用户名: 密码: 验证码:
碳纳米管的相关力学问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从Iijima发现碳纳米管以来,它已引起了众多科学家的关注和研究。已有的相关研究工作表明碳纳米管可能具有奇特的力学、电学和光学等特性,因此可望具有广阔的应用前景。然而,不论是实验还是理论工作,目前仍然处于探索阶段,且对于碳纳米管的这些特性的预测结果也仍存在着较大的分歧。因此,基于所发展的高阶Cauchy-Born广义连续体本构模型以及范德华力广义参变本构模型,本文分别研究了单壁碳纳米管的一系列相关力学特性、压缩变形机理以及平行或交叉排列的碳纳米管间的黏附行为。所取得的研究进展包括:
     本文提出了一种基于高阶Cauchy-Born准则建立单壁碳纳米管本构模型的方法。通过引入高阶变形梯度,合理地修正了传统Cauchy-Born准则在描述纳米管变形几何关系时所存在的缺陷。利用原子间相互作用势以及能量等效原理,得到了基于广义连续介质模型的单壁碳纳米管的本构关系。由此得到的本构参数不仅与变形梯度张量F,而且与其梯度▽F相关,同时也包含了碳纳米管的微结构信息,因此是一种考虑微结构效应的广义连续介质模型。
     基于所发展的高阶Cauchy-Born广义连续体本构模型,首先对石墨片和单壁碳纳米管的一系列无限小变形的力学特性(如:轴向和环向模量、泊松比、剪切模量)以及应变能进行了研究,同时也考察了手性、半径、势能参数以及内位移放松等因素对这些力学特性的影响。研究发现:当单壁碳纳米管的半径较小时,手性和半径对其力学特性的影响十分明显;而当管半径较大时,这种影响不再重要,以至于随着管半径的增大单壁碳纳米管的这些的力学特性最终趋于石墨片相应的结果。从数值结果上看,势能参数和内位移放松对所预测的单壁碳纳米管的力学特性有着很大的影响。进一步,我们也研究了简单的有限变形下单壁碳纳米管的应变能和切向模量的变化。结果表明,单壁碳纳米管的切向模量几乎线性地随着轴向拉伸而减小;且对于半径相近而手性不同的碳纳米管而言,其系统应变能几乎完全一致。继而,手性碳纳米管的轴向变形与其径向和扭转变形间的耦合机理的研究表明,最大的耦合效应发生于手性角为π/12的碳纳米管中。
     从变形机理方面重新审视了石墨片和碳纳米管的弯曲刚度,并指出了部分文献中关于这两个概念使用和计算上的不恰当性。具体而言,石墨片和碳纳米管的弯曲刚度这两个概念本质上是不同的,前者指的是材料的内禀特性,而后者是结构特性。当采用经典连续体理论模拟碳纳米管时,等效的连续体应该被看作是带有微结构的广义连续介质,因此本文建议把碳纳米管的结构弯曲刚度处理为一个独立的结构刚度参数。进而,基于高阶Cauchy-Born广义本构模型给出了合理的计算石墨片和碳纳米管弯曲刚度的方法和结果。
     基于高阶Cauchy-Born广义连续体本构模型,结合无网格方法进行了单壁碳纳米管的压缩屈曲变形的分析,从应变能的角度分析了屈曲前后碳纳米管的变形机理。所获得的与分子动力学模拟和原子有限元计算相一致的结果证明了目前所发展的模型的可行性和正确性。
     本文也提出了处理非成键原子间范德华力的广义参变本构模型以及基于此进行碳纳米管结构力学行为数值模拟的数学规划算法。纳米管中原子间短程力作用采用分子结构力学模型来模拟,而作为长程作用的范德华力用杆单元来模拟,这类杆单元有着特殊的非线性本构关系。对于这种高非线性问题的处理,本文基于所建立的广义参变本构模型与参数二次规划算法求解。与一般的数值方法相比较,本文的方法不需要传统的那种冗长的、反复的迭代,并具有非常好的收敛性,因此为碳纳米管结构力学行为的有效预测提供了保障。基于此我们研究了平行和交叉排列的碳纳米管的稳定构型和接触黏附行为,并发现单壁纳米管间的范德华力直接影响着其最终的稳定构型。所获得的与文献相一致的数值结果也证明了目前所发展方法的正确性和有效性。
Since their discovery by Iijima, carbon nantoubes (CNTs) have attracted much attention and interest from scientists in various disciplines. Many studies show that CNTs possess possibly unique mechanical, electronical and optical properties which result in potential applications in industry. However, both of experimental and theoretical works for CNTs have been being in a groping stage, and there are still some significant discrepancies among the results of mechanical properties of CNTs. Thus, based on the higher-order Cauchy-Born constitutive model and the generalized parametric constitutive law for van der Waals force developed here, a series of mechanical properties, compression buckling and adhesion behaviors for single-walled carbon nanotubes (SWCNTs) are studied respectively in the present thesis. The following progresses are made:
     Based on the higher order Cauchy-Born rule, a constitutive model of SWCNT is established. In the present model, by including the second order deformation gradient tensor in the kinematic description, the limitation of the standard Cauchy-Born rule for the modeling of nanoscale crystalline films can be alleviated with less computational efforts. Based on the established relationship between the atomic potential and the macroscopic continuum strain energy density, analytical expressions for the tangent modulus tensors are derived. Moreover, the interatomic potential and the atomic structure of CNT are incorporated into the proposed constitutive model in a consistent way. Therefore SWCNT can be viewed as a macroscopic generalized continuum with microstructure.
     Based on the higher-order Cauchy-Born constitutive model, a seriers of infinitesimal mechanical properties and the strain energy for the graphite sheet and SWCNT are studied firstly with the consideration of the influences from tube chirality and radius, potential parameters and the inner displacement. The results show that infinitesimal properties of SWCNTs strongly depends on the tube radius as for smaller tubes, however, the dependence becomes very weak as for larger tubes and a plateau, which corresponds to the modulus of graphite predicted by the present method, is reached with increase of tube radius. It is also noted that potential parameters and the inner displacement have significant influences on mechanical properties of SWCNTs. Besides, the strain energy and the tangential elastic moduli for CNTs are also obtained under finite deformation. The results show that the tangential elasitic moduli decreases linearly with increasing the axial stretch, and the strain energy for SWCNTs with similar tube radius is consistent with each other. Then, the axial-deformation-induced circular and torsion response in chiral SWCNTs is analyzed systematically, and the maximum coupling response is obtained in SWCNT with chiral angle ofπ/12.
     Some basic problems on the study of the bending stiffness of CNTs are analyzed based on their defomation mechanism. It is pointed out that the bending stiffness of a flat graphite sheet and that of CNTs are two different concepts. The former is an intrinsic material property while the later is a structural one. Since the smeared-out model of CNTs is a generalized continuum with microstructure, its effective bending stiffness should be regarded as an independent structural rigidity parameter which can not be determined simply by employing the classic formula in beam theory. Furthermore, based on the higher-order Cauchy-Born constitutive model, the reasonable computational methods and results for the bending stiffness of the graphite sheet and CNTs are given.
     Based on the higher-order Cauchy-Born constitutive model, the compression deformation beyond the buckling point for SWCNTs is implemented numerically via the mesh-free method, and is analyzed based on the strain energy obtained. Results consistent with those based on molecular dynamic and atomic finite element methods confirm the feasibility and validity of the presented constitutive model.
     A parametric variational principle for van der Waals force simulation between any two non-bonded atoms is also established together with the corresponding improved quadratic programming method for numerical simulation of mechanical behaviours of carbon nanotubes. Carbon-carbon covalent bond interaction in carbon nanotubes is modeled and computed based on molecular structural mechanics model. Van der Waals force is simulated by the network of bars with a special nonlinear mechanical constitutive law in the finite element analysis. In comparison with conventional numerical methods, the suggested method does not depend on displacement and stress iteration, but on the base exchanges in the solution of a standard quadratic programming problem. Thus, the model and method developed exhibit very good convergence behavior in computation and provide accurate predictions of the mechanical behaviours and displacement distributions in the nanotubes. Based on the present method, the equilibrium configuration and the adhesion behaviors for two parallel or cross SWCNTs are studied respectively. Numerical results demonstrate the validity and the efficiency of the proposed method.
引文
[1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991,354: 56-58.
    
    [2] Andrews R, Jacques D, Rao AM, Rantell T, Derbyshire F, Chen Y, Chen J and Haddon RC. Nanotube composite carbon fibers. Applied Physics Letters, 1999,75(9): 1329-1331.
    
    [3] Thostenson ET, Ren ZF and Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Composite Science of Technology, 2001,61: 1899-1912.
    
    [4] Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP and Hirsch A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Materials, 2002,1: 190 - 194.
    
    [5] Peigney A, Flahaut E, Laurent C, Chastel F and Rousset A. Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chemical Physics Letters, 2002, 352: 20-25.
    
    [6] Thostenson ET and Chou TW. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. Journal of Physics D: Applied Physics, 2002,35: L77-L80.
    
    [7] Ko F, Gogotsi Y, Ali A, Naguib N, Ye HH, Yang GL, Li C and Willis P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Advanced Materials, 2003, 15: 1161-1165.
    
    [8] Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH and Smalley RE. Polyacrylonitrile single-walled carbon nanotube composite fibers. Advanced Materials, 2004, 16: 58-61.
    
    [9] Zhou W, Vavro J, Guthy C, Winey KI, Fischer JE, Ericson LM, Ramesh S, Saini R, Davis VA, Kittrell C, Pasquali M, Hauge RH and Smalley RE. Single wall carbon nanotube fibers extruded from super-acid suspensions: Preferred orientation, electrical, and thermal transport. Jouranl of Applied Physics, 2004, 95: 649-655.
    
    [10] Dalton AB, Collins S, Razal J, Munoz E, Ebron VH, Kim BG, Coleman JN, Ferraris JP and Baughman RH. Continuous carbon nanotube composite fibers: Properties, potential applications, and problems. Journal of Materials Chemistry, 2004, 14: 1-3.
    
    [11] Tans SJ, Verschueren ARM and Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature (London), 1998, 393: 49-52.
    
    [12]Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL and Lieber CM. Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing. Science, 2000, 289: 94-97.
    
    [13]Srivastava D, Brenner DW, Schall JD, Ausman KD, Yu MF and Ruoff RS. Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: kinky chemistry. The Journal of Physical Chemistry B, 1999, 103: 4330-4337.
    
    [14] Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K and Dai H. Nanotube molecular wires as chemical sensors. Science, 2000, 287: 622-625.
    
    [15] Star A, Gabriel JCP, Bradley K, Gruner G. Electronic detection of specific protein binding using nanotube FET devices. Nano Letters, 2003, 3(4): 459-463.
    
    [16] Koratkar N, Wei BQ, Ajayan PM. Carbon nanotube films for damping applications. Advanced Materials, 2002, 14: 997-1000.
    
    [17] Koratkar NA, Wei B, Ajayan PM. Multifunctional structural reinforcement featuring carbon nanotube films. Composites Science and Technology, 2003, 63(11): 1525-1531.
    
    [18] Huang Y, Duan XF, Wei QQ, Lieber CM. Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001, 291: 630-633.
    
    [19] Modi A, Koratkar N, Lass E, Wei BQ, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes. Nature, 2003, 424: 171-174.
    [20] Dai H, Hafner JH, Rinzler AG, Colbert DT and Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy. Nature (London), 1996, 384: 147-150.
    [21] Wong SS, Harper JD, Lansbury Jr PT and Lieber CM. Carbon nanotube tips: High-resolution probes for imaging biological systems. Journal of the American Chemical Society, 1998, 120: 603-604.
    [22] Baughman RH, Cui CX, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M. Carbon nanotube actuators. Science, 1999, 284: 1340-1344.
    [23] Baughman R H, Zakhidov AA, de Heer WA. Carbon nanotubes-the route twoward applications. Science, 2002, 297: 787-792.
    [24] Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J and Zettl A. Rotational actuators based on carbon nanotubes. Nature, 2003, 424: 408-410.
    [25] Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM. Super-compressible foamlike carbon nanotube films. Science, 2005, 310(5752): 1307-1310.
    [26] Derycke V, Martel R, Appenzeller J and Avouris P. Carbon nanotube inter- and intramolecular logic gates. 2001, Nano Letters, 1: 453-456.
    [27] Yakobson BI and Avouris P. Nanomechanics, carbon nanotubes: synthesis, structure, properties and applications, edited by Dresselhaus MS., Dresselhaus G and Avouris P. SpringerVerlag, New York, 2001, 287-329.
    [28] Thostensona ET, Renb Z, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Composite Sciencs and Technology, 2001, 61: 1899-1912.
    [29] Srivastava D, Menon M and Cho K. Computational nanotechnology with carbon nanotubes and fullerenes. Computing in Science & Engineering, 2001, 3: 42-55.
    [30] Qian D, Wagner GJ, Liu WK, Yu MF and Ruoff RS. Mechanics of carbon nanotubes. Applied Mechanics Reviews, 2002, 55(6): 495-532.
    [31] Rafii-Tabar H. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Physics Reports, 2004, 390: 235-452.
    [32] Lau KT, Chipara M, Ling HY, Hui D. On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composite B: Engineering, 2004, 35:95-101.
    [33] Liu WK, Karpov EG, Zhang S and Park HS. An introduction to computational nano mechanics and materials. Computer Methods in Applied Mechanics and Engineering, 2004, 193:1529-1578.
    [34] Yu MF. Foundamental mechanical properties of carbon nantoubes: current understanding and the related experimental studies. Journal of Engineering Mateirals and Technology. 2004, 126: 271-278.
    [35] Harris PJF. New perspectives on the structure of graphitic carbons. Critical Reviews in Solid State and Materials Sciences. 2005, 30: 235-253.
    [36] Baker LA, Jin P and Martin CR. Biomaterials and biotechnologies based on nanotube membranes. Critical Reviews in Solid State and Materials Science. 2005, 30:183-205.
    [37] 杨卫,王宏涛,马新玲,洪伟 纳米力学进展.力学学报,2003,33(2):161-174.
    [38] 杨卫,王宏涛,马新玲,洪伟 纳米力学进展.力学学报,2003,33(2):175-186.
    [39] 成会明 纳米碳管制备、结构、物性及应用.北京:化学工业出版社,2002.
    [40] Charlier JC and Michenaud JP. Energetics of multilayered carbon tubules. Physical Review Letters, 1993, 70: 1858-1861.
    [41] Kwon YK, Lee YH, Kim HJ, Jund P, Tomanek D, Smalley RE. Morphology and stability of growing multi-wall carbon nanotubes. Physical Review Letters, 1997, 79: 2065-2068.
    [42] Nardelli MB, Brabec C, Maiti A, Roland C, Bernholc J. Lip-lip interactions and the growth of multiwalled carbon nanotubes. Physical review letters, 1998, 80(2): 313-316.
    
    [43] Nardelli MB, Roland C, Bernholc J. Theoretical bounds for multiwalled carbon nanotube growth. Chemical Physics Letters, 1998, 296: 471-476.
    
    [44]Lourie O and Wagner HD. Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy. Journal of Materials Research, 1998,13: 2418-2422.
    
    [45] Treacy MMJ, Ebbesen TW and Gibson JM. Exceptionally high Young's modulus observed for individual carbon nantoubes. Nature(London), 1996, 381: 678-680.
    
    [46] Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN and Treacy MMJ. Young's modulus of single-walled nanotubes. Physical Review B, 1998,58: 14013-14019.
    
    [47] Wong EW, Sheehan PE and Lieber CM. Nanobeam mechanics: elasticity, strength and toughness of nanorods and nantoubes. Science, 1997, 277: 1971-1975.
    
    [48] Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W and Zuppiroli L. Mechanical properties of carbon nanotubes. Applied Physics A, 1999,69: 255-260.
    
    [49] Poncharal P, Wang ZL, Ugarte D and de Heer WA. Eletrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999,283: 1513-1516.
    
    [50] Gao RP, Wang ZL, Bai ZG, Heer WA, Dai LM and Gao M. Nanomechanics of individnal carbon nanotubes from pyrolytically grown arrays. Physical Review Letters, 2000, 85(3): 622-624.
    
    [51] Pan ZW, Xie SS, Lu L, Chang BH, Sun LF, Zhou WY, Wang G and Zhang DL. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Applied Physics Letters, 1999, 74(21): 3152—3154.
    
    [52] Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF and Ruoff RS. Strength and breaking mechanism of multiwall carbon nantoubes under tensile load. Science, 2000,287: 637-640.
    
    [53] Yu M F, Files BS, Arepalli S and Ruoff RS, Tensile loading of ropes of single wall carbon, nanotubes and their mechanical properties. Physical Review Letters, 2000, 84: 5552-5555.
    
    [54]Demczyk BG, Wang YM, Cumings J, Hetman M, Han W,. Zettl A, Ritchie RO. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science and Engineering A, 2002, 334: 173-178.
    
    [55] Ruoff RS, Tersoff J, Lorents DC, Subramoney S and Chan B. Radial deformation of carbon nanotubes by van der Waals forces. Nature(London), 1993, 48: 195-198.
    
    [56] Chopra NG, Benedict LX, Crespi VH, Cohen ML, Louie SG and Zettl A. Fully collapsed carbon nanotubes. Nature(London), 1995,377: 135-138.
    
    [57] Kuzumaki T, Hayashi T, Ichinose H, Miyazawa K, Ito K, Ishida Y. Fine structure of plastically deformed carbon nanotube. Journal of the Japan Institute of Metals, 1996, 60: 9-15.
    
    [58] Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, and Superfine R. Bending and buckling of carbon nanotubes under large strain, Nature(London), 1997, 389: 582-584.
    
    [59] Shen WD, Jiang B, Han BS, and Xie SS. Investigation of the radial compression of carbon nanotubes with a scanning probe microscope. Physical Review Letters, 2000, 84: 3634-3637.
    
    [60] Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA and Smalley RE. Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physical Letters, 1999, 74: 3803-3805.
    
    [61] Hadjiev, VG, Lagoudas DC and Davis DC. Buckling instabilities of octadecylamine functionalized carbon nanotubes embedded in epoxy. Composites Science and Technology, 2006, 66: 128-136.
    
    [62] Cao AY, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN and Ajayan PM. Super-compressible foam-like carbon nanotube films. Science, 2005, 310: 1307-1310.
    [63] Huang JY, Chen S, Wang ZQ, Kempa K, Wang YM, Jo SH, Chen G, Dresselhaus MS, Ren ZF. Superplastic carbon nanotubes. Nature, 439: 281.
    
    [64] Yakobson BI, Brabec CJ and Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phyical Review Letters, 1997, 76: 2511-2514.
    
    [65] Yakobson BI, Campbell MP, Brabec CJ and Bernholc J. High strain rate fracture and C-chain unraveling in carbon nanotubes. Computational Materials Science, 1997, 8: 341-348.
    
    [66] Iijima S, Brabec C, Maiti A and Bernholc J. Structural flexibility of carbon nanotubes. Journal of Chemical Physics, 1996, 104: 2089-2092.
    
    [67] Cornwell CF and Wille LT. Elastic properties of single-walled carbon nanotubes in compression. Solid State Communications, 1997, 101: 555-558.
    
    [68] Yao N and Lordi V. Young's modulus of single-walled carbon nanotubes. Applied Physics, 1998, 84: 1939-1943.
    
    [69] Sinnott SB, Shenderova OA, White CT and Brenner DW. Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations. Carbon, 1998, 36: 1-9.
    
    [70] Hernandez E, Goze C, Bemier P and Rubio A. Elastic properties of C and B_xC_yN_z composite nanotubes. Physical Review Letters, 1998, 80: 4502-4505.
    
    [71] Lu JP. Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters, 1997, 84: 1297-1300.
    
    [72] Wang Y, Wang XY and Ni XG. Atomistic simulation of the torsion deformation of carbon nanotubes. Modelling and Simulation in Materials Science and Engineering, 2004, 12: 1099-1107.
    
    [73] Wang Y, Wang XX, Ni XG and Wu HA. Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes. Computational Materials Science, 2005, 32: 141-146.
    
    [74] Ma XL, Wang HT, Yang W. Tribological behavior of aligned single-walled carbon nanotubes. Journal of Engineering Materials and Technology, 2004, 126: 258-264.
    
    [75] Guo WL, Zhong WY, Dai YT and Li SN. Coupled defect-size effects of interlayer friction in multiwalled carbon nanotubes. Physical Review B, 2005, 72: 075409.
    
    [76] Guo WL, Zhu CZ, Yu TX, Woo CH, Zhang B and Dai YT. Formation of sp3 bonding in nanoindented carbon nanotubes and graphite. Physical Review Letters, 2004, 93: 245502.
    
    [77] Guo WL, Guo YF, Gao HJ, Zheng QS and Zhong WY. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Physical Review Letters, 2003, 91: 125501.
    
    [78] Liew KM, He XQ and Wong CH. On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Materialia, 2004, 52: 2521-2527.
    
    [79] Liew KM, Wong CH and Tan MJ. Buckling properties of carbon nanotube bundles. Applied Physics Letters, 2005,87:041901.
    
    [80] Liew KM, Wong CH, He XQ, Tan MJ and Meguid SA. Nanomechanics of single and multiwalled carbon nanotubes. Physical Review B, 2004, 69: 115429.
    
    [81] Liew KM, Wong CH, He XQ and Tan MJ. Thermal stability of single and multi-walled nanotubes. Physical Review B, 2005, 71: 075424.
    
    [82] Liew KM, Wei JX and He XQ. Carbon nanocones under compression: buckling and post-buckling behaviors. Physcial Review B, 2007, 75: 195435.
    
    [83] Wang LF and Hu HY. Flexural wave propagation in single-walled carbon nanotubes. Physical Review B, 2005,71: 195412.
    [84] Wang LF, Hu HY and Guo WL. Validation of the non-local elastic shell model for studying longitudinal waves in single-walled carbon nanotubes. Nanotechnology, 2006,17: 1408-1415.
    
    [85] Gao H, Kong Y and Cui D. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Letters, 2003, 3:471-473.
    
    [86]Buehler MJ, Kong Y and Gao H. Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. Journal of Engineering Materials and Technology, 2004, 126: 245-249.
    
    [87] Buehler MJ, Kong Y and Gao H and Huang Y. Self-folding and unfolding of carbon nanotubes. Journal of Engineering Materials and Technology, 2006, 128: 3-10.
    
    [88] Zou J, Ji BH, Feng XQ and Gao H. Nanotubes into multiwalled carbon nanotubes in water: Molecular dynamics simulations. Nano Letters, 2006,6:430-437.
    
    [89] Mokasi VV, Qian D and Liu YJ. A study on the tensile response and fracture in carbon nanotube-based composited using molecular mechanics. Composites Science and Technology, 2007, 67: 530-540.
    
    [90] Li XY, Yang W and Liu B. Bending induced rippling and twisting of multiwalled carbon nanotubes. Physical Review Letters, 2007, 98:205502.
    
    [91] Kudin KN, Scuseria GE and Yakobson BI. C_2F, BN, and C nanoshell elasticity from ab initio computations. Physical Review B, 64: 235406.
    
    [92] Robertson DH, Brenner DW and Mintmire JW. Energetics of nanoscale graphitic tubules. Physical Review B, 1992,45: 12592-12595.
    
    [93] Sanchez-Portal D, Artacho E, Soler JM, Rubio A and Ordejon P. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 1999,59: 12678-12688.
    
    [94] Zhou X, Zhou J, Ou-Yang Z. Strain energy and Young's modulus of single-walled carbon nanotubes calculated from electronic energy-band theory. Physical Review B, 2000, 62: 13692-13696.
    
    [95] Lier GV, Alsenoy CV, Doren W, Geerlings P. Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chemical Physics Letters, 2000, 326: 181-185.
    
    [96] Zhou G, Duan WH Gu BL. First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chemical Physics Letters, 2001, 333: 344-349.
    
    [97] Guo WL and Guo YF. Giant axial electrostrictive deformation in carbon nanotubes. Physical Review Letters, 2003,91: 115501.
    
    [98] Srivastava D, Menon M and Cho K. Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Physical Review Letters, 1999, 83: 2973-2976.
    
    [99] Ozaki T, Iwasa Y and Mitani T. Stiffness of single-walled carbon nanotubes under large strain. Physics Review Letters, 2000, 84: 1712-1715.
    
    [100] Dumitrica T, Hua M and Yakobson BI. Symmetry-, time- and temperature-dependent strength of carbon nanotubes. Preceeding of the National Academy of Sciences of the United States of America, 2006, 103: 6105-6109.
    
    [101] Govindjee S and Sackman JL. On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Communications, 1999, 110: 227-230.
    
    [102] Ru CQ. Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Physical Review B, 2000, 62: 16962-16967.
    
    [103] Zhang, YY, Wang, CM and Tan VBC. Buckling of multi-walled carbon nanotubes using Timoshenko column model. Journal of Engineering Mechanics ASCE, 2006, 132(9): 952-958.
    
    [104] Ru C Q. Effective bending stiffness of carbon nanotubes. Physical Review B, 2000, 62: 9973-9976.
    [105] Ru CQ. Elastic models for carbon nanotubes. In: Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, 2004,2: 731-744.
    
    [106] Wang CY, Ru CQ, and Mioduchowski A. Applicability and limitations of simplified elastic shell equations for carbon nanotubes. Journal of Applied Mechanics, 2004, 71: 622-631.
    
    [107] Ru CQ. Effect of van der Waals on axial buckling of a double-walled carbon nanotube. Journal of Applied Physics, 2000, 87:7227-7231.
    
    [108] Ru, CQ. Axially compressed buckling of a doublewalled nanotube embedded within an elastic medium. Journal of the Mechanics and Physics of Solids, 2001,49: 1265-1279.
    
    [109] Ru CQ. Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips. Journal of Applied Physics, 2001, 89: 3426-3433.
    
    [110] Waters JF, Riester L, Jouzi M, Guduru PR and Xu JM. Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression. Applied Physical Letters, 2004, 85: 1787-1789.
    
    [111] Wang CY, Ru CQ, and Mioduchowski A. Axisymmetric and beamlike vibrations of multiwall carbon nanotubes. Physical Review B, 2005, 72: 075414.
    
    [112] Wang CY, Ru CQ and Mioduchowski A., Elastic buckling of multiwall carbon nanotubes under high pressure. Journal of Nanoscience and Technology, 2003, 3(1): 1-10.
    
    [113] Wang CY, Ru CQ and Mioduchowski A. Axially compressed buckling of pressured multiwall carbon nanotubes. Internationational Journal of Solids and Structures, 2003, 40: 3893-3903.
    
    [114] Yang HK and Wang X. Bending stability of multi-wall carbon nanotubes embedded in an elastic medium. Modelling and Simulation in Materials Science and Engineering, 2006, 14: 99-116.
    
    [115] Wang X, Sun B, and Yang HK. Stability of multi-walled carbon nanotubes under combined bending and axial compression loading. Nanotechnology, 2006 17: 815-823.
    
    [116] Lu YJ and Wang X. Combined torsional buckling of multi-walled carbon nanotubes. Journal of Physics D: Applied Physics. 2006, 39(15): 3380-3387.
    
    [117] Wang X, Lu GX and Lu YJ. Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading. International Journal of Solids and Structures, 2007, 44(1): 336-351.
    
    [118] Yao XH and Han Q. Postbuckling prediction of double-walled carbon nanotubes under axial compression. European Journal of Mechanics - A/Solids, 2007, 26(1): 20-32.
    
    [119] Shen HS. Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure. International Journal of Solids and Structures, 2004, 41: 2643-2657.
    
    [120] He XQ, Kitipornchai S and Liew KM. Buckling analysis of multi-walled carobon nanotubes: a continuum model accounting for van der Waals interaction. Journal of Mechancis and Physics of Solids, 2005, 53: 303-326.
    
    [121] Kitipornchai S, He XQ and Liew KM. Buckling analysis of triple-walled carbon nanotubes embedded in a elastic matrix. Journal of Applied Physics, 2005, 97: 114318.
    
    [122] He XQ, Kitipornchai S, Wang CM and Liew KM. Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. International Journal of Solids and Structures, 2005, 42: 6032-6047.
    
    [123] Liew KM, He XQ and Kitipornchai S. Buckling characteristics of embedded multi-walled carbon nanotubes. Proceedings of the Royal Society A, 2005, 461: 3785-3805.
    
    [124] He XQ, Kitipornchai S and Liew KM. Resonance analysis of multi-layered graphene sheet used as nanoscale resonators. Nanotechnology, 2005, 16: 2086-2091.
    
    [125] Kitipornchai S, He XQ and Liew KM. Continuum model for the viberation of multilayered graphene sheets. Physical Review B, 2005, 72: 075443.
    [126]Liew KM, He XQ and Kitipomchai S. Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Materialia, 2006, 54:4229-4236.
    
    [127] He XQ, M. Eisenberger and Liew KM. The effect of van der Waals interaction modeling on the viberation characteristics of multiwalled carbon nantoubes. Journal of Applied Physics, 2006, 100: 124317.
    
    [128] Liew KM, Wang JB, He XQ and Zhang HW. Buckling analysis of abnormal multiwalled carbon nanotubes. Journal of Applied Physics, 2007,102: 053511.
    
    [129] Zheng Q S, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Physical Review Letters, 2002, 88: 045503.
    
    [130] Liu JZ, Zheng QS and Jiang Q. Effect of a rippling mode on resonances of carbon nanotubes. Physics Review Letters, 2001, 86(21): 4843-4846.
    
    [131] Liu JZ, Zheng QS and Jiang Q. Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Physical Review B, 2003, 67: 075414.
    
    [132] Liu JZ, Zheng QS, Wang LF, Jiang Q. Mechanical properties of single-walled carbon nanotube bundles as bulk materials. Journal of Mechanics and Physics of Solids, 2005, 53: 123-142.
    
    [133]Pantano A, Boyce MC, Parks DM. Nonlinear structural medhanics based modeling of carbon nanotube deformation. Physical Review Letters, 2003, 91(14): 145504.
    
    [134]Pantano A, Parks DM., Boyee MC. Mechanics of deformation of single- and multi-wall carbon nanotubes. Jounal of the Mechanics and Physics of Solids, 2004, 52: 789-821.
    
    [135] Yang W, Wang HT, Huang Y. Abnormal tribological behavior of multiwalled nanotube rafts Part I: Aligned rafts. Journal of Engineering Materials and Technology, 2005,127: 383-392.
    
    [136] Yang W, Wang HT, Huang Y. Abnormal tribological behavior of multiwalled nanotube rafts Part II: Inclined rafts. Journal of Engineering Materials and Technology, 2005, 127: 393-399.
    
    [137] Tang T, Jagota A, Hui CY. Adhesion between single-walled carbon nanotubes. Journal of Applied Physics, 2005,97:074304-1.
    
    [138] Tang T, Jagota A, Hui CY, Glassmaker NJ. Collopse of single-walled carbon nanotubes. Journal of Applied Physics, 2005, 97: 074310-1.
    
    [139] Wang Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of Applied Physics, 2005, 98: 124301.
    
    [140] Wang Q and Varadan VK. Wave characteristics of carbon nantoubes. International Journal of Solids and Structures, 2006,43: 254-265.
    
    [141] Ru CQ. Elastic Models For Carbon Nanotubes. In: Nalwa HS, editor. Encyclopedia of Nanoscience and Nanotechnology. Stevenson Ranch, CA: American Scientific Publishers 2004, 731-744.
    
    [142]Odegard Gregory M, Gates Thomas S, Nicholson Lee M, Wise Kristopher E. Equivalent continuum modeling of nano-structured materials. NASA/TM, 2001,210863.
    
    [143]Odegard Gregory M, Gates Thomas S, Nicholson Lee M, Wise Kristopher E. Equivalent-continuum modeling of nano-structured materials. Composites Science and Technology, 2002, 62: 1869-1880.
    
    [144]Odegard, GM, Gates TS, Wise KE, Park C, Siochi EJ. Constitutive modeling of nanotube-reinforced polymer composites. Composites Science and Technology. 2003, 63(11): 1671-1687.
    
    [145] Li CY, Chou TW. A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, 2003,40: 2487-2499.
    
    [146] Li CY, Chou TW. Elastic moduli of multi-walled carbon nanotube and the effect of van der Waals forces. Composites Science and Technology, 2003, 63: 1517-1524.
    [147] Li CY, Chou TW. Elastic properties of single-walled carbon nanotubes in transverse dirctions. Physical Review B, 2004, 69: 073401.
    
    [148] Li CY, Chou TW. Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mechanics of Materials, 2004, 36: 1047-1055.
    
    [149] Li CY, Chou TW. Vibrational behaviors of multiwalled-carbon-nanotube- based nanomechanical resonators. Applied Physics Letters, 2004, 84(1): 121-123.
    
    [150] Li CY, Chou TW. Axial and radial thermal expansions of single-walled carbon nanotubes. Physical Review B, 2005, 71: 235414.
    
    [151] Li CY, Chou TW. Multiscale modeling of the interfacial load transfer in carbon nanotube/polymer composites. Journal of Nanoscience and Nanotechnology, 2004, 3: 423^430.
    
    [152] Chang TC, Gao HJ. Size-dependent elastic properties of a single-walled carbon nanotubue via a molecular mechanics model. Journal of the Mechanics and Physics of Solids, 2003, 51: 1059-1074.
    [153] Chang TC, Geng JY and Guo XM. Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Applied Physics Letters, 2005, 87:251929.
    
    [154] Chang T.C, Li G.Q., Guo X.M., Elastic axial buckling of carbon nanotubes via a molecular mechanics model. Carbon, 2005, 43: 287-294.
    
    [155] 张田忠 单壁碳纳米管屈曲的原子/连续介质混合模型.力学学报,2004,6(36):744-748.
    
    [156] Chang TC, Guo WL and Guo XM. Buckling of multiwalled carbon nanotubes under axial compression and bending via a molecular mechanics model. Physical Review B, 2005, 72: 064101.
    
    [157] Chang TC, Geng JY and Guo XM. Prediction of chirality- and size-dependt elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proceedings of the Royal Society A, 2006, 462: 2523-2540.
    
    [158] Xiao JR, Gama BA, Gillespie Jr JW. An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. International Journal of Solids and Structures, 2005, 42(11-12): 3075-3092.
    
    [159] Xiao JR and Gillespie Jr JW. Nonlinear deformation and progressive failure of multi-walled carbon nanotubes under internal radial pressure. Physical Review B, 2006, 74: 155404.
    
    [160] Shen LX, Li J. Transversely isotropic elastic properties of single-walled carbon nanotubes. Physical Review B, 2004, 69: 045414.
    
    [161] Shen LX, Li J. Transversely isotropic elastic properties of multiwalled carbon nanotubes. Physical Review B, 2005, 71: 035412.
    
    [162] Shen LX, Li J. Equilibrium structure and strain energy of single-walled carbon nanotubes. Physical Review B, 2005, 71: 165427.
    
    [163] Zhang HW, Wang JB, Ye HF. Influence of inversion energy on elastic properties of single-walled carbon nanotubes. Materials Science and Engineering A, 2007, 467: 78-88.
    
    [164]Tadmor EB, Phillips R and Ortiz M. Mixed Atomistic and Continuum Models of Deformation in Solids. Langmuir, 1996, 12: 4529-4534.
    
    [165] Tadmor EB, Ortiz M and Phillips R. Quasicontinuum analysis of defects in solids. Philosophical Magazine A, 1996,73:1529-1563.
    
    [166] Shenoy VB, Miller R, Tadmor EB, Phillips R and Ortiz M. Quasicontinuum models of interfacial structure and deformation. Physical Review Letters, 1998, 80: 742-745.
    
    [167] Miller R, Tadmor EB, Phillips R and Ortiz M. Quasicontinuum simulation of fracture at the atomic scale. Modelling and Simulation in Materials Science and Engineering, 1998, 6: 607-638.
    [168] Miller R, Ortiz M, Phillips R, Shenoy VB and Tadmor EB. Quasicontinuum models of fracture and plasticity. Engineering Fracture Mechanics, 1998,61: 427-444.
    
    [169] Shenoy VB, Miller R, Tadmor EB, Rodney D, Phillips R and Ortiz M. An adaptive finite element approach to atomic-scale mechanics-the quasicontinuum method. Journal of the Mechanics and Physics of Solids, 1999, 47:611-642.
    
    [170] Rodney D and Phillips R. Structure and strength of dislocation junctions: An atomic level analysis. Physical Review Letters, 1999, 82: 1704-1707.
    
    [171] Shenoy V and Phillips R. Finite temperature quasicontinuum methods. Materials Research Society Symposium Proceedings, 1999, 538: 465-471.
    
    [172] Tadmor EB, Smith GS, Bernstein N and Kaxiras E. Mixed finite element and atomistic formulation for complex crystals. Physical Review B, 1999, 59: 235-245.
    
    [173] Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang KC. The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. International Journal of Solids and Structures, 2002, 39: 3893-3906.
    
    [174] Zhang P, Huang Y, Gao H and Hwang KC. Fracture nucleation in single-wall carbon naotubesunder tension: a continuum analysis incorporating interatomic potentials. Journal of Applied Mechancis, 2002, 69: 454-458.
    
    [175] Jiang H, Zhang P, Liu B, Huang Y, Geubelle PH, Gao H and Hwang KC. The effect of nanotube radius on the constitutive model for carbon nanotubes. Computational Materials Science, 2003,28: 429-442.
    
    [176] Jiang H, Liu B, Huang Y, Hwang KC. Thermal expansion of single wall carbon nantoubes. Journal of Engineering Materials and Technology, 2004, 126: 265-270.
    
    [177] Liu B, Jiang H, Johnson HT and Huang Y. The influence of mechanical deformation on the electrical properties of single wall carbon nantobues. Journal of the Mechanics and Physics of Solids, 2004, 52: 1-26.
    
    [178] Arroyo M and Belytschko T. An atomistic-based finite deformation membrane for single layer crystalline films. Journal of the Mechanics and Physics of Solids, 2002, 50: 1941-1977.
    
    [179] Arroyo M and Belytschko T. A finite deformation memabrane based on inter-atomic potentials for the transverse mechanics of nanotubes. Mechanics of Materials, 2003, 35: 193-215.
    
    [180] Arroyo M and Belytschko T. Nonlinear mechanical response and rippling of thick multiwalled carbon nantoubes. Physical Review Letters, 2003, 91(21): 215505.
    
    [181] Arroyo M and Belytschko T. Finite element methods for the non-linear mechanics of crystalline sheets and nantoubes. International Journal for Numerical Methods in Engineering, 2004, 59: 419-456.
    
    [182] Arroyo M and Belytschko T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Bom rule. Physical Review B, 2004, 69: 115415.
    
    [183] Zhang HW, Wang JB, Guo X. Predicting the elastic properties of single-walled carbon nanotubes. Journal of the Mechanics and Physics of Solids, 2005, 53: 1929-1950.
    
    [184] Liu WK, Karpov EG, Zhang S and Park HS. An introduction to computational nanomechanics and materials. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1529-1578.
    
    [185] Abraham FF, Broughton JQ, Bernstein N, Kaxiras E. Spanning the continuum to quantum length scales in a dynamics simulation of brittle fracture. Europhys Letters, 1998,44(6): 783-787.
    
    [186] Broughton JQ, Abraham FF, Bernstein N, Kaxiras E. Concurrent coupling of length scales: methodology and application. Physical Review B. 1999, 60(4): 2391-2403.
    
    [187] Wagner GJ and Liu WK. Coupling of atomistic and continuum simulations using a bridging scale decomposition. Computer Methods in Applied Mechanics and Engineering, 2003, 190: 249 -274.
    [188] Hughes T., Geijoo G, Mazzei L, Quincy J. The variational multiscale-a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 1998, 166: 3-24.
    
    [189] Qian D, Wagner GJ and Liu WK. A multiscale projection method for the analysis of carbon nanotubes. Computer Methods in Applied Mechanics and Engineering, 2004,193: 1603-1632.
    
    [190] Belytschko T and Xiao SP. Coupling methods for continuum model with molecular model. International Journal for Multiscale Computational Engineering, 2003, 1: 115-126.
    
    [191] Xiao SP and Belytschko T. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1645-1670.
    
    [192] Jiang H, Feng XQ, Huang Y, Hwang KC and Wu PD. Defect nucleation in carbon nantoubes under tension and torsion: Stone-Walse transformation. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 3419-3429.
    
    [193] Shi DL, Feng XQ, Jiang H, Huang Y and Hwang KC. Multiscale analysis of fracture of carbon nanotubes embedded in composites. International Journal of Fracture, 2005, 134: 369-386.
    
    [194] Liu B, Huang Y, Jiang H, Qu S and Hwang KC. The atomic-scale finite element method. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1849-1864.
    
    [195] Liu B, Jiang H, Huang Y, Qu S and Yu MF. Atomic-scale finite element method in multiscale computation with applications to carbon nantoubes. Physical Review B, 2005, 72: 035435.
    
    [196] Zhang SL, Mielke SL, Khare R, Troya D, Ruoff RS, Schatz GC, and Belytschko T. Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations. Physical Review B, 2005, 71: 115403.
    
    [197] Khare R, Mielke SL, Paci JT, Zhang SL, Ballarini R, Schatz GC and Belytschko T. Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Physical Review B, 2007, 75: 075412.
    [1] Lennard-Jones JE. The determination of molecular fields: from the variation of the viscosity of a gas with temperature. Proceedings of the Royal Society, 1924, 106A: 441.
    [2] Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 1990, 42:9458-9471.
    [3] Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B, 1989, 39(8): 5566-5568.
    [4] Leach AR. Molecular Modelling: Principles and Applications, 2nd edition. Harlow: Pearson Education Limited, 2001.
    [5] Li CY, Chou TW. A Structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, 2003, 40: 2487-2499.
    [6] 钟万勰,张洪武,吴承伟 参变量变分原理及其在工程中的应用.北京:科学出版社,1997.
    [7] Allinger NL. Conformational analysis. 130 MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. Journal of American Chemical Society, 1977, 99:8127-8134.
    [1] Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 1996, 76: 2511-2514.
    
    [2] Govindjee S, Sackman JL. On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Communication, 1999, 110: 227-230.
    
    [3] Ru CQ. Effective bending stiffness of carbon nanotubes. Physical Review B, 2000a, 62: 9973-9976.
    
    [4] Ru CQ. Elastic buckling of single-walled carbon nanotube ropes under high pressure. Physical Review B, 2000b, 62: 10405-10408.
    
    [5] Liu J Z, Zheng Q S, Jiang Q. Effect of a rippling mode on resonance of carbon nanotubes. Physical Review Letters, 2001, 86: 4843-4846.
    
    [6] Tadmor E, Ortiz M, Phillips R. Quasicontinuum analysis of defects in solids. Philosophy Magazine A, 1996, 73: 1529-1563.
    
    [7] Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang KC. The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. International Journal of Solids and Structures, 2002, 39: 3893-3906.
    
    [8] Gao HJ, Klein P. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. Journal of the Mechanics and Physics of Solids, 1998,46: 187-218.
    
    [9] Jiang H, Zhang P, Liu B, Huang Y, Geubelle P H, Gao H, Hwang K C. The effect of nanotube radius on the constitutive model for carbon nanotubes. Computational Materials Science, 2003, 28: 429-442.
    
    [10] Arroyo M, Belytschko T. An atomistic-based finite deformation membrane for single layer crystalline films. Journal of the Mechanics and Physics of Solids, 2002, 50: 1941-1977.
    
    [11] Arroyo M. Finite crystal elasticity for curved single layer lattices: Applications to carbon nanotubes: (Ph.d Thesis). Evanston, Illinois: Northwestern University, 2003.
    
    [12] Sunyk R, Steinmann P. On higher gradients in continuum-atomic modeling. International Journal of Solids and Structures, 2003, 40: 6877-6896.
    
    [13] Leamy MJ, Chung PW, Namburu R. On an exact mapping and a higher-order Born rule for use in analyzing graphene carbon nanotubes. Proceedings of the 11th Annual ARL-USMA Technical Symposium, November 5, 2003.
    
    [14]Tersoff J. New empirical approach for the structure and energy of covalent systems. Physical Review B, 1988,37:6991-7000.
    
    [15] Brenner DW. Empirical potential for hydrocarbons for use in simulation the chemical vapor deposition of diamond films. Physical Review B, 1990,42: 9458-9471.
    
    [16] Robertson DH, Brenner DW, Mintmire J W. Energy of nanoscale graphitic tubules. Phyical Review B, 1992, 45: 12592-12595.
    
    [17] Arroyo M and Belytschko T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Physical Review B, 2004, 69: 115415.
    
    [18] Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of C and B_xC_yN_z composite nanotubes. Applied Physical A, 1999, 68: 287-292.
    
    [19] Popov VN, Doren EV. Elastic properties of single-walled carbon nanotubes. Physicsal Review B, 2000, 61(4): 3078-3084.
    
    [20] Chang TC, Gao HJ. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. Journal of the Mechanics and Physics of Solids, 2003, 51: 1059-1074.
    [21]Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high young's modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678-680.
    
    [22] Overney G, Zhong W, Tomanek M. Structural rigidity and low-frequency vibrational modes of long carbon tubules. Zeitschrift fuer Physik D: Atoms Molecules Clusters, 1993,27: 93-96.
    
    [23] Sanchez-Portal D, Artacho E, Soler JM. Ab initio structural, elastic and vibrational properties of carbon nanotubes. Physical Review B, 1999, 59: 12678-12688.
    
    [24] Van Lier G, Van Alsenoy C, Van Doren V, Geerlings P. Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chemical Physics Letter, 2000,326: 181-185.
    
    [25] Lu JP. Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters, 1997, 84: 1297-1300.
    
    [26] Goze C, Vaccarini L, Henrard L, Bernier P, Hernandz E, Rubio A. Elastic and mechanical properties of carbon nanotubes. Synthetic Metals, 1999, 103: 2500-2501.
    
    [27] Li CY and Chou TW. A structural mechanics approach for analysis of carbon nanotubes. International Journal of Solids and Structures, 2003,40: 2487-2499.
    
    [28] Li CY and Chou TW. Elastic properties of single-walled carbon nanotubes in transverse directions. Physical Review B, 2004, 69: 073401.
    
    [29] Natsuki T, Tantrakarn K, Endo M. Prediction of elastic properties for single-walled carbon nanotubes. Carbon, 2004,42: 39-45.
    
    [30] Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik A J, Stockli T, Burnham T, Forro L. Elastic and shear moduli of single-walled carbon nanotube ropes, Physical Review Letters, 1999, 82: 944-947.
    
    [31]Finnimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zettl A. Rotational actuators based on carbon nanotubes. Nature, 2003,424: 408-410.
    
    [32] Srivastava D, Wei CY and Cho K. Nanomechanics of carbon nanotubes and composites. Applied Mechancis Review, 2003, 56(2): 215-230.
    [1] Collins PG, Zettl A, Bando H, Thess A, Smalley RE, Nanotube nanodevice. Science. 1997,278: 100.
    
    [2] Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998,393:49.
    
    [3] Baughman RH, Cui CX, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth Siegmar, Kertesz M. Carbon nanotube actuators. Science, 1999, 284(5418): 1340-1344.
    
    [4] Poncharal P, Wang ZL, Ugarte D, Heer WA. Electrostatic deflections and electromechanical resonance of carbon nanotubes. Science, 1999,283: 1513.
    
    [5] Papadakis, SJ, Hall AR, Williams PA, Vicci L, Falvo MR, Superfine R, Washburn S. Resonant Oscillators with Carbon-Nanotube Torsion Springs. Physical Review. Letters, 2004,93: 146101.
    
    [6] Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias TA, McEuen PL. A tunable carbon nanotube electromechanical oscillator. Nature, 2004, 431: 284.
    
    [7] Gartstein YN, Zakhidov AA and Baughman RH. Mechanical and electromechanical coupling in carbon nantoube distorsions. Physical Reivew B, 2003, 68: 115415.
    
    [8] Liang HY and Upmanyu M. Axial-strain-induced torsion in single-walled carbon nantoubes. Physical Review Letters, 2006,96: 165501.
    
    [9] Zhang HW, Wang L, Wang JB, Zhang ZQ and Zheng YG. Torsion induced by axial strain of double-walled carbon nanotubes. (In submitted).
    
    [10] Chandraseker K and Mukherjee S. Coupling of extension and twist in single-walled carbon nanotubes. Journal of Applied Mechanics, 2006, 73: 315-326.
    
    [11] Zhang P, Huang Y, Geubelle PH, Klein PA and Huang KC. The elastic modulus of single-wall carbon nanotubes: A continuum analysis incorporating interatomic potentials. International Journal of Solids and Structures, 2002, 39: 3893-3906.
    
    [12] Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 1990,42: 9458-9471.
    
    [13] Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B and Sinnott SB. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter, 2002, 14:783-802.
    [1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991,354: 56-58.
    
    [2] Iijima S., Brabec C, Maiti A., Bernholc J. Structural flexibility of carbon nanotubes. Journal of Chemistry and Physics, 1996, 104(5): 2089-2092.
    
    [3] Liu JZ, Zheng QS, Jiang Q. Effect of a rippling mode on resonances of carbon nanotubes. Physical Review Letters, 2001, 86(21): 4843-4846.
    
    [4] Wang Q. Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nantoubes. International Journal of Solids and Structures, 2004,41: 5451-5461.
    
    [5] Wang Q, Hu T, Chen GH, Jiang Q. Bending instability characteristics of double-walled carbon nanotubes. Physical Review B, 2005, 71: 045403-1.
    
    [6] Ru CQ. Effective bending stiffness of carbon nanotubes. Physical Review B, 2000,62: 9973-9976.
    
    [7] Kudin KN, Scuseria GE, Yakobson BI. C_2F, BN, and C nanoshell elasticity from ab initio computations. Physical Review B, 2001, 64: 235406.
    
    [8] Sanchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejon P. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 1999, 59: 12678-12688.
    
    [9] Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 1996, 76,2511-2514.
    
    
    [10] Pantano A, Parks DM, Boyce MC. Mechanics of deformation of single- and multi-wall carbon nanotubes. Journal of the Mechanics and Physics of Solids, 2004,52, 789-821.
    
    [11]Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young' s modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678-680.
    
    [12] Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young's modulus of single-walled nanotubes. Physical Review B, 1998,58: 14013-14019.
    
    [13] Poncharal P, Wang ZL, Ugarte D, de Heer WA. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999,283: 1513-1515.
    
    [14] Wong EW, Sheehan PE, Liebert CM. Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science, 1997,277: 1971-1973.
    
    [15]Enomoto K, Kitakata S, Yasuhara T, Ohtake N, Kuzumaki T, Mitsuda Y. Measurement of Young's modulus of carbon nanotubes by nanoprobe manipulation in a transmission electron microscope. Applied Physics Letters, 2006. 88: 153115-1.
    
    [16] Arroyo M, Belytschko T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Physical Review B, 2004, 69: 115415.
    
    [17] Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 1990, 42: 9458-9471.
    
    [18] Robertson DH, Brenner DW, Mintmire JW. Energetics of nanoscale graphitic tubules. Physical Review B, 1992,45: 12592-12595.
    [1] Yakobson BI, Brabec CJ and Bernholc J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 1996, 76: 2511-2514.
    
    [2] Liew KM, Wong CH and Tan MJ. Tensile and compressive properties of carbon nanotube bundles. Acta Materialia, 2006, 54: 225-231.
    
    [3] Liew KM, Wong CH and Tan MJ. Buckling properties of carbon nanotube bundles. Applied Physical. Letters, 2005, 87:041901.
    
    [4] Zhang HW, Wang L and Wang JB. Computer simulation of buckling behavior of double-walled carbon nantoubes with abnormal interlayer distances. Computational Materials Science, 2007,39: 664-672.
    
    [5] Chang TC and Hou J. Molecular dynamics simulations on buckling of multiwalled carbon nanotubes under bending. Journal of Applied Physics, 2006, 100: 114327.
    
    [6] Ru CQ. Eeffect of van der Waals forces on axial buckling of a double-walled carbon nanotube. Journal of Applied Physics, 2000, 87: 7227-7231.
    
    [7] Wang CY, Ru CQ and Mioduchowski A. Axially compressed buckling of pressured multiwall carbon. Nanotubes. International Journal of Solids and Structures, 2003,40: 3893-3911.
    
    [8] Shen HS. Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure. International Journal of Solids and Structures, 2004,41(9-10): 2643-2657.
    
    [9] He XQ, Kitipornchai S and Liew KM. Buckling analysis of multi-walled carbon nantoubes: a continuum model accounting for van der Waals interaction. Journal of the Mechanics and Physics of Solids, 2005, 53: 303-326.
    
    [10] He XQ, Kitipornchai S, Wang CM and Liew KM. Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. International Journal of Solids and Structures, 2005, 42: 6032-6047.
    
    [11] Liu JZ, Zheng QS, Wang LF, Jiang Q. Mechanical properties of single-walled carbon nanotube bundles as bulk materials. Journal of Mechanics and Physics of Solids, 2005, 53: 123-142.
    
    [12]Pantano A, Boyce MC, Parks DM. Nonlinear structural medhanics based modeling of carbon nanotube deformation. Physical Review Letters, 2003, 91(14): 145504.
    
    [13] Pantano A, Parks DM., Boyee MC. Mechanics of deformation of single- and multi-wall carbon nanotubes. Jounal of the Mechanics and Physics of Solids, 2004, 52: 789-821.
    
    [14] Wang M, Zhang X and Lu MW. Nonlinear membrane-spring model for carbon nanotubes. Physical Review B, 2005, 72:205403.
    
    [15] Wang M, Zhang X, Zheng QS and Liu Y. A membrane-spring model for carbon nanotubes with van der Waals interaction between non-bonded atoms. Nanotechnology, 2007, 18: 375706.
    
    [16] Liu B, Huang Y, Jiang H, Qu S and Huang KC. The atomic-scale finite element method. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1849-1864.
    
    [17] Liu B, Jiang H, Huang Y, Qu S, Yu MF and Huang KC. Atomic-scale finite element method in multiscale computation with applications to carbon nantoubes. Physical Review B, 2005, 72: 035435.
    
    [18] Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang KC. The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. International Journal of Solids and Structures, 2002, 39: 3893-3906.
    
    [19] Zhang P, Huang Y, Gao H and Hwang KC. Fracture nucleation in single-wall carbon naotubesunder tension: a continuum analysis incorporating interatomic potentials. Journal of Applied Mechancis, 2002, 69: 454-458.
    [20] Arroyo M and Belytschko T. An atomistic-based finite,, deformation membrane for single layer crystalline films. Journal of the Mechanics and Physics of Solids, 2002, 50: 1941-1977.
    
    [21] Arroyo M and Belytschko T. A finite deformation memabrane based on inter-atomic potentials for the transverse mechanics of nanotubes. Mechanics of Materials, 2003,35: 193-215.
    
    [22] Arroyo M and Belytschko T. Nonlinear mechanical response and rippling of thick multiwalled carbon nantoubes. Physical Review Letters, 2003,91(21): 215505.
    
    [23] Arroyo M and Belytschko T. Finite element methods for the non-linear mechanics of crystalline sheets and nantoubes. International Journal for Numerical Methods in Engineering, 2004, 59: 419-456.
    
    [24] Arroyo M and Belytschko T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Physical Review B, 2004, 69: 115415.
    
    [25] Sun YZ and Liew KM. Mesh-free simulation of single-walled carbon nantoubes using higher order Cauchy-Born rule. Computational Materials Science, 2007. (In press).
    
    [26] Sun YZ and Liew KM. Application of the higher-order Cauchy-Born rule in mesh-free continuum and multiscale simulation of carbon nanotubes.2007. (In submitted).
    
    [27] Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapour deposition of diamond films. Physical Review B, 1990, 42: 9458-9471.
    
    [28] Xia ZC, Hutchinson JW. Crack tip fields in strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1996,44: 1621-1648.
    
    
    [29] Tang Z, Shen S, Atluri SN. Analysis of materials with strain-gradient effects: a meshless local Petrov-Galerkin (MLPG) approach, with nodal displacements only. CMES: Computer Modeling in Engineering & Science, 2003, 4(1): 177-196.
    [1] Janssen JW, Lemay SG, Kouwenhoven LP, Dekker C. Scanning tunneling spectroscopy on crossed carbon nanotubes. Physical Review B, 2002, 65:115423.
    [2] Yoon YG, Mazzoni MSC, Choi HJ, Ihm J, Louie SG. Structural deformation and intertube conductance of crossed carbon nanotube junctions. Physical Review Letters, 2001, 86(4): 688-691.
    [3] Ma XL, Wang HT, Yang W. Tribological behavior of aligned single-walled carbon nantubes. Journal of Engineering Materials and Technology, 2004, 126: 258-264.
    [4] Li CY, Chou TW. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Composites Science and Technology, 2003, 63: 1517-1524.
    [5] 刘哲.碳纳米管若干力学问题的研究:(博士学位论文).北京:清华大学,2002.
    [6] Tang T, Jagota A, Hui CY. Adhesion between single-walled carbon nanotubes. Journal of Applied Physics, 2005, 97: 074304.
    [7] Tang T, Jagota A, Hui CY, Glassmaker NJ. Collapse of single-walled carbon nanotubes. Journal of Applied Physics, 2005, 97:074310.
    [8] Zhang HW, He SY, Li XS, Wriggers P. A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law. Computational Mechanics, 2004, 34(1): 1-14.
    [9] Zhang HW, He SY, Li XS. Two aggregate-function-based algorithms for analysis of 3D frictional contact by linear complementarity problem formulation. Computer Methods Applied Mechanics and Engineering, 2005a, 194: 5139-5158.
    [10] Zhang HW, Wang H, Wriggers P, Schrefler BA. A finite element model for contact analysis of multiple Cosserat bodies. Computational Mechanics, 2005b, 36(6), 444-458.
    [11] 钟万勰,张洪武,吴承伟 参变量变分原理及其在工程中的应用.北京:科学出版社,1997.
    [12] Zhong WX, Zhang HW. Quadratic programming mixed energy method and elastic-plastic analysis. Solida Mechanica Sinica, 2002, 15(1): 1-8.
    [13] Lennard-Jones JE. The determination of molecular fields: from the variation of the viscosity of a gas with temperature. Proceedings of the Royal Society A, 1924, 106(738): 441-462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700