用户名: 密码: 验证码:
基于Cosserat连续体模型的应变局部化有限元模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当在经典连续体计算模型中引入应变软化本构行为时,模型的初边值问题在数学上将成为不适定,并导致病态的有限元网格依赖解。为正确地数值模拟由应变软化引起以在局部狭窄区域急剧发生和发展的非弹性应变为特征的应变局部化现象,必须在经典连续体中引入某种类型的正则化机制以保持应变局部化问题的适定性。
     采用引入了高阶连续结构的Cosserat连续体理论是引入正则化机制的主要途径之一。在Cosserat连续体中引入了旋转自由度和相应产生的微曲率,引入了与微曲率能量共轭的对偶应力、以及作为正则化机制在本构方程中具有“特征长度”意义的内尺度参数。本论文基于Cosserat连续体理论,在应变局部化有限元数值模拟与工程应用方面作了如下的工作:
     提出了一个压力相关弹塑性Cosserat连续体模型。具体考虑非关联Drucker-Prager屈服准则。分离应力和应变速率向量的偏量和球量部分,在Cosserat连续体理论的框架下,推导出基于压力相关弹塑性Cosserat连续体本构模型的一致性算法:率本构方程积分的返回映射算法和压力相关弹塑性切线本构模量矩阵的闭合型显式表示。避免了计算切线本构模量矩阵时的矩阵求逆,保证了数值求解过程的收敛性与计算效率。利用所发展的模型和有限元法,数值模拟由应变软化引起的平面应变问题中的应变局部化现象。数值例题结果表明,所发展模型对保持应变局部化边值问题适定性、再现应变局部化问题特征:塑性应变局限于局部处急剧发生和发展以及随塑性变形发展的整体承载能力下降的有效性。
     对Cosserat连续体模型中的本构参数Cosserat剪模、软化模量及内部长度参数对应变局部化数值模拟结果的影响进行了研究。指出在一定的取值范围内,Cosserat剪模对数值模拟结果几乎没有影响,并给出了具体数值计算时的取值范围;软化模量绝对值越大,后破坏段的荷载-位移曲线越陡,计算得到的剪切带宽度越窄;内部长度参数越大,后破坏段的荷载-位移曲线越平缓,计算得到的剪切带越宽。数值结果表明,u8ω8与u8ω4插值单元均具有模拟应变局部化的良好性能,但后者具有更好一点的模拟后破坏过程的能力。
     由所发展的压力相关弹塑性Cosserat连续体模型,对一些典型的岩土工程如边坡、开挖、挡土墙及地基等结构中以应变局部化为特征的渐进破坏现象进行了有限元数值模拟。数值结果表明,对于岩土工程中广泛存在的非关联塑性流动或应变软化非弹性材料,Cosserat连续体模型具有保持应变局部化边值问题适定性、再现应变局部化问题特征的能力。
     建立了适用于饱和多孔介质中应变局部化分析及动力渗流耦合分析的Biot-Cosserat连续体模型。基于饱和多孔介质动力渗流耦合分析的Biot理论,将固体骨架看作Cosserat连续体,并考虑与微极转角自由度相应的惯性,建立了饱和多孔介质动力渗流耦合分析的Biot-Cosserat连续体模型。基于Galerkin加权余量法,对所发展的模型推导了以固体骨架广义位移(包含旋转)及孔隙水压力为基本未知量的有限元公式。利用所发展的数值模型,对包含压力相关弹塑性固体骨架材料的饱和多孔介质进行了动力渗流耦合分析与应变局部化有限元模拟。结果表明,所发展的两相饱和多孔介质动力渗流耦合分析的Biot-Cosserat连续体模型能保持饱和两相介质应变局部化问题的适定性及模拟饱和多孔介质中由应变软化引起的应变局部化现象的有效性。
     发展了基于Cosserat连续体的非光滑多重屈服面的CAP模型,考虑Cosserat连续体理论的特点,发展了非线性本构速率方程积分的一致性算法,且率本构方程积分的返回映射算法和一致性弹塑性切线模量矩阵均为显式表示,避免了计算切线本构模量矩阵时的矩阵求逆。利用所发展的模型和一致性算法,数值模拟了平面应变条件下的边坡稳定和隧道开挖问题,结果表明,所发展的模型和一致性算法能够保持应变局部化问题的适定性,保证数值求解过程的收敛性和计算效率。说明将Cosserat连续体理论推广应用于各种岩土体材料模型是可能的。
     基于Cosserat连续体模型的有限元过程,对两个分别由填筑与开挖引起破坏的工程实例进行了数值模拟。填筑问题中的土体材料为服从非关联塑性流动的理想弹塑性材料,而开挖问题中的土体材料为应变软化弹塑性材料。数值结果表明,与基于经典连续体的有限元分析过程相比,所发展的基于Cosserat连续体模型的有限元过程具备保持应变局部化问题的适定性、模拟整个渐进破坏过程的能力。
As strain softening constitutive behavior is incorporated into a computational model inthe frame of classical plastic continuum theories, the initial and boundary value problem ofthe model will become ill-posed, resulting in pathologically mesh-dependent solutions.Furthermore, the energy dissipated at strain softening is incorrectly predicted to be zero, andthe finite element solutions converge to incorrect, physically meaningless ones as the elementmesh is refined. To correctly simulate strain localization phenomena characterized byoccurrence and severe development of the deformation localized into narrow bands of intenseirreversible straining caused by strain softening, it is required to introduce some type ofregularization mechanism into the classical continuum model to preserve the well-posednessof the localization problem.
     One of the radical approaches to introduce the regularization mechanism into the modelis to utilize the Cosserat micro-polar continuum theory, in which high-order continuumstructures are introduced. As two dimensional problems are concerned, a rotational degree offreedom with the rotation axis orthogonal to the 2D plane, micro-curvatures as spatialderivatives of the rotational degree of freedom, coupled stresses energetically conjugate to themicro-curvatures and the material parameter defined as internal length scale are introduced inthe Cosserat continuum. In this paper, the Cosserat micro-polar continuum theory isintroduced into the FEM numerical model, which is used to simulate the strain localizationphenomena occuring in solid and saturated porous media.
     First, a pressure-dependent elastoplastic Cosserat continuum model is presented. Thenon-associated Drucker-Prager yield criterion is particularly considered. Splitting the scalarproduct of the stress rate and the strain rate into their deviatoric and spherical parts, theconsistent algorithm of the pressure-dependent elastoplastic model is derived in theframework of Cosserat continuum theory, i.e. the return mapping algorithm for the integrationof the rate constitutive equation and the closed form of the consistent elastoplastic tangentmodulus matrix. The matrix inverse operation usually required in the calculation ofelastoplastic tangent constitutive modulus matrix is avoided, that ensures the second orderconvergence rate and the computational efficiency of the model in numerical solutionprocedure. The strain localization phenomena due to strain softening are numericallysimulated using the developed model with corresponding finite element method. Numerical results of the plane strain examples illustrate the capability and performance of the presentmodel in keeping the well-posedness of the boundary value problems with strain softeningbehavior incorporated and in reproducing the characteristics of strain localization problems, i.e. intense plastic straining development localized into the narrow band and a significantreduction of the load-carrying capacity of the structure in consideration.
     Next, the effects of constitutive parameters, such as Cosserat shear module, the softeningmodule and the internal length scale for modelling the softening behaviour and adhering tothe Cosserat continuum, on the numerical results of the simulation of the strain localization, are studied. It is pointed out that the value of Cosserat shear module chosen within certainrange has no effect on the results; the greater the absolute value of the soften modules is, thesteeper the post-failure curve of load-displacement is and the narrower the width of shearband is; the greater the value of the internal scale is, the flatter the post-failure curve ofload-displacement is and the wider the width of shear band is. The numerical study in theperformance of two types of Cosserat continuum finite elements, i.e. u8ω8(8-noded elementinterpolation approximations for both displacements u and microrotationω) and u8ω4(8-noded and 4-noded element interpolation approximations for u andωrespectively)elements is carried out. It is indicated that as compared with the u8ω8 element mesh, theu8ω4 element mesh possesses better performance in simulation of post-failure process. Bothtwo possess better performance in simulation of strain localization.
     Then, based on the pressure-dependent elastoplastic Cosserat continuum model, progressive failure phenomena, which occured in the typical geotechnical engineeringproblems, such as the slope, excavation, retaining wall and soil foundation, characterized bystrain localization due to the material dilatancy, i.e. non-associated plasticity, or strainsoftening, are numerically simulated. Numerical results illustrate that as compared with theperformance of the finite element procedure for the classical continuum model, the finiteelement procedure based on Cosserat continuum model is capable of preserving thewell-posedness of the localization problems widely existing in geoteclanical engineering andsimulating the entire progressive failure phenomena characterized by strain localization due tostrain softening or the non-associated yield criterion adopted.
     Besides, the Biot-Cosserat continuum model for coupled hydro-dynamic processes insaturated porous media is proposed by means of the combination of both Biot theory andCosserat continuum theory to simulate the strain localization phenomena due to the strainsoftening. In the present contribution, the Biot formulation of the skeleton material isextended to include the microrotation and correspondingly the coupled stresses defined in theCosserat model. The finite element formulations governing the coupled hydro-dynamicbehavior with the primary variables of the displacements and the microrotaion for the solid phase and the pressure for the fluid phase are derived on the basis of the Galerkin-weightedresidual method. The strain localization phenomena in saturated porous media due to thestrain softening are numerically simulated by using the developed model with correspondingfinite element method and the non-associated Drucker-Prager yield criterion particularlyconsidered for the pressure-dependent elasto-plastic Cosserat skeleton. Numerical results ofthe plane strain examples illustrate that the capability of the developed model in keeping thewell-posedness of the boundary value problems with strain softening behavior incorporated, and the availability of modeling the strain localization phenomena due to the strain softeningin saturated media.
     In addition, an elastoplastic Cosserat continuum model for CAP constitutive model withnon-smooth multiplicative yield surfaces is presented. The consistent algorithm of the CAPelastoplastic model is derived in the framework of Cosserat continuum theory, i.e. the returnmapping algorithm for the integration of the rate constitutive equation and the closed form ofthe consistent elastoplastic tangent modulus matrix. The matrix inverse operation usuallyrequired in the calculation of elastoplastic tangent constitutive modulus matrix is avoided.The strain localization phenomena of the slope due to strain softening and the failure of thetunnel due to the excavation are numerically simulated using the developed model withcorresponding finite element method. Numerical results of the plane strain examples illustratethe capability and performance of the present model in keeping the well-posedness of theboundary value problems and ensuring the second order convergence rate and thecomputational efficiency of the model in numerical solution procedure. It also illustrates thepossibility of application of Cosserat continuum theory to various geotechnical constitutivemodels.
     Finally, the two engineering examples, i.e. the failure of the two geotechnical structurescaused in the filling and the excavation processes respectively, are performed by using theproposed models and the developed algorithms. The non-associated perfect elastoplasticbehavior is particularly considered for the filling material and the strain softening behavior forthe excavation material. Numerical results indicate the capability and performance of Cosseratcontinuum model in keeping the well-posedness of the boundary value problems with strainsoftening behavior or non-associated perfect elastoplastic behavior incorporated and incompleting simulation of the whole failure progress.
引文
1. Finno RJ, Rhee Y. Consolidation, pre-and post peak shearing responses from internally instrumented biaxial compression apparatus. J. Geotech. Testing, ASTM, 1993, 16: 496-509.
    2. Han C, Vardoulakis I. Plane strain compression experiments on watersaturated fine-grained sand. Geotechnique, 1991, 41: 49-78.
    3. Sabatini PJ, Finno RJ. Effect of consolidation on strain localization of soft clays. Computers and Geotechnics, 1996, 18(4): 311-339.
    4. Bjerrum L. Progressive failure in slopes of overconsolidated plastic clay and clay shales. J. Soil Mech. Found., ASCE, 1967, 93: 1-49.
    5. Hansmire WH, Cording EJ. Soil tunnel test section: case history summary, J. Geotech. Engng., ASCE, 1985, 111(11): 1301-1320.
    6. Finno RJ, Atmatzidis DK, Perkins SB. Observed performance of a deep excavation in clay. J.Geotech. Eng., ASCE, 1989, 115: 1045-1064.
    7. Schuller H, Schweiger HF. Application of a Multilaminate Model to simulation of shear band formation in NATM-turmelling. Computers and geotechnics, 2002, 29: 501-524.
    8.郭莹,郭承侃,陆尚谟.土力学(第二版).大连:大连理工大学出版社,2003.
    9. Uesugi M, Kishida H, Tsubakihara Y. Behaviour of sand particles in sand-steel friction. Soils and Foundations, 1988, 28:107-118.
    10. Desrues J, Chambon R, Mokni M, Mazerolle F. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique, 1996, 46, 529-546.
    11. Gudehus G, Nubel K. Evolution of shear bands in sand. Geotechnique, 2004, 54(3):187-201.
    12. Leroueil S. Natural slopes and cuts: movement and failure mechanisms. Geotechnique, 2001, 51(3): 197-243.
    13.沈珠江.理论土力学.北京:水利水电出版社,2000.
    14. Rudnicki JW, Rice JR. Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids, 1975, 23: 371-394.
    15. Li Xikui, Zhang Junbo, Zhang Hongwu. Instability of wave progagation in saturated poroelastoplastic media. Int. J. Numer. Anal. Meth. Geomech., 2002, 26: 563-578.
    16. de Borst R. Bifurcations in finite element models with a non associated flow law. Int. J. Numer. Anal. Meth. Geomech., 1988, 12: 99-116.
    17. Desai CS, Somasundaram S, Frantziskonis G. A hierarchical approach for constitutive modelling of geologic materials. Int. J. Numer. Anal. Meth. Geomeeh., 1986, 10: 225-257.
    18. Cividini A, Gioda G. Finite element analysis of direct shear tests of stiff days. Int. J. Numer. Anal. Meth. Geomech., 1992, 16: 869-886.
    19. Sterpi D. An analysis of geotechnical problems involving strain softening effects. Int. J. Numer. Anal. Meth. Geomech., 1999, 23: 1427-1454.
    20.龚晓南.土塑性力学(第二版).浙江:浙江大学出版社,1999.
    21. Miao Tiande, Ma Chongwu, Wu Shengzhi. Evolution model of progressive failure of landslides. Journal of geotechnical and geoenvironmental engineering, 1999, (10): 827-831.
    22. Lesniewska D, Mroz Z. Limit equilibrium approach to study the evolution of shear band systems in soils. Geotechnique, 2000, 50(5): 521-536.
    23. Chen WF. Limit analysis and soil plasticity. New York: Elsevier scientific publishing company, 1975.
    24. Manzari MT, Nour MA. Significance of soil dilatancy in slope stability analysis. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126: 75-81.
    25. Griffiths DV, Lane PA. Slope stability analysis by finite elements. Geotechnique, 1999, 49(3): 387-403.
    26. Dawson EM, Roth WH, Drescher A. Slope stability analysis by strength reduction. Geotechnique, 1999, 49(6): 835-840.
    27.邵龙潭,唐洪祥,韩国城.有限元边坡稳定分析方法及其应用.计算力学学报,2001,18:81-87.
    28. Shuttle DA, Smith IM. Numerical simulation of shear band formation in soils. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12: 611-626.
    29. Ramakrshnan N, Atluri SN. Simulations of shear band formations in plane strain tension and compression using FEM. Mechanics of Materials, 1994, 17: 307-317.
    30. Leroy Y, Ortiz M. Finite element analysis of strain localisation in frictional materials. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13: 53-74.
    31. Hill R, Hutchinson JW. Bifurcation phenomena in the plane tension test. J. Mech. Phys. Solids, 1975, 23:239-264.
    32. Thomas TY. Plastic flow and fracture in solids. New York: Acacemic Press, 1961.
    33. Hill R. Acceleration waves in solids. J. Mech. Phys. Solids, 1962, 10(1): 1-16.
    34. Rice J. The localization of plastic deformation. Proc. IUTAM Symp. Theoretical Appl. Mechanics, Amsterdam: North-Holland, 1976, 207-220.
    35. Vardoulakis I, Goldscheider M, Gudehus G. Formation of shear bands in sand bodies as a bifurcation problem. Int. J. Num. Anal. Meth. Geomech., 1978, 2: 99-128.
    36. Vermeer PA. A simple shear-band analysis using compliance. Proc. of IUTAM Conf. on Deformation and Failure of Granular Mat., Balkema. 1982, 493-499.
    37. Arthur JFR, Dustan T, Al-Ani QAJ et al. Plastic deformation and failure in granular media. Geotechnique, 1977, 27: 53-74
    38. Vardoulakis I. Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Num. Anal. Meth. Geomech., 1980, 4:103-119.
    39. de Borst R. Bifurcations in finite element models with a non-associated flow law. Int. J. Numer. Anal. Meth. Geomech., 1988, 12:99-116.
    40. Modaressi A, Vossoughi KC, Gouvenot D. Continuous finite element analysis of localization and failure in geostructures. Computer Methods and Advances in Geomechanics, 2001,565-570.
    41. Hilda van der Veen, Kees Vuik, de Borst R. Branch switching techniques for bifurcation in soil deformation. Comput. Methods Appl. Mech. Engrg., 2000, 190: 707-719.
    42.赵锡宏,张启辉等.土的剪切带试验与数值分析.北京:机械工业出版社,2002.
    43. Biot MA. Theory of three-dimensional consolidation. J. Applied Physics, 1941, 12:155-164
    44. Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
    45. Prevost JH. Nonlinear transient phenomena in saturated porous media. Comp. Meth. Appl. Mech. Eng., 1982,20:3-8.
    46. Zienkiewicz OC, Shiomi T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution. Int. J. Num. Anal. Meth. Geomechanics, 1984, 8: 71-96.
    47. Takuo Yamagami, Feng Tiequn, Jiang Jingcai. A coupled finite element analysis for cut slopes considering swelling and softening effects. Proceeding of the special Sino-Japanese forun on performance and evaluation of soil slopes under earthquakes and rainstorms. China, Dalian,1998,166-172.
    48. Asaoka A, Noda T, Takaine T. Progressive failure of excavated slopes. Computer Methods and Advances in Geomechanics, 2001, 731-736.
    49. Kolymbas D. Bifurcation analysis for sand samples with non-linear constitutive equation. Ingenieur-Archive, 1981,50: 131-140.
    50. Wu W, Sikora Z. Localized bifurcation in hypoplasticity. International Journal of Engineering Science, 1991,29: 195-201.
    51. Bauer E. Analysis of shear band bifurcation with a hypoplastic model for a pressure and density sensitive granular material. Mechanics of Materials, 1999,31: 597-609.
    52. Valanis KC, Peters JF. Ill-posedness of the initial and boundary value problems in non-associative plasticity. Acta Mechanica, 1996,114:1-25.
    53. Manzari MT. Application of micropolar plasticity to post failure analysis in geomechanics. Int. J. Numer. Anal. Meth. Geomech., 2004, 28:1011-1032.
    54. Cundall PA. Numerical experiments on localization in frictional materials. Ingenieur Archiv, 1989, 59: 148-159.
    55. Bardet JP, Proubet J. A numerical investigation of the structure of persistent shear bands in granular media. Geotechnique, 1991,41: 599-613.
    56. Asaro RJ, Rice JR. Strain localization in ductile single crystals. J. Mech. Phys. Solids, 1977, 25: 309-338.
    57. Bazant ZP, Belytschko T, Chang TP. Continuum theory for strain-softening. Journal of Engineering Mechanics, 1984,110(12): 1666-1692.
    58. de Borst R, M.uhlhaus HB, Pamin J, Sluys LY. Computational modelling of licalisation of deformation. Proceedings of the 3rd International Conference, Computation and Plastics. Pineridge Press: Swansea, 1992, 483-508.
    59. Larsson R, Runesson K, Sture S. Finite element simulation of localized plastic deformation. Arch, Appl. Mech., 1991,61:305-317.
    60.李锡夔。多孔介质中非线性耦合问题的数值方法。大连理工大学学报,1999,39:02-06.
    61. Wei Wu. Non-linear analysis of shear band formation in sand. Int. J. Numer. Anal. Meth. Geomech., 2000, 24: 245-263.
    62. Ortiz M, Leroy Y, Needleman A. A finite element method for localized failure analysis. Computer Methods in Applied Mechanics and Engineering, 1987,61: 189-214.
    63. Oliver J. A consistent characteristic length for smeared cracking models. International Journal for Numerical Methods in Engineering, 1989,28:461-474.
    64. Regueiro RA, Borja RI. Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity. International Journal of Solids and Structures, 2001,38(21): 3647-3672.
    65. Oliver J, Cervera M, Manzoli O. Strong discontinuities and continuum plasticity models: the strong discontinuity approach. International Journal of Plasticity, 1999,15: 1-34.
    66. Borja Ronaldo I, Regueiro Richard A, Lai Timothy Y. FE Modelling of strain localization in soft rock. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(4): 335-343.
    67. Cervera M, Chiumenti M, Agelet de Saracibar C. Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity. Int. J. Numer. Anal. Meth. Geomech., 2004, 28: 373-393.
    68. Loret B, Prevost JH. Dynamic strain localization in fluid-saturated porous media. ASCE Journal of Engineering Mechanics, 1991, 117: 907-922.
    69. Belytschko T, Chiang H, Plaskacz E. High resolution two dimensional shear band computations: imperfections and mesh dependence. Computer Methods in Applied Mechanics and Engineering, 1994, 119: 1-15.
    70. Lemonds J, Needleman A. Finite element analysis of shear localization in rate and temperature dependent solids. Mech. Mater., 1986, 5: 339-361.
    71. Needleman A. Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Engrg., 1988, 67: 69-85.
    72. Shawki TG, Clifton RJ. Shear-band formation in thermal viscoplastic materials. Mech. Mater., 1989, 8: 13-43.
    73. Sluys LJ, de Borst R. Wave propagation and localization in a rate-dependent crack medium: Model formulation and one-dimensional examples. Int. J. Solids and Structures, 1992, 29: 2945-2958.
    74. Wriggers P, Miehe C, Kleiber M, Simo JC. On the coupled thermo-mechanical treatment of necking problems via finite element methods. Int. Numer. Methods Engrg., 1992, 33: 869-884.
    75. Bazant ZP, Pijaudier-Cabot G. Nonlocal continuum damage, localization instability and convergence. J. Appl. Mech. ASME, 1988, 55: 287-293.
    76. Pijaudier-Cabot G, Bazant ZP. Nonlocal damage theory. J. Eng. Mech. ASCE, 1987, 113: 1512-1533.
    77. Mindlin R. Second gradient of strain and surface tension in linear elasticity. International Journal of Solids and Structures, 1965,1: 417-438.
    78. Muhlhaus HB, Aifantis EC. A variational principle for gradient plasticity. Int. J. Solids and Structures, 1991,28:845-858.
    79. Zbib HM, Aifantis EC. On the gradient-dependent theory of plasticity and shear banding. Acta Mechanica, 1992, 92: 209-225.
    80. de Borst R, Muhlhaus HB. Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J.Numer. Methods Eng., 1992, 35: 521-539.
    81. Li Xikui, Cescotto S. Finite element method for gradient plasticity at large strain. Int. J. Numer. Methods Eng., 1996, 39: 619-633.
    82. Li Xikui, Cescotto S. A mixed element method in gradient plasticity for pressure dependent materials and modeling of strain localization. Comput. Methods Appl. Mech. Engrg., 1997, 144: 287-305.
    83. de Borst R, Sluys LJ. Localization in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng., 1991, 90: 805-827.
    84. de Borst R. Simulation of srtain localization:a reappraisal of the Cosserat continuum.Engineering computations, 1991, (8): 317-332.
    85. de Borst R. A generalization of J_2-flow theory for polar continue. Computer methods in applied mechanics and engineering, 1993, 103: 347-362.
    86. Mindlin RD. Influence of couple-stress on stress concentrations. Exp. Mech., 1963, 3:1-7.
    87. Steinberg E, Muki R. The effect of couple-stresses on the stress concerntration around a crack. Int. J. Solids Struct., 1967, 3:69-95.
    88. Green AE, Mcinnis BC, Naghdi PM. Elastic-plastic continua with simple force dipole. Int. J. Engng. Sci., 1968, 6: 373-394.
    89. Providas E, Kattis MA. Finite element method in plane cosserat elasticity. Computers and Structures, 2002, 80:2059-2069.
    90.刘俊,黄铭,葛修润.考虑偶应力影响的应力集中问题求解.上海交通大学学报,2001,35(10):1481~1485.
    91. Cramer H, Findeiss R, Steinl GW et al. An approach to the adaptive finite element analysis in associated and non—associated plasticity considering localization phenomena. Comput. Methods Appl. Mech. Eng., 1999, 176: 187-202.
    92. Dietsche A, Steinmann P, Willam K. Micropolar elastoplasticity and its role in localization. International Journal of Plasticity, 1993, 9: 813-831.
    93. Steinmann Paul. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Structures, 1994, 31: 1063-1084.
    94. Steinmann Paul. Theory and numerics of ductile micropolar elastoplastic damage. Int. J. Numer. Methods Eng., 1995, 38: 583-606.
    95. Matti R, Marcella V. Use of couple-stress theory in elasto-plasticity. Comput. Methods Appl. Mech. Eng., 1996, 136: 205~224.
    96. Papanastasiou P, Vardoulakis I. Numerical treatment of progressive localization in relation to borehole stability. International Journal for Numerical Analytical Methods in Geomechanics, 1992, 16: 389-424.
    97. Iordache MM, Willam K. Localized failure analysis in elastoplastic Cosserat continua. Computer Methods in Applied Mechanics and Engineering, 1998, 151: 559-586.
    98. Muhlhaus HB, Vardoulakis I. The thickness of shear band in granular materials. Geotechnique, 1987, 37(3): 271-283.
    99. Muhlhaus HB. Application of Cosserat theory in numerical solution of limit load problems. Ing.-Arch., 1989, 59: 124-137.
    100. Tejchman J, Wu W. Numerical study on patterning of shear bands in a Cosserat continuum. Acta Mechanica, 1993, 99: 61-74.
    101. Li Xikui, Tang Hongxiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Computers & Structures, 2005, 83(1): 1-10.
    102.李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24(9):1497-1505.
    103. Tejchman J, Bauer E. Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Computers and geotechnics, 1996, 19: 221-244.
    104. Tejchman J, Herle I, Wehr J. FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization. Int. J. Num. Anal. Meth. Geomech., 1999, 23: 2045-2074.
    105. Bauer E. Analysis of shear band bifurcation with a hypoplastic model for a pressure and density sensitive granular material. Mechanics of Materials, 1999, 31: 597-609.
    106. Tejchman J, Gudehus G. Shearing of a narrow granular layer with polar quantities. International Journal for Numerical Methods in Geomechanics, 2001, 25: 1-28.
    107. Huang W, Nubel K, Bauer E. Polar extension of a hypoplastic model for granular materials with shear localization. Mechanics of Materials, 2002, 34: 563-576.
    108. Huang W, Bauer E. Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Meth. Geomech., 2003, 27: 325-352.
    109. Maier T. Comparison of non-local and polar modeling of softening in hypoplasticity. Int. J. Numer. Anal. Meth. Geomech., 2004, 28: 251-268.
    110. Wolffersdorff PA. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials, 1996, 1: 251-271.
    111. Kruyt NP. Statics and kinematics of discrete Cosserat—type granular materials. International Journal of Solids and Structures, 2003, 40: 511-534.
    112. Tordesillas A, Peters JF, Gardiner BS. Shear band evolution and accumulated microstructural development in Cosserat media. Int. J. Numer. Anal. Meth. Geomech., 2004, 28:981-1010.
    113. Toupin R. Elastic materials with couple-stresses. Arch Rational Mech. Anal., 1962, 11:385-414.
    114. Mindlin RD. Microstructure in linear elasticity. Arch Rational Mech. Anal., 1964, 16:51-78.
    115. Aifantis E. On the microstructural origin of certain inelastic models. Trans. ASME J. Engng. Technol., 1984, 106: 326-330.
    116. Fleck NA, Hutchinson JW. A phenomeno logical theory for strain gradient effects in plasticity. J. Mech. Phys. Solids, 1993, 41: 1825~1857.
    117.黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)——偶应力理论和SG理论.机械强度,1999,21(2):81-87.
    118.陈少华,王自强.应变梯度理论进展.力学进展,2003,33(2):207-216.
    119.陈万吉.应变梯度理论有限元:C_(021)分片检验及其变分基础.大连理工大学学报,2004,44(4):474-477.
    120. Shu JY, Fleck NA. The prediction of a size effect in micro indentation. Int J. Solids Struct., 1998, 35: 1363-1383.
    121. Fleck NA, Hutchinson JW. Strain gradient plasticity. Adv. App. Mech., Academic Press, ed. 1997, 33: 295~361.
    122. Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids, 1998, 46:411-425.
    123. Gao H, Huang Y, Nix WD, Hutchinson JW. Mechanism-based strain gradient plasticity-Ⅰ, theory. J. Mech. Phys. Solids, 1999, 47: 1239-1263.
    124. Huang Y, Gao H, Nix WD, Hutchinson JW. Mechanism-based strain gradient plasticity-Ⅱ. Analysis. J. Mech. Phys. Solids, 2000, 48: 99-128.
    125. Shu JY, King WE, Fleck NA. Finite elements for materials with strain gradient effects. Int. J. Numer. Meth. Engng., 1999, 44: 373-391.
    126. Yang F, Chong ACM, Lam DCC, et al. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002,39:2731-2743.
    127. Chambon R, Matsushima T, Caillerie D. Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies. International Journal of Solids and Structures, 2001,38:8503-8527.
    128. Trovalusci P, Masiani R. Non-linear micropolar and classical continua for anisotropic discontinuous materials. International Journal of Solids and Structures, 2003,40:1281-1297.
    129. Cerrolaza M, Sulem J, Elbied A. A Cosserat non-linear finite element analysis software for blocky structures. Advances in Engineering Software, 1999,30:69-83.
    130. Forest S, Barbe F, Cailletaud G. Cosserat modelling of size efects in the mechanical behaviour of polycrystals and multi-phase materials. International Journal of Solids and Structures, 2000, 37: 7105-7126.
    131. Suiker ASJ, Metrikine AV, de Borst R. Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. International Journal of Solids and Structures, 2001, 38:1563-1583.
    132. Forest S, Boubidi P, Sievert R. Strain localization at a crack tip in gerneralized single crystal plasticity. Scripta mater, 2001, 44: 953-958.
    133. Zhang Hongwu, Schrefler BA. Analytical and numerical investigation of uniqueness and localization in saturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(14): 1429-1448.
    134. Oka F, Yashima A, Sawada K, et al. Instability of gradient-dependent elastoviscoplastic model for clay and strain localization analysis. Comput. Methods Appl. Mech. Eng., 2000,183:67-86.
    135. Ehlers W, Volk W. On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mechanics of cohesive-frictional materials, 1997, 2:301-320.
    136. Ehlers W, Volk W. On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials. International Journal of Solids and Structures, 1998, 35:4597-4617.
    137. Vardoulakis I. Shear band inclination and shear modulus in biaxial tests. International Journal for Numerical and Analytical Methods in Geomechanics, 1980,4:103-119.
    138. Budhu M. Non-uniformities imposed by simple shear apparatus. Canadian Geotechnology Journal, 1984, 20: 125-137.
    139. Desrues J, Chambon R, Mokni M, Mazerolle F. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique, 1996,46(3): 529-546.
    140. Tatsuoka F, Okahara M, Tanaka T, Tani K, Morimoto T, Siddiquee MS. Progressive failure and particle size elect in bearing capacity of footing on sand. Proceedings of the ASCE Geotechnical Engineering Congress, 1991, 27(2): 788-802.
    141. Vardoulakis I, Graf B. Calibration of constitutive models for granular materials using data from biaxial experiments. Geotechnique, 1985,35(3): 299-317.
    142. Tejchman J, Herle I, Wehr J. FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization. Int. J. Num. Anal. Meth. Geomech., 1999,23:2045-2074.
    143.邵龙潭,王助贫,刘永禄.三轴土样局部变形的数字图像测量方法.岩土工程学报,2002,24(2):159~163.
    144,邵龙潭,孙益振,王助贫等.数字图像测量技术在土工三轴试验中的应用研究.岩土力学,2006,27(1):29~34.
    1.李锡夔.多孔介质中非线性耦合问题的数值方法.大连理工大学学报,1999,39:02-06.
    2. Pande GN, Pietruszczak S. Symmetric tangent stiffness formulation for non-associated plasticity. Computers and Geotechniques, 1986, 2(2): 89-99.
    3. Rudnicki JW, Rice JR. Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids, 1975, 23: 371-394.
    4. Li XK, Zhang JB, Zhang HW. Instability of wave progagation in saturated poroelastoplastic media. Int. J. Numer. Anal. Meth. Geomech., 2002, 26: 563-578.
    5. Muhlhaus HB, Vardoulakis I. The thickness of shear bands in granular materials. Geotechnique, 1987, 37: 271-283.
    6. Muhlhaus HB. Application of Cosserat theory in numerical solutions of limit load problems. Ing. Arch., 1989, 59: 124-137.
    7. de Borst R, Sluys LJ. Localization in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng., 1991, 90: 805-827.
    8. de Borst R. Simulation of srtain localization:a reappraisal of the cosserat continuum. Engineering computations, 1991, (8): 317-332.
    9. de Borst R. A generalization of J2-flow theory for polar continue. Computer methods in applied mechanics and engineering, 1993, 103: 347-362.
    10. Tejchman J, Wu W. Numerical study on patteming of shear bands in a Cosserat continuum. Acta Mechanica, 1993, 99: 61-74.
    11. Steinmarm P. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Structures, 1994, 31: 1063-1084.
    12. Steinmann P. Formulation and computation of geometrically nonlinear gradient damage. Int. J. Numer. Meth. Eng., 1999, 46: 757-779.
    13. Li Xikui, Tang Hongxiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Computers & Structures, 2005, 83(1): 1-10.
    14.李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24(9):1497-1505.
    15. Hill R. Acceleration waves in solids. J. Mech. Phys. Solids, 1962, 10: 1-16.
    16. Zienkiewicz OC, Taylor RL. The finite element method(Volume 2). Singapore: Elsevier, 2004.
    17. Simo JC, Ortiz M. An analysis of a new class of integrate algorithms for elastoplastic constitutive relations. Int. J. Numer. Meth. Eng., 1986, 23: 353-366.
    18. Simo JC, Taylor RL. Consistent tangent operators for rate independent plasticity. Comp. Meth. Appl. Mech. Eng., 1985, 48: 101-108.
    19. Mitchell GP, Owen DR. Numerical solutions for elastic-plastic problems. Eng. Comput., 1988, 5(4): 274-284.
    20. Li Xikui, Duxbury PG, Lyons P. Considerations for the application and numerical implementation of strain hardening with the Hoffman yield criterion. Computers & Structures, 1994, 52: 633-644.
    21. Duxbury PG, Li Xikui. Development ofelasto-plastie material models in a natural co-ordinate system. Compt Methods in Appl. Mech. and Eng., 1996, 135: 283-306.
    1. de Borst R, Muhlhaus HB. Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng., 1992, 35: 521-539.
    2. de Borst R, Sluys LJ. Localization in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng., 1991, 90: 805-827.
    3. de Borst R. Simulation of srtain localization: a reappraisal of the cosserat continuum. Engineering computations, 1991, (8): 317-332.
    4. de Borst R. A generalization of J2-flow theory for polar continue. Computer methods in applied mechanics and engineering, 1993, 103: 347-362.
    5. Cramer H, Findeiss R, Steinl GW et al. An approach to the adaptive finite element analysis in associated and non--associated plasticity considering localization phenomena. Comput. Methods Appl. Mech. Eng., 1999, 176: 187-202.
    6. Maria-Magdalena Iordache, Kaspar Willam. Localized failure analysis in elastoplastic Cosserat continua. Comput. Methods Appl. Mech. Eng., 1998, 151: 559-586.
    7. Li Xikui, Tang Hongxiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Computers & Structures, 2005, 83(1): 1-10.
    8.李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24(9):1497-1505.
    9. Tejchman J, Bauer E. Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Computers and Geotechnies. 1996, 19(3): 221-244.
    10. Steinmann P. Theory and numerics of ductile micropolar elastoplastie damage. Int. J. Num. Meth. Engng., 1995, 38: 583-606.
    11. de Borst R. Bifurcations in finite element models with a non-associated flow law. Int. J. Numer. Anal. Meth. Geomech., 1988, 12: 99-116.
    12. de Borst R. Numerical methods for bifurcation analysis in geomechanics. Ing. Arch., 1989, 59: 160-174.
    13.沈珠江.理论土力学.北京:水利水电出版社,2000.
    14. Yu HS, Netherton MD. Performance of displacement finite elements for modelling incompressible materials. Int. J. Numer. Anal. Meth. Geomech., 2000, 24: 627-653.
    15.宋二祥.结构极限荷载及软化性态的有限元分析.工程力学增刊,1995,71-79.
    16. Ted Belytschko, Wing Kamliu, Brian Moran. Nonlinear fmite elements for continua and structures. London: John Wiley & Sons, 2000.
    17. Molenkamp F, Sellmeijer JB, Sharma CB et al. Explanation of locking of four-node plane element by considering it as elastic Dirichlet-type boundary value problem. Int. J. Numer. Anal. Meth. Geomech., 2000, 24: 1013-1048.
    1. de Borst R. Simulation of srtain localization: a reappraisal of the cosserat continuum. Engineering computations, 1991, (8): 317-332.
    2. de Borst R. A generalization of J2-flow theory for polar continue. Computer methods in applied mechanics and engineering, 1993, 103: 347-362.
    3. Manzari MT. Application of micropolar plasticity to post failure analysis in geomechanics. Int. J. Numer. Anal. Meth. Geomech., 2004, 28: 1011-1032.
    4. Li Xikui, Tang Hongxiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Computers & Structures, 2005, 83(1): 1-10.
    5.李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24(9):1497-1505.
    6. Mana AI, Clough GW. Prediction of movements for braced cuts in clay. Journal of Geotechnical Engineering Division, 1981, 107: 759-778.
    7. Pande GN, Pietruszczak S. Symmetric tangent stiffness formulation for non-associated plasticity. Computers and Geotechniques, I986, 2(2): 89-99.
    8. Manzari MT, Nour MA. Significance of soil dilataney in slope stability analysis. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126: 75-81.
    9. Chen WF. Limit analysis and soil plasticity. New Youk: Elsevier Scientific Publishing Co., 1975.
    10.陈祖煜,高锋.地基承载力的数值分析方法.岩土工程学报,1997,19(5):6-13.
    11. Prevost JH. Localization of deformations in elastic-plastic solids. Int. J. Numer. Anal. Meth. Geomech., 1984, 8: 187-196.
    1. Zhang Hongwu, Schrefler BA. Analytical and numerical investigation of uniqueness and localization in saturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics. 2002, 26(14): 1429-1448.
    2. Zhang Hongwu, Schrefler BA. Gradient-dependent plasticity model and dynamic strain localization analysis of saturated and partially saturated porous media: one dimensional model. European Journal of Mechanics, 2000, 19(3): 503~524.
    3. Ehlers W, Volk W. On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mechanics of cohesive-frictional materials, 1997, 2: 301-320.
    4. Ehlers W, Volk W. On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials. International Journal of Solids and Structures, 1998, 35: 4597-4617.
    5. Biot MA. Theory of three-dimensional consolidation. Journal of Applied Physics, 1941, 12: 155~164.
    6. Prevost JH. Nonlinear transient phenomena in saturated porous media. Computer Methods in Applied Mechanics and Engineering, 1982, 20: 3~8.
    7. Zienkiewicz OC, Shiomi T. Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 71~96.
    8.沈珠江.关于固结理论和有效应力的讨论.岩土工程学报.1995,17(6):118~119.
    9. de Borst R, Sluys LJ. Localization in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng., 1991, 90: 805~827.
    10. Li Xikui, Tang Hongxiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Computers & Structures, 2005, 83(1): 1~10.
    11.李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24(9):1497~1505.
    1.郑颖人,沈珠江,龚晓南.岩土塑性力学原理.北京:中国建筑工业出版社,2002.
    2. Collin F, Cui YJ, Schroeder C, Charlier R. Mechanical Behavior of Lixhe chalk partly saturated by oil and water: experiment and modelling. International Journal of Numerical and Analytical Methods in Geomechanics, 2002, 26: 897-924.
    3. Simo JC, Hughes TJR. Computational Inelasticity. New York: Springer, 1998.
    4. Li Xikui, Thomas HR, Fan Yiqun. Finite element method and constitutive modelling and computation for unsaturated soils. Comp. Meth. Appl. Mech. Eng., 1999, 169: 135-159.
    5.武文华.非饱和土中热-水力-力学-传质耦合过程模拟及土壤环境工程中的应用:博士学位论文. 大连:大连理工大学,2002.
    6.刘泽佳.多孔介质中化学-热-水力-力学耦合分析与混合元方法:博士学位论文.大连:大连理工大学,2005.
    7.李锡夔.多孔介质中非线性耦合问题的数值方法.大连理工大学学报,1999,39:02-06.
    8. Pande GN, Pietruszczak S. Symmetric tangent stiffness formulation for non-associated plasticity. Computers and Geotechniques, 1986, 2(2): 89-99.
    9. Rudnicki JW, Rice JR. Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids, 1975, 23: 371-394.
    10. Li Xikui, Zhang Junbo, Zhang Hongwu. Instability of wave progagation in saturated poroelastoplastic media. Int. J. Numer. Anal. Meth. Geomech., 2002, 26: 563-578.
    11. Li Xikui, Duxbury PG, Lyons P. Considerations for the application and numerical implementation of strain hardening with the Hoffman yield criterion. Computers & Structures, 1994, 52: 633-644.
    12. Duxbury PG, Li Xikui. Development of elasto-plastic material models in a natural co-ordinate system. Compt. Methods in Appl. Mech. and Eng., 1996, 135: 283-306.
    1. Mindlin RD. Influence of couple-stress on stress concentrations. Exp. Mech., 1963, 3: 1-7.
    2. Sternberg E, Muki R. The effect of couple-stresses on the stress concerntration around a crack. Int. J. Solids Struct., 1967, 3: 69-95.
    3. Providas E, Kattis MA. Finite element method in plane cosserat elasticity. Computers and Structures, 2002, 80: 2059-2069.
    4.刘俊,黄铭,葛修润.考虑偶应力影响的应力集中问题求解.上海交通大学学报,2001,35(10):1481-1485.
    5.余成学,罗继铣,张玉珍.Cosserat介质理论与连续介质理论的耦合计算方法.武汉水利电力大学学报,1996,29:40~44.
    6. Muhlhaus HB, Vardoulakis I. The thickness of shear band in granular materials. Geotechnique, 1987, 37(3): 271-283.
    7. de Borst R, Sluys LJ. Localization in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng., 1991, 90: 805-827.
    8. de Borst R. Simulation of srtain localization: a reappraisal of the cosserat continuum. Engineering computations, 1991, (8): 317-332.
    9. de Borst R. A generalization of J2-flow theory for polar continue. Computer methods in applied mechanics and engineering, 1993, 103: 347-362.
    10. Cramer H, Findeiss R, Steinl GW et al. An approach to the adaptive finite element analysis in associated and non--associated plasticity considering localization phenomena. Comput. Methods Appl. Mech. Eng., 1999, 176: 187-202.
    11. Tejchman J, Wu W. Numerical study on patterning of shear bands in a Cosserat continuum. Acta Mechanica, 1993, 99: 61-74.
    12. Tejchman J, Bauer E. Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Computers and geotechnics, 1996, 19: 221-244.
    13. Steinmann Paul. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Structures, 1994, 31: 1063-1084.
    14. Steinmann Paul. Theory and numerics of ductile micropolar elastoplastic damage. Int. J. Numer. Methods Eng., 1995, 38: 583-606.
    15. Muhlhaus HB. Application of Cosserat theory in numerical solution of limit load problems. Ing. Arch., 1989, 59: 124-137.
    16. Matti Ristinma, Marcella Vecchi. Use of couple-stress theory in elasto-plasticity. Comput. Methods Appl. Mech. Eng., 1996, 136: 205~224.
    17. Li Xikui, Tang Hongxiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Computers & Structures, 2005, 83(1): 1-10.
    18.李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24(9):1497-1505.
    19.胜利油田建筑工程指挥部,大连理工大学土木工程系.胜利油田海滩软基处理研究报告.大连:大连理工大学,1989.
    20. Vermeer PA, de Borst R. Non-associated plasticity for soils, concrete and rock. Heron, 1984, 29(3), 64p.
    21. Bjerrum L. Progressive failure in slopes of overconsolidated plastic clay and clay shales. J. Soil Mech. Found., ASCE, 1967, 93: 1-49.
    22. Troncone A. Numerical analysis of a landslide in soils with strain-softening behaviour. Geotechnique, 2005, 55(8): 585-596.
    23. Mana AI, Clough GW. Prediction of movements for braced cuts in clay. Journal of Geotechnical Engineering Division, 1981, 107: 759-778.
    1. Li Xikui, Tang Hongxiang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Computers & Structures, 2005, 83(1): 1-10.
    2.李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24(9):1497-1505.
    3.武文华.非饱和土中热-水力-力学-传质耦合过程模拟及土壤环境工程中的应用:博士学位论文.大连:大连理工大学,2002.
    4.刘泽佳.多孔介质中化学-热-水力-力学耦合分析与混合元方法:博士学位论文.大连:大连理工大学,2005.
    5.周浩洋.波传播的单位分解有限元法:博士学位论文.大连:大连理工大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700