
    
    [DLM] C. Dong, H. Li and G. Mason, Regularity of rational vertex operator algebras, Advances in Math., 132(1997), 148-166.
    
    [DN] C. Dong and K. Nagatomo, Automorphism groups and twisted modules for lattice vertex operator algebras, Contemp. Math., 248(1999), 117-133.
    
    [DoZ1] D. Z. Dokovic and K. Zhao, Some infinite-dimensional simple Lie algebras in characteristic 0 related to those of Block, J. Pure Appl. Algebra, 127(1998), 153-156.
    
    [DoZ2] D. Z. Dokovic and K. Zhao, Derivations, isomorphisms and second cohomology of generalized Witt algebras, Trans. Amer. Math. Soc, 350(1998), 643-664.
    
    [E1] S.Eswara Rao, Irreducible representations of the Lie algebra of the diffeomorphisms of a d-dimensional torus, J. Algebra, 182(1996), 401-421.
    
    [E2] S.Eswara Rao, Classification of irreducible integrable modules for toroidal Lie algebras with finite dimensional weight spaces, J. Algebra, 277(2004), 318-348.
    
    [E3] S.Eswara Rao, Partial classification of modules for Lie algebra of diffeomorphisms of d-dimensional torus, J. Math. Phys., 45(2004), 3322-3333.
    
    [EM] S.Eswara Rao and R.V. Moody, Vertex representation for N-toroidal Lie algebras and a generalization of the Virasoro algebra, Commun. Math. Phys., 159(1994), 239-264.
    
    [Fa1] R. Farnsteiner, Derivations and central extensions of finitely generated graded Lie algebras, J. Algebra, 118(1988), 33-45.
    
    [Fa2] R. Farnsteiner, Central extensions and invariant forms of graded Lie algebras, Al- gebras, Groups Geom.,3(1986), 431-455.
    [Fa3] R. Farnsteiner, On the cohomology of associative algebras and Lie algebras, Proc.Amer. Math. Soc, 99(1987), 415-420.
    [FK] I. B. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 62(1980), 23-66.
    [FLM] I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the monster, Pure and Applied Math., Vol. 134, Academic Press, Boston, 1988.
    [Fr1] I. B. Frenkel, Representations of Kac-Moody algebras and dual resnance modules,Lectures in Applied Math., 21(1985), 325-353.
    [Fr2] I. B. Frenkel, Two constructions of affine Lie algebra representations and Boson-Fermion correspondence in quantum field theory, J. Funct. Anal., 44(1981), 259-327.
    [G1] Y. Gao, Leibniz homology of unitary Lie algebras, J. Pure Appl.Algebra, 140(1999),33-56.
    [G2] Y. Gao, The second Leibniz homology group for Kac-Moody Lie algebras, Bull.Lond. Math. Soc, 32(2000), 25-33.
    [G3] Y. Gao, Central extensions of nonsymmetrizable Kac-Moody algebras over commutative algebras, Proc. Amer. Math. Sco., 121(1994), 67-76.
    [Ga] H. Garland, The Arithmetic Theory of Loop Groups, Publ.math. IHES, 52(1980),5-136.
    [GoP] P. Goddard and D. Plive, Kac-Moody and Virasoro algebras, Advanced Series in Math. Phys., Vol.3, World Scientific Singapore, 1988.
    [H] J.E. Humphreys, Introduction to Lie Algebras and Representations Theory, Springer-Verlag, Berlin/ Heidelberg/ New York, 1972.
    [H-KT] R. Hoegh-Krohn and B. Torresani, Classification and construction of quasi-simple Lie algebras, J. Funct. Anal., 89 (1990), 106-136.
    [HPL] N. Hu, Y. Pei and D. Liu, A cohomological characterization of Leibniz central extensions of Lie algebras, Proc. Amer. Math. Sco., 136(2008), 437-447.
    [Ja] N. Jacobson, Lie algebra, Wiley Interscience, New York, 1962.
    [JM1] C. Jiang and D. Meng, The derivation algebra and the universal central extension of the q-analog of the Virasoro-like algebras, Comm. Algebra, 26(4)(1998), 1335-1346.
    [JM2] C. Jiang and D. Meng, The derivation algebra of the associative algebra C_q[X,Y,X~(-1),Y~(-1)],Comm. Algebra, 26(6)(1998), 1723-1736.
    [JM3] C. Jiang and D. Meng, The automorphism group of the derivation algebra of the Virasoro-like algebra, Advances in Math.(Chinese), 27(1998), 175-183.
    [K1] V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR. Izv., 2(1968),1271-1311.
    [K2] V. G. Kac, Infinite dimensional Lie algebras, 3rd edition, Cambridge University Press, 1990.
    [Ka] C. Kassel, Cyclic homology of differential operators, the Virasoro algebra and a q-analogue, Commun. Math. Phys., 146(1992), 343-356.
    
    [Kap] I. Kaplansky, The Virasoro algebra, Commun. Math. Phys., 86(1982), 49-54.
    [KKLW] V.G. Kac, D.A. Kazhdan, J. Lepowsky and R.L.Wilson, Realization of the basic representations of the Euclidean Lie algebras, Advances in Math., 42(1981), 83-112.
    [KPS] E. Kirkman, C. Procesi and L. Small, A q-analog for the Virasoro algebra, Comm. Algebra, 22(10)(1994), 3755-3774.
    [KR] V. G. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite dimensional Lie Algebras, World Scientific, Singapore, 1987.
    [L] F. Levstein, A classification of involutive automorphisms of an affine Kac-Moody Lie algebra, J. Algebra, 114(1988), 489-518.
    [La] T. A. Larsson, Conformal fields: A class of representations of Vect(N), Internat. J. Modern Phys. A, Vol.7, 26(1992), 6493-6508.
    
    [LeL] J. Lepowsky and H. Li, Introduction to vertex operator algebras and their representations, Progress in Math., Vol. 227, Birkhauser, Boston, 2004.
    [LeP] J. Lepowsky and M. Primc, Structure of the standard modules for the affine Lie algebra A_1~(1) , Contemporary mathematics, 46(1985).
    [LeW] J. Lepowsky and R.L.Wilson, Construction of the affine Lie algebra A_1~(1) , Commun. Math. Phys., 62(1978), 43-53.
    
    [LH] D. Liu and N. Hu, Leibniz central extensions on some infinite dimensional Lie algebras, Comm. Algebra, 32(2004), 2385-2405.
    [LiT1] W. Lin and S.Tan, Central extensions and derivations of the Lie algebras of skew derivations for the quantum torus, Comm. Algebra, 33(2005), 3919-3938.
    [LiT2] W. Lin and S.Tan, Representations of the Lie algebra of derivations for quantum torus, J. Algebra, 275(2004), 250-274.
    [LoP] J. L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296(1993), 139-158.
    [M1] O. Mathieu, Classification of Harish-Chandra modules over the Virasoro algebra, Invent. Math., 107(1992), 225-234.
    [M2] O. Mathieu, Classification of simple graded Lie algebras of finite growth, Invent. Math., 108(1992), 455-519.
    [MZ] V. Mazorchuk and K. Zhao, Classification of simple weight Virasoro modules with a finite-dimensional weight space, J. Algebra, 307(2007),209-314.
    [Mac] I. G. Macdonald, Affine root systems and Dedkind's η-function, Invent. Math.,15(1972),91-143.
    [MaP] C. Martin and A. Piard, Indecomposable modules over the Virasoro Lie algebra and a conjecture ofV. Kac, Commun. Math. Phys., 137(1991), 109-132.
    [McP] J.C.McConnell and J.J. Pettit, Crossed products and multiplicative analogues of Weyl algebras, J. London Math. Soc, 38(1988), 47-55.
    [Me] 孟道骥,复半单李代数引论,天元研究生数学丛书,北京大学出版社,1998.
    [Mo1] R. V. Moody, Lie algebras associated with generalized Cartan matrix, Bull. Amer.Math. Soc, 73(1967),217-221.
    [Mo2] R. V. Moody, A new class of Lie algebras, J. Algebra, 10(1968), 211-230.
    [MoP] R.V.Moody and A.Pianzola, Lie Algebras with Triangular Decompositions, John Wiley & Sons, New York, 1995.
    [MRY] R.V. Moody, S. Eswara Rao and T. Yokonuma, Toroidal Lie algebras and vertex representations, Geometriae Dedicata, 35(1990), 283-307.
    [N] E. Neher, Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids, Am. J. Math., 118(1996), 439-491.
    [P] A. Pressley, Quantum groups and Lie theory, Lecture note series 290, Cambridge University Press, 2001.
    [PaZ] J. Patera and H. Zassenhaus, The higher rank Virasoro algebras, Comm. Math.Phys., 136(1991), 1-14.
    [PSe] A. Pressley and G.Segal, Loop Groups, Oxford Mathematical Monographs, Oxford University Press, New York, 1986.
    [RSS] E. Ramos, C. H. Sah, and R. E. Shrock, Algebras of diffeomorphisms of the N-torus,J. Math. Phys., 31, No.8(1990).
    [S] P. Slodowy, Beyond Kac-Moody algebras and inside, Can. Math. Soc. Conf. Proa,5(1986), 361-371.
    [Se] G.B. Seligman,On automorphisms of Lie algebras of classical type, Trans. Amer.Math. Soc, 92(1959), 430-448.
    [ShJ] R. Shen and C. Jiang, The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra, Comm. Algebra, 34(2006), 2547-2558.
    [ShS] R. Shen and Y. Su, Classification of irreducible weight modules with a finite dimensional weight space over the twisted Heisenberg-Virasoro algebra, Acta Math. Sinica,23B(2007),189-192.
    [Su1] Y.Su, A classification of indecomposable sl_2(C)-modules and a conjecture of Kac on irreducible modules over the Virasoro algebra, J. Algebra, 161(1993), 33-46.
    [Su2] Y.Su, Quasifinite representations of a Lie algebra of Block type, J. Algebra,276(2004), 117-128.
    [SuZ] Y. Su and K. Zhao, Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series, J. Algebra, 252(2002), 1-19.
    [T1] S. Tan, Principal construction of the toroidal Lie algebra of type A_1,Math. Z.,230(1999), 621-657.
    [T2] S. Tan, TKK algebras and vertex operator representatiopns, J. Algebra, 211(1999),298-342.
    [W] R. Wilson, Euclidean Lie Algebras are Universal Extensions, Lie Algebras and Related Topics, Lecture Notes in Math., 933, 210-213, Springer-Verlag(1982).
    [Wa] Minoru Wakimoto, Infinite-dimensional Lie algebras, Translation of monographs, A.M. S., 195(2001).
    [XLT] M. Xue, W. Lin and S.Tan, Central extension, derivations and automorphism group for Lie Algebra arising from 2-dimensional torus, J. Lie Theory, 16(2006), 139-153.
    [Y] Y. Yoshii, Coordinate algebras of extended affine Lie algebras of type A_1,J.Algebra,234(2000), 128-168.
    [Z1] K. Zhao, The q-Virasoro-like algebra, J. Algebra, 188(1997), 506-512.
    [Z2] K. Zhao, Some infinite-dimensional simple Lie algebra, Comm. Algebra, 20(7)(1998),2730-2738.
    [ZhT] Z. Zheng and S. Tan, Automorphism group for a class of Lie algebra over quantum torus, Acta Math. Sinica (Chinese), 50(2007), 591-600.
    [ZM] L. Zhu and D. Meng, Structure of degenerate Block algebras, Algebra Colloq.,10(2003), 53-62.
    [ZZ] H. Zhang and K. Zhao, Representations of the Virasoro-like algebra and its q-analog,Comm. Algebra, 24(14)(1996), 4361-4372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700