用户名: 密码: 验证码:
羊体不同组织中PAHs和PCBs的污染特征与分布规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)与多氯联苯(PCBs)具持久性、半挥发性、生物蓄积性、高毒性等特点,是《关于持久性有机污染物的斯德哥尔摩公约》中规定的首批控制消除的持久性有机污染物(POPs)。POPs污染已经引起各国政府、学术界和公众的广泛关注,成为国际上倍受关注的新全球性环境问题,是环境经济学、环境法学、环境工程学、环境化学、预防医学、生态毒理学等多学科交叉研究的前沿领域。PAHs和PCBs能够沿食物链蓄积,随植食动物的取食进入到生态系统的高级消费者中,被人类以食品的方式直接进食,进而对人类健康造成严重危害。因此,研究植食动物体内PAHs和PCBs的分布和累积规律,可丰富PAHs和PCBs在生物累积方面的基础理论,为环境管理及食品安全监督提供理论依据,有助于科学评估PAHs与PCBs的潜在环境风险、控制PAHs与PCBs环境影响、保障人体健康和生态安全,具有重要的理论和应用价值。
     鉴于此,依托山东省环境保护科技计划“山东省POPs污染特征及生物有效性研究”等项目,本研究在详细查阅和系统分析国内外相关研究的基础上,以不同年龄羊体各组织中的PAHs和PCBs为研究对象,建立了羊体组织中PAHs与PCBs同系物快速准确的分离分析方法,分析了不同年龄羊体各组织中PAHs与PCBs的含量,揭示了羊体内PAHs和PCBs的污染水平、成分特征、分布富集规律及毒性特征,探究了PAHs与PCBs在母体与子代间的分布差异与代际传递;通过对羊体内PAHs与PCBs的浓度与其生存环境介质和饮食中PAHs与PCBs含量的相关性分析,识别了羊体内PAHs与PCBs的主要来源,探索了光催化降解。
     一、羊体组织中PAHs与PCBs分析方法的建立
     针对动物样品目标PAHs和PCBs含量低、基体干扰大、难净化等问题,建立了基于加速溶剂萃取(ASE)+皂化-凝胶渗透色谱(GPC)+柱层析联合净化+气相色谱-质谱联用仪或气相色谱(GC/MS-ECD)分析的定性定量分析方法,实现了羊体组织PAHs和PCBs的高效提取、有效分离和准确检测。
     (1)采用ASE技术,通过优化改进实验条件和参数,实现了羊体组织中PAHs与PCBs高效同步提取,最佳萃取条件为:混合提取溶剂正己烷/丙酮体积比为1:1,萃取温度100℃,静态萃取时间5min。
     (2)优化建立了皂化+凝胶渗透色谱+硅胶柱/Florisil柱层析联合净化技术:皂化最佳条件为150mLNaOH(1.0mol/L),水浴温度60℃;GPC洗脱液最佳收集时间段为1000-1800s;硅胶柱采用20mL二氯甲烷/正己烷混合溶液(体积比3:7)洗脱收集PAHs,Florisil柱采用10mL正己烷洗脱收集PCBs。净化过程中,16种PAHs动物基质加标回收率为70.5%-113.6%,PCBs的动物基质加标回收率为79.2%-109.0%,净化效果良好,净化过程目标污染物损耗较小,实现了目标化合物与干扰组分的有效分离。
     (3)通过色谱参数优化、双柱互补分离/质谱定性技术建立了羊体组织中PAHs和PCBs同系物的GC-MS/ECD定性定量分析方法,有效解决了色谱峰共洗脱问题,提高了分析的灵敏度和准确性。16种PAHs动物基质加标回收率在79.8%-122.6%间,样品平行测定相对标准偏差(RSD)为4.8%-17.8%;7种指示性PCBs与12种类二嗯英类PCBs(DL-PCBs)的动物基质加标回收率分别在69.8%-89.7%之间与71.6%-90.6%之间,样品平行测量RSD分别为8.3%-18.5%与3.6%-14.5%。结果均符合美国EPA标准中回收率(70%-130%)及环境样品精密度(RSD<20%)的要求。
     二、羊体组织中PAHs的污染水平与分布规律
     (1)羊体PAHs的污染水平与特征成分
     选择山东某地区48月龄、30月龄、18月龄及2月龄羊为研究对象,每个年龄段包括九只同龄羊,并将九只羊看做一个单体。分析获得了羊体中PAHs的污染水平和成分特征。
     ①PAHs污染水平。16种PAHs的总浓度在48月龄羊中为349.1-14818.7μg/kg湿重;30月龄羊中为262.1-16405.2μg/kg湿重;18月龄羊中为189.7-18263.0μg/kg湿重;2月龄羊中为273.3-16724.7μg/kg湿重。污染水平是其他轻污染地区动物体中PAHs含量的一到二倍,说明研究区域中羊体内PAHs污染不容忽视。
     ②PAHs成分特征。羊体中PAHs以2环和3环的低环芳烃为主,如萘、二氢苊、苊、芴、菲、蒽等,占总PAHs浓度的85.2%-99.0%。高环芳烃主要集中于肾脏、脑和脂肪中,与其他研究结果一致。
     (2)羊体中PAHs的分布累积规律
     PAHs在生物体各组织中的富集效果与组织的生理生化特征等有关。本研究以羊的肌肉、肝脏、心脏、肺脏、肾脏、脑和脂肪七种组织作为研究对象,研究揭示了PAHs在羊体中的分布累积规律。
     ①不同组织中PAHs的分布。各组织中16种PAHs总浓度由低到高分别是:2月龄与18月龄羊为肌肉、肺脏、肝脏、心脏、肾脏、脑、脂肪;30月龄与48月龄为肌肉、肝脏、心脏、肺脏、肾脏、脑、脂肪。PAHs在肌肉中的累积程度最低,为189.7-349.1μg/kg湿重,脂肪中累积程度最高,为14818.7-18263.0μg/kg湿重。不同组织中PAHs同系物组成不同,但均以低环芳烃为主,如萘、苊烯、苊、菲、蒽等。
     ②脂肪含量对PAHs累积的影响。利用SPSS13.0对脂肪含量与相应组织中PAHs含量(μg/kg湿重)作相关分析,两者呈显著正相关关系,相关系数为r=0.867,显著性水平p<0.05,证明PAHs易于在脂肪含量较高的组织中富集。
     ③不同年龄羊体中PAHs的分布。不同龄羊体PAHs总浓度水平相近,但总体呈现高龄羊略大与低龄羊的趋势,肺脏中PAHs的浓度随着羊体年龄的增长而增大。
     ④PAHs在母体与子代间的传递。16种PAHs同系物在哺乳期30月龄羊与其子代2月龄羔羊的七种组织之间,均呈极显著正相关关系,由于3个月内的羔羊主要食物来源为母乳,表明PAHs在母体与子代间发生了传递。
     (3)羊体中PAHs的毒性水平
     以苯并(a)芘(BaP)的致癌毒性当量值基准,通过计算毒性当量值(TEQBap)来衡量16种PAHs的毒性大小:48月龄、30月龄、18月龄和2月龄羊体中TEQBaP的浓度分别为1.8-196.3μg/kg湿重、0.6-107.5μg/kg湿重、1.1-246.6μg/kg湿重和1.9-172.9μg/kg湿重。蒽与苯并(a)芘在各组织中毒性贡献率最高,可作为羊体组织PAHs的毒性指示物。
     羊体各组织中只有肌肉中PAHs的毒性当量值低于US EPA基于人类健康提出的推荐浓度(0.67湿重),可见研究区羊体中PAHs可对该地人群健康造成一定危害。
     三、羊体中PCBs的污染水平与分布规律
     (1)羊体中PCBs的污染水平与特征成分
     ①PCBs污染水平。7种指示性PCBs的总浓度在48月龄羊体中为100.6-2828.4ng/kg湿重;30月龄羊体中为171.4-4102.1ng/kg湿重;18月龄羊体中为203.2-4167.5ng/kg湿重;2月龄羊体中为217.8-4026.6ng/kg湿重。12种类二噁英类PCBs (DL-PCBs)的总浓度在48月龄羊中为91.9-1392.2ng/kg湿重;在30月龄羊中为89.6-2020.4ng/kg湿重;18月龄羊中为79.3-1453.5ng/kg湿重;2月龄羊中为74.7-1360.6ng/kg湿重。本研究中7种指示性PCBs的浓度约为其他研究中生物体浓度的十分之一,但本文中12种DL-PCBs浓度明显高于大连湾水生生物的PCBs浓度,约为2-5倍。表明羊体受到DL-PCBs的污染较重。
     ②PCBs成分特征。羊体中PCBs以四氯、五氯和六氯联苯为主。其中四氯联苯占19种PCBs总浓度的17.7%-77.0%,五氯联苯占7.4%-43.1%,六氯联苯占5.9%-38.1%。19种PCBs(7种指示性PCBs+12DL-PCBs)同系物中,在羊体各组织中含量最高的为PCB52和PCB126,其次为PCB138、101、28、77、81、118、169。
     (2)PCBs在羊体中的分布累积规律
     以羊肌肉、肝脏、心脏、肺脏、肾脏、脑和脂肪七种组织为研究对象,研究揭示了PCBs在羊体中的分布累积规律。
     ①不同组织中PCBs的分布。7种指示性PCBs在肌肉中含量最低,浓度为100.6-217.8ng/kg湿重,脂肪(2215.2-4102.1ng/kg湿重)或脑(2470.0-4167.5ng/kg湿重)中的含量最高。类似的,12种DL-PCBs在肌肉中含量最低,浓度为74.7-91.9ng/kg湿重,脂肪(986.2-2020.4ng/kg湿重)或脑(711.2-1453.5ng/kg湿重)中的含量最高。各年龄段的羊体以PCB52,126为主要组分,其次为PCB101、138、77、81、169。
     ②不同年龄羊体中PCBs的分布。羊体中PCBs的总浓度呈现高龄羊略大与低龄羊的趋势。PCBs的分布在不同年龄羊体中有差异,低龄羊体中以低氯PCBs为主,高龄羊体中高氯PCBs占主导。
     ③脂肪含量对PCBs累积的影响。利用SPSS13.0对脂肪含量与相应组织中7种指示性PCBs和12种DL-PCBs含量(μg/kg湿重)分别进行相关性分析,得到相关系数分别为0.897和0.834,显著性水平均为p<0.05。羊体各组织PCBs浓度与其脂肪含量呈显著正相关,表明PCBs易于在脂肪含量较高的组织中富集。
     ④母体与子代间PCBs的传递。在哺乳期30月龄羊与其对应的2月龄羔羊之间,12种DL-PCBs同系物,在肌肉、肺脏、脑和脂肪之间呈极显著正相关关系,相关系数分别为0.907、0.761、0.916和0.720,显著性水平p<0.01。由于3个月内的羔羊主要食物来源为母乳,表明PCBs在母体与子代间发生了传递。
     (3) PCBs的毒性当量
     PCBs的毒性水平以12种DL-PCBs的毒性当量(WHO-TEQ)表示。48月龄、30月龄、18月龄和2月龄PCBs的WHO-TEQs分别为2.5-53.8ng/kg湿重、2.6-69.7ng/kg湿重、2.1-50.5ng/kg湿重和2.0-69.7ng/kg湿重。脑和脂肪的WHO-TEQs当量最高。PCB126在7种组织中占到12种DL-PCBs总当量的97.1%-99.4%,可作为羊体组织PCBs的毒性指示物。
     四、羊体中PAHs与PCBs的来源解析
     采用相关分析与理论研究相结合的方法对环境介质(土壤、大气)、饮食因素(三个生长时期野草、玉米叶、玉米果实、小麦、沟渠水)中PAHs和PCBs含量与羊体各组织中PAHs和PCBs的浓度进行研究,识别了羊体中PAHs和PCBs的主要来源。
     (1)羊体内PAHs的来源分析
     ①羊体各组织与土壤PAHs含量的相关性。肝脏中的PAHs与土壤中PAHs呈极显著相关关系(p<0.01);48月龄羊的肺脏,心脏、肾脏中的PAHs含量与土壤中PAHs呈显著相关性(p<0.05)。
     ②羊体各组织与大气PAHs的相关性。羊的心脏、肌肉、肝脏中的PAHs与采暖季大气中PAHs显著相关(p<0.05)。各组织中PAHs与非采暖季大气中PAHs不显著相关。
     ③羊体各组织与野草、玉米、小麦、饮用水中PAHs的相关性。48月龄羊肺脏中PAHs含量与小麦中PAHs极显著相关(p<0.01),肌肉、心脏中PAHs含量与小麦中PAHs显著相关(p<0.05),48月龄羊与其他饮食因素无显著相关关系;30月龄羊的肌肉、肝脏中PAHs含量与枯草期野草中PAHs极显著相关(p<0.01),肝脏、脑与小麦中的PAHs,脑与沟渠水中PAHs均显著相关(p<0.05);18月龄羊肝脏与枯草期野草中PAHs,肺脏中PAHs与小麦中PAHs显著相关,特别是肝脏、心脏中PAHs与小麦中PAHs极显著相关(p<0.01);2月龄羊肌肉中PAHs与小麦极显著相关(p<0.01),心脏、肾脏中PAHs与小麦中PAHs,脑与沟渠水中PAHs显著相关(p<0.05)。
     因此,羊体内PAHs的主要来源为采暖季大气、土壤、枯草期野草、小麦和少量沟渠水。
     (2)羊体内PCBs的来源分析
     ①羊体各组织与土壤PCBs含量的相关性。羊脑、脂肪、肌肉、肝脏、肾脏等组织中PCBs与土壤中PCBs显著相关(p<0.05)。
     ②羊体各组织与大气PCBs的相关性。肌肉、心脏、肺脏、肾脏、脑、脂肪中PCBs含量与采暖季大气中PCBs极显著相关(p<0.01)。肝脏与采暖季大气中PCBs含量显著相关(p<0.05)。羊的各组织中PCBs含量与非采暖季大气中PCBs无显著相关。
     ③羊体各组织与野草、玉米、小麦、饮用水中PCBs的相关性。48月龄羊的肝脏中PCBs与沟渠水中PCBs显著相关(p<0.05),18月龄羊肝脏中PCBs与玉米果实中PCBs显著相关(p<0.05),2月龄羊的肝脏中PCBs与沟渠水中PCBs显著相关(p<0.05)。
     因此,羊体中PCBs的主要来源为采暖季大气、土壤、沟渠水及玉米果实。
     五、POPs的光催化降解
     POPs去除是当前的一个全球性难题,半导体光催化剂有望利用太阳光实现POPs的光催化降解,为更好的利用阳光,合成出可被太阳光激发的光催化剂成为科技工作者的研究目标。碳氮材料具有比表面积大、吸附能力强的优点,被认为是一种有望广泛应用于污染控制领域的新型非金属材料,
     本研究以Si02和双氰胺为模板与前驱体合成了可被可见光(λ>420nm)激发的铁掺杂的多孔C3N4光催化剂。在可见光下,g-Fe-C3N4和m-Fe-C3N4样品对水中罗丹明B (POPs)降解实验表明:1小时内,g-Fe-C3N4降解了约42%的罗丹明B, m-Fe-C3N4降解了88%的罗丹明B, m-Fe-C3N4对POPs的降解速率远高于g-Fe-C3N4。可见,多孔结构促进了反应物和产物的传质,提高了光催化剂的光催化活性。本研究可为POPs的去除提供一个选择。
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are listed in the primary group pollutants in "Stockholm Convention on Persistent Organic Pollutants" for their persistence, bioaccumulation and high toxicity. Persistent organic pollutants (POPs) have taken more attention from governments, academia and the public. PAHs and PCBs can accumulate along the food chain, via herbivores feeding into the ecosystem and then cause serious harm to senior consumers, including humans. Therefore, the study of the distribution and accumulation of PAHs and PCBs in vivo of herbivores can enrich the basic theory in terms of bio-accumulation, providing a theoretical basis for environmental management and food safety supervision, contributing to scientific assessment of potential environmental risks of PAHs and PCBs, and protecting human health and ecological safety.
     Supported by the Shandong Provincial Natural Science Foundation of China " The research on environmental background and bioavailability of persistent organic pollutants (POPs) in the province " and the Plan of Shandong Provincial Environmental Protection Science and Technology " POPs pollution characteristics and bioavailability of Shandong Province", etc., this study worked up a firstly and accurately method of PAHs and PCBs in tissues of goats in different ages, examined the concentrations of PAHs and PCBs in tissues of goats, indicating the level of contamination in vivo goats, component characteristics, distribution, accumulation and toxicity characteristics, exploring the difference and the mother-child transmission of PAHs and PCBs between parent and offspring, and identifying the main sources of PAHs and PCBs in vivo of the goats.
     1. Research on the analysis method of trace PAHs and PCBs in goats
     The analysis of PAHs and PCBs in animals are difficult to pre-treatment and purify for their trace concentration, complex components of tissues, etc. In this study, we developed a rapid and accurate analysis method by study of pretreatment technology and experimental parameters improvement basing on accelerated solvent extraction (ASE)+saponification-Gel Permeation Chromatography (GPC)+column chromatography combined purification+GC/MS-ECD chromatographic analysis of qualitative and quantitative analysis.
     (1) The parameters of ASE was studied, the results are as follows:mixed ratio of solvents hexane/acetone (1:1, V/V) were used to extract tissues samples, temperature was100℃and static extraction time was5min.
     (2) The matrix of saponification, GPC and silicone/florisil column was used to purify the extracts. The parameters of saponification:150mL NaOH (1.0mol/L), temperature60℃; The optimization parameters of GPC was to collect extracts from1000s to1800s. The extraction was then concentrated and treated with silicone or florisil column. The spiked recovery of16PAHs was from70.5%to113.6%. The spiked recovery of PCBs was from79.2%to109.0%, illustrating the effective separation and purification.
     (3) The parameters of GC-MS/ECD, using Dual-column system, were studied, and found an effectively method to analyze PAHs and PCBs in animal samples. The results found the spiked recovery of PAHs was in the range of79.8%-122.6%, the spiked recovery of PCBs was in the range of69.8%-90.6%. The relative standard deviation (RSD) of repeated plant samples was in the range of3.6%-18.5%, meeting the US EPA standard of recoveries (70%-140%) and RSD of repeated samples (<20%).
     2. The concentration and distribution of PAHs in tissues of goats
     (1) The concentration and compositional characteristics of PAHs in goats
     ①The concentration of PAHs. The total concentrations of16PAHs in48-month goats were in the range of349.1-14818.7μg/kg wet weight (wet wt), in30-month goats were262.1-16405.2μg/kg wet wt, in18-month goats were189.7-18263.0μg/kg wet wt, and in2-month goats were273.3-16724.7μg/kg wet wt. The concentration levels were two times higher than some light pollution districts.
     ①The compositional characteristics of PAHs. The main compositions were low molecular weight PAHs (LMW). The proportion of LMW PAHs was in the range of85.2%-99.0%. The high molecular weight PAHs (HMW) were not been detected in muscle, liver, heart and lung, consistently with other researches.
     (2) The distribution of PAHs in goats
     ①The distribution among tissues in goats. The ascending order of16PAHs in2-month and18-month goats were muscle, lung, liver, heart, kidney, brain, adipose. The ascending order in30-month and48-month goats were muscle, liver, heart, lung, kidney, brain, adipose. The concentrations in muscle were always lower than other six tissues, and adipose always had the highest concentrations. The LMW PAHs were the main composition in all tissues.
     ②Impact of the lipid content in tissues on the distribution of PAHs. The correlation analysis between lipid content and the concentration in the same tissues illustrated a significant correlation by the Pearson coefficient, p<0.05. It can explain that PAHs can easily accumulate in lipid.
     ③Impact of age on the distribution of PAHs in goat. The concentrations of different age goats were similar to each other. There was a light increase of PAHs concentrations along with the increase of ages.
     ④Mother-child transmission of PAHs. Between baby and lactating goats, correlation analysis shows significant positive correlation of16PAHs in tissues, which indicates mother-child transmission has occurred.
     (3) The toxic equivalent (TEQ) of PAHs. Benzo(a)pyrene (BaP) was studied as a risk marker for the total PAH exposure, to estimate the TEQ. The TEQs were1.8-196.3μg/kg wet wt,0.6-107.5μg/kg wet wt,1.1-246.6μg/kg wet wt and1.9-172.9μ/kg wet wt in48,30,18,2-month goats. The indicator carcinogenic PAHs in goats were Anthracene (AnT) and BaP.
     The values in tissues, other than muscle, were higher than the value of0.67ng/g wet wt recommended by USEPA for human health, indicating the harm of PAHs in goats.
     3. The concentration and distribution of PCBs in tissues of goats
     (1) The concentration and compositional characteristics of PCBs in goats
     ①Concentration of PCBs. The total concentrations of7PCBs in48-month goats were in the range of100.6-2828.4ng/kg wet wt, in30-month goats were171.4-4102.1 ng/kg wet wt, in18-month goats were203.2-4167.5ng/kg wet wt, and in2-month goats were217.8-4026.6ng/kg wet wt. The total concentrations of12DL-PCBs in48-month goats were in the range of91.9-1392.2ng/kg wet wt, in30-month goats were89.6-2020.4ng/kg wet wt, in18-month goats were79.3-1453.5ng/kg wet wt, and in2-month goats were74.7-1360.6ng/kg wet wt. The concentration levels of7PCBs were lower than other animal. The concentrations of12DL-PCBs were2-5times higher than some animal in Dalian Bay.
     ②Compositional characteristics of PCBs. The main compositions of7PCBs were PCB52(11.9%-88.2%), followed by PCB138,101, and28. The main compositions of12PCBs were PCB126(10.6%-54.2%), followed by PCB77,81,118,169.
     (2) The distribution of PCBs in goats
     ①Distribution of PCBs among tissues in goats. The lowest concentrations of7PCBs presented in muscle (100.6-217.8ng/kg wet wt), and the highest concentrations presented in adipose (2215.2-4102.1ng/kg wet wt), or brain (2470.0-4167.5ng/kg wet wt). The lowest concentrations of12DL-PCBs presented in muscle (74.7-91.9ng/kg wet wt), and the highest concentrations presented in adipose (986.2-2020.4ng/kg wet wt), or brain (711.2-1453.5ng/kg wet wt). The main composition of PCBs were PCB52,126, followed by PCB101,138,77,81and169.
     ②Impact of age on the distribution of PCBs. There was a light increase of PCBs concentrations along with the increase of ages. The main PCBs in low age goat were low chlorine PCBs, and the main PCBs in high age goat were high chlorine PCBs
     ③Impact of the lipid content in tissues on the distribution of PCBs. The correlation analysis between lipid content and the concentration of PCBs in the same tissues indicated a significant correlation, the Pearson coefficient was p<0.05. It can explain that PCBs can easily accumulate in lipid.
     ④Mother-child transmission of PCBs. Correlation analysis shows significant positive correlation of PCBs in tissues between baby and lactating goats, indicating the happen of mother-child transmission.
     (3) The toxic equivalent (WHO-TEQ) of PCBs. The TEQs were2.5-53.8ng/kg wet wt,2.6-69.7ng/kg wet wt,2.1-50.5ng/kg wet wt and2.0-69.7ng/kg wet wt in48,30,18,2-month goats. The indicator carcinogenic PCBs in goats were PCB126.
     4. Sources of PAHs and PCBs in goats
     (1) Sources of PAHs in goats
     ①Correlation of PAHs between soil and goats. PAHs in liver presented highly significant correlation with soil (p<0.01). PAHs in lung, heart and kidney presented significant correlation with soil (p<0.05).
     ②Correlation of PAHs between atmosphere and goats. PAHs in muscle, heart and liver presented significant correlation with atmosphere in heating seasons (p<0.05). PAHs in all tissues presented weak correlation with atmosphere in non-heating season.
     ③Correlation of PAHs among grass, corn, wheat, water and goats. In48-month goats, PAHs in lung presented highly significant correlation with wheat (p<0.01), PAHs in muscle and heart presented significant correlation with wheat (p<0.05), these results showed that PAHs in48-month goats presented weak correlation with other food sources. In30-month goats, PAHs in muscle and liver presented highly significant correlation with grass in withering period (p<0.01), PAHs in liver and brain presented significant correlation with wheat (p<0.05), and PAHs in brain also presented significant correlation with water (p<0.05). In18-month goats, PAHs in liver and heart presented highly significant correlation with wheat (p<0.01), PAHs in liver presented significant correlation with grass in withering period (p<0.05), PAHs in lung presented significant correlation with wheat (p<0.05). In2-month goats, PAHs in muscle presented highly significant correlation with wheat (p<0.01), PAHs in heart and kidney presented significant correlation with wheat (p<0.05), PAHs in brain presented significant correlation with water (p<0.05).
     In summary, the main source of PAHs in goats were soil, atmosphere in heating season, grass in withering period, corn, wheat and water.
     (2) Sources of PCBs in goats
     ①Correlation of PCBs between soil and goats. PCBs in muscle, liver, brain, adipose and kidney presented significant correlation with soil (p<0.05).
     ②Correlation of PCBs between atmosphere and goats. PCBs in muscle, heart, lung, brain, adipose and kidney presented highly significant correlation with atmosphere in heating seasons (p<0.01). PCBs in liver presented significant correlation with atmosphere in heating seasons (p<0.05). PCBs in all tissues presented weak correlation with atmosphere in non-heating season.
     ③Correlation of PCBs among grass, corn, wheat, water and goats. In48-month goats, PCBs in liver presented significant correlation with water (p<0.05). In18-month goats, PCBs in liver presented significant correlation with corn (p<0.05). In2-month goats, PCBs in liver presented significant correlation with water (p<0.05).
     In summary, the main sources of PCBs in goats were soil, atmosphere in heating season and water, followed by corn.
     5. Photocatalytic degradation of POPs
     POPs have been causing serious environmental problems. Photocatalytic degradation of these pollutants using solar energy is an attractive solution to the global problem. Accordingly, some scientific researches are now devoted to prepare these materials with high photocatalytic efficiency especially working under visible light. Carbon nitride materials are considered as novel types of non-metallic materials, which could be widely used in the field of pollution control owing to their remarkable large surface area and strong adsorption capacity. Herein, we report the synthesis of porous m-Fe-C3N4photocatalysts by using SiO2nanoparticles as template and dicyandiamide as precursor, and the physicochemical properties of synthesized m-Fe-C3N4and g-Fe-C3N4were characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), UV-visible spectrophotometer (UV-vis), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectra and N2adsorption-desorption measurement. Moreover, their performance for photodegradation of Rhodamine B (RhB) was evaluated.
引文
[1]Gibson DT. Microbial Degradation of Organic Compounds. New York:Marcel Dekker,1984.
    [2]Paasivirta J, Sinkkonen S, Mikkelson P, Rantio T, Wania F. Estimation of vapor pressures, solubilities and Henry's law constants of selected persistent organic pollutants as functions of temperature [J]. Chemosphere,1999,39:811-832.
    [3]Menzie CA, Potocki BB, Santodonato J. Exposure to carcinogenic PAHs in the environment [J]. Environmental science & technology,1992,26:1278-1284.
    [4]Finlayson-Pitts BJ, Pitts JN Jr. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications. Academic Press,2000.
    [5]Benner BA, Gordon Jr. GE, Wise SA. Mobile sources of atmospheric polycyclic aromatic hydrocarbons:a roadway tunnel study [J]. Environmental Science and Technology,1989,23:1269-1278.
    [6]Marr LC, Kirchstetter TW, Harley RA, Miguel AH, Hering SV, Hammond SK. Characterisation of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions [J]. Environmental Science and Technology,1999,33: 3091-3099.
    [7]Yassaa N, Cecinato A. Composition of torched crude oil organic particulate emitted by refinery and its similarity to atmospheric aerosol in the surrounding area [J]. Chemosphere,2005,60:1660-1666.
    [8]Varanasi U. Metabolism of Polyaromatic Hydrocarbons in the Aquatic Environment [J]. Boca Raton, Florida:CRC Press,1989.
    [9]Grifoll M, Casellas M, Bayona JM, Solanas AM. Isolation and characterization of a fluorine-degrading bacterium:Identification of ring oxidation and ring fission products [J]. Applied and Environmental Microbiology,1992,58: 2910-2917.
    [10]Keith LH, Telliard WA. Priority pollutants I-a perspective view [J]. Environmental Science & Technology,1979,13:416-423.
    [11]王震.博士学位论文.辽宁地区土壤中多环芳烃的污染特征,来源及致癌风险.2007.
    [12]沈学优,刘勇建.空气中多环芳烃的研究进展[J].环境污染与防治.1999,21:32-35.
    [13]McFarland V A, Clarke J. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners:considerations for a congener-specific analysis [J]. Environ Health Perspect,1989,81:2225-2239.
    [14]Safe S. Development, validation and limitations of toxic equivalency factors [J]. Chemosphere,1992,25:61-64.
    [15]James RC, Busch H, Tamburro CH, Roberts SM, Schell JD, Harbison RD. Polychlorinated biphenyl exposure and human disease [J]. Journal of Occupational and Environmental Medicine,1993,35:136-148.
    [16]Eisler R, Belisle AA. Planar PCB hazards to fish, wildlife, and invertebrates:A synoptic review. DTIC Document,1996.
    [17]Carter JW. Effects of dietary PCBs (Aroclor 1254) on serum levels of lipoprotein cholesterol in Fischer rats [J]. Bulletin of environmental contamination and toxicology,1985,34:427-431.
    [18]Vreugdenhil HJI, Slijper FME, Mulder PGH, Weisglas-Kuperus N. Effects of perinatal exposure to PCBs and dioxins on play behavior in Dutch children at school age [J]. Environmental health perspectives,2002,110:A593-A598.
    [19]李霜,李朝林,吴维皑.多氯联苯与人体健康[J].中华劳动卫生职业病杂志,2005,23:316-319.
    [20]Fabbri D, Baravelli V, Giannotti K, Donnini F, Fabbri E. Bioaccumulation of cyclopenta[cd]pyrene and benzo[ghi]fluoranthene by mussels transplanted in a coastal lagoon [J]. Chemosphere,2006,64:1083-1092.
    [21]王春雷,杨大成,张建清等.某市市售畜肉类食品中多氯联苯污染水平研究[J].环境与健康杂志,2009,26:978-980.
    [22]Luque de Castro MD, Garcia-Ayuso LE. Soxhlet extraction of solid materials:an outdated technique with a Promising innovative future [J]. Analytica Chimica Aeta,1998,369:1-10.
    [23]Gfrerer M, Gawlikb BM, Lankmayr E. Validation of a fluidized-bed extraction method for solid materials for the determination of PAHs and PCBs using certified reference materials [J]. Analytica Chimica Aeta,2004, 527:53-60.
    [24]Tsang HL, Wu SH, Leung CKM, Tao S, Wong MH. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum [J]. Environment International,2011,37:142-151.
    [25]Kannan K, Kajiwara N, Watanabe M, Nakata H, Thomas N, Stephenson M, Jessup DA, Tanabe S. Profiles of poly chlorinated biphenyl congeners, organochlorine pesticides, and butyltins in southern sea otters and their prey [J]. Environmental Toxicology and Chemistry,2004,23:49-56.
    [26]孟凡生,陈晶,王业耀.环境中多环芳烃前处理和分析方法[J].环境监控与预警,2011,3:12-16.
    [27]Jaremol M, Bjorklund E, Nilsson N, Karlsson L, Mathiasson L. Utilization of fat retainers in supercritical fluid extraction for the selective extraction of polychlorinated biphenyls from a model fat sample [J]. Journal of Chromatography A,2000,877:167-180.
    [28]Ling YC, Teng HC. Supercritical fluid extraction and clean-up of organo-chlorine pesticides and polychlorinated biphenyls in mussels [J]. Journal of Chromatography A,1997,790:153-160.
    [29]Berset JD, Holzer R. Polychlorinated biphenyls and organochlorine pesticides in sewage sludges using supercritical fluid extraction and mass spectrometric detection [J]. Journal of Chromatography A,1999,852:545-558.
    [30]Bogolte BT, Ehlers GAC, Braun R, Loibner AP. Estimation of PAH bioavailability to Lepidium sativum using sequential supercritical fluid extraction:a case study with industrial contaminated soils [J]. European Journal of Soil Biology,2007,43:242-250.
    [31]Zougagh M, Rios A, Valcarcel M. Direct automatic screening and individual determination of PAHs using supercritical fluid extraction coupled on-line with liquid chromatography and fluorimetric detection [J]. Anal Analytical Chimica Acta,2004,524:279-285.
    [32]叶常明,王春霞,金龙珠.21世纪的环境化学[J].北京:科学出版社,2004,18-21.
    [33]EFSA. Scientific opinion of the panel on contaminants n the food chain on a request on the European Commission on polycyclic aromatic hydrocarbons in food. The EFSA Journal,2008,24:1-114. http://www.efsa.europa.eu/cs/BlobServer/Scientific Opinion/contam ej 724 P AHs_en,1.pdf?ssbinary=true.
    [34]European Commission. Commission Regulation EC No.333/2007 of 28 March 2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin,3-MPCD and benzo(a)pyrene in foodstuffs. Official Journal of the European Union,2007, L88/29.
    [35]罗庆,孙丽娜.超声波提取-GC/MS法同时测定农用土壤中有机氯农药和多氯联苯[J].安徽农业科学,2010,22:12195-12197.
    [36]Wang G, Lee AS, Lewis M, Kamath B, Archer RK. Accelerated Solvent Extraction and Gas Chromatography/Mass Spectrometry for Determination of Polycyclic Aromatic Hydrocarbons in Smoked Food Samples [J]. Jouranl of Agricultural and Food Chemistry,1999,47:1062-1066.
    [37]Misita M, Sehroek M, Traey K, Tabor J. Simultaneous extraction of PCDD/PCDF and PCBs using aceelerated solvent extraetion for sediment, tissue and sludge matriees [J]. Organohalogen Compounds,2003,60:37-40.
    [38]Lundstedt S, Bavel BV, Haglund P, Tysklind M, Oberg L. Pressurised liquid extraction of Polycyclic aromatic hydrocarbons from contaminated soils [J]. Journal of Chromatography A,2000,883:151-162.
    [39]Hubert A, Wenzel KD, Manz M, Weissflog L, Engewald W, Schuurmann G. High Extraction Efficiency for POPs in Real Contaminated Soil Samples Using Accelerated Solvent Extraction [J]. Analytical Chemistry,2000,72: 1294-1300.
    [40]Bergknut M, Kitti A, Lundstedt S, et al.2004. Assessment of the availability of polycyclic aromatic hydrocarbons from gasworks soil using different extraction solvents and techniques [J]. Environtoxicol Chemistry,23:1861-1866.
    [41]Li K, Landriault M, Fingas M, Liompart M. Aceelerated Solvent extraction (ASE) of environmental organic compounds in soils using a modified Super critical fluid extraetor [J]. Journal of Hazardous Materials,2003,102:93-104.
    [42]赵士燕,崔兆杰.加速溶剂萃取气相色谱法测定土壤中的类二噁英多氯联苯[J].化工环保,2006,26(6):518-521.
    [43]Saito K, SjSdin A, Sandau CD, Davis MD, Nakazawa H, Matsuki Y, Patterson Jr. DG. Development of a accelerated solvent extraction and gel permeation chromatography analytical method for measuring persistent organohalogen compounds in adipose and organ tissue analysis [J]. Chemosphere,2004,57: 373-381.
    [44]US EPA. Method 3665A:Sulfuric Acid/Permanganate Cleanup [S].1996.
    [45]US EPA. Method 3640 A:Gel-Permeation cleanup [S].1994.
    [46]Schenzler C, Thier HP. European standardization of methods for pesticide residue analysis in foods? current status [J]. Food Additives and Contaminants,2001,18: 875-879.
    [47]Kannan K, Perrotta E, Polycyclic aromatic hydrocarbons (PAHs) in livers of California sea otters [J]. Chemosphere,2008,71:649-655.
    [48]徐晓琴.凝胶色谱净化-气相色谱串联质谱法测定猪肉中16种有机氯类农药 残留[J].福建分析测试,2011,20:1-5.
    [49]Goni F, Lopez R, Etxeandia A, Milland E, Vivese A, Amiano P. Method for the determination of selected organochlorine pesticides and polychlorinated biphenyls in human serum based on a gel permeation chromatographic clean-up [J]. Chemosphere,2009,76:1533-1539.
    [50]Molina L, Cabes M, Ferrero JD, Coll M, Marti R, Puig FB, Cornelias L, Larena MCR. Separation of non-ortho polychlorinated biphenyl congeners on pre-packed carbon tubes [J]. Application to analysis in sewage sludge and soil samples. Chemosphere,2000,40:921-927.
    [51]Grimvall E, Ostman C, Nillson U. Determination of polychlorinated biphenyls in human blood plasma by on-line and off-line liquid chromatography-gas chromatography [J]. Journal of High Resolution Chromatography,1995,18: 685-691.
    [52]于恩平.用超临界流体萃取方法处理多氯联苯污染物[J].北京化工学院学报(自然科学版),1994,21:11-18.
    [53]Yusa V, Quintas G, Pardo O, Pastor A. Determination of PAHs in airborne particles by accelerated solvent extraction and large-volume injection-gas chromatography-mass spectrometry [J]. Talanta,2006,69:807-815.
    [54]Wells DE, Boer J de, Tuinstra LGMT, Reutergardh L, Griepink B. Improvements in the analysis of chloramphenicols prior to the certification of seven CBs in two fish oils [J]. Analytical & Bioanalytical Chemistry,1988,332:591-597.
    [55]Lunda M, Duedahl-Olesena L, Christensenb JH. Extraction of polycyclic aromatic hydrocarbons from smoked fish using pressurized liquid extraction with integrated fat removal [J]. Talanta,2009,79:10-15.
    [56]Naccari C, Cristani M, Giofre F, Ferrante M, Siracusa L, Trombetta D. PAHs concentration in heat-treated milk samples [J]. Food Research International,2011, 44:716-724.
    [57]蒋可,康致泉,边雅明.环境样品中多氯联苯残留物的色谱/质谱定量测定[J].环境科学学报,1982,2:85-89.
    [58]Wang Y, Li PH, Li HL, Liu XH, Wang WX. PAHs distribution in precipitation at Mount Taishan China. Identification of sources and meteorological influences [J]. Atmospheric Research,2010,95:1-7.
    [59]Brinkman UAT, Jochemsen R. Relationship between the chromatographic behavior and the structural units of polyorthophosphates [J]. Analytical and Bioanalytical Chemistry,1976,278:199-202.
    [60]Kaminsky LS, Fasco MJ. High-performance liquid chromatography of polychlorinated biphenyls [J]. Journal of Chromatography A,1978,155: 363-370.
    [61]Hanai T, Walton HF. Chromatography of chlorinated biphenyls on an ion-exchange resin [J]. Analytical Chemistry,1977,49:764-766.
    [62]Belliardo F, Gionehiglia E, Nano GM. Analysis of polychlorinated biphenyl residues in waste oils by high-performance liquid chromatography [J]. Journal of Liquid Chromatography,1979,2:77-83.
    [63]许国旺,石先哲.多维色谱研究的最新进展[J].色谱,2011,29:97-98.
    [64]Koeber R, Bayona JM, Niessner R. Determination of benzo[a]pyrene diones in air particulate matter with liquid chromatography mass spectrometry [J]. Environmental Science & Technology,1999,33:1552-1558.
    [65]Wagrowski DM, Hites RA. Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation [J]. Environmental Science & Technology, 1996,31:279-282.
    [66]Stegeman JJ, Schlezinger JJ, Craddock JE, Tillitt DE. Cytochrome P450 1A expression in midwater fishes:potential effects of chemical contaminants in remote oceanic zones[J]. Environmental Science & Technology,2001,35:54-62.
    [67]Brown JS, Steinert SA. DNA damage and biliary PAH metabolites in flatfish from Southern California bays and harbors, and the Channel Islands [J]. Ecological Indicators,2004,3:263-274.
    [68]Beland P, DeGuise S, Plante R. Toxicology and Pathology of St. Lawrence Marine Mammals. Final Report for Wildlife Toxicology Fund, World Wildlife Fund. St. Lawrence National Institute of Ecotoxicology, Montreal, Canada,1991, pp.95.
    [69]Marsili L, Caruso A, Fossi MC, Zanardelli M, Politi E, Focardi S. Poly cyclic aromatic hydrocarbons (PAHs) in subcutaneous biopsies of Mediterranean cetaceans [J]. Chemosphere,2001,44:147-154.
    [70]Yu Z, Loehr CV, Fischer KA, et al. In utero exposure of mice to dibenzo[a,l]pyrene produces lymphoma in the offspring:role of the aryl hydrocarbon receptor [J]. Cancer Research,2006,66,2:755-762.
    [71]Perera FP, Tang D, Whyatt R, Lederman SA, Jedrychowski W. DNA Damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in mothers and newborns from northern manhattan, the world trade center area, Poland, and China [J]. Cancer Epidemiology Biomarkers & Prevention,2005,14:709-714.
    [72]Whyatt RM, Santella RM, Jedrychowski W, et al. Relationship between ambient air pollution and DNA damage in polish mothers and newborns [J]. Environmental Health Perspectives,1998,106:821-826.
    [73]Costera A, Feidt C, Dziurla MA, Monteau F, Le Bizec B, Rychen G, Bioavailability of polycyclic aromatic hydrocarbons (PAHs) from soil and hay matrices in lactating goats [J]. Journal of agricultural and food chemistry,2009, 57:5352-5357.
    [74]Zitko V, Stenson G, Hellou J. Levels of organochlorine and polycyclic aromatic compounds in harp seal beaters (Phoca groenlandica) [J]. Science of Total Environment,1998,221:11-29.
    [75]Holsbeek L, Joiris CR, Debacker V, et al. Heavy metals, organochlorines and polycyclic aromatic hydrocarbons in sperm whales stranded in the southern North Sea during the 1994/1995 winter [J]. Marine Pollution Bulletin,1999,38: 304-313.
    [76]Echols KR, Tillitt DE, Nichols JW, Secord AL, McCarty JP. Accumulation of PCB Congeners in Nestling Tree Swallows (Tachycineta bicolor) on the Hudson River, New York [J]. Environmental Science & Technology,2004,38: 6240-6246.
    [77]Bright DA, Grundy SL, Reimer KJ. Differential bioaccumulation of non-ortho-substituted and other PCB congeners in coastal Arctic invertebrates and fish [J]. Environmental Science & Technology,1995,29:2504-2512.
    [78]Polder A, Savinova T, Tkachev A, L(?)ken K, Odland J, Skaare J. Levels and patterns of Persistent Organic Pollutants (POPS) in selected food items from Northwest Russia (1998-2002) and implications for dietary exposure [J]. Science of the Total Environment,2010,408:5352-5361.
    [79]王璞,王亚,李英明,张庆华,江桂斌.青海湖湟鱼(Gymnocypris przewalskii)中PCBs和PCDD/Fs的分析[J].环境化学,2006,25:669-673.
    [80]Kunisuea T, Watanabe ME, Subramanianb A, et al. Accumulation features of persistent organochlorines in resident and migratory birds from Asia [J]. Environmental Pollution,2003,125:157-172.
    [81]Deutch B, Hansen JC. High human plasma levels of organochlorine compound in Grennland-Regional differences and lifestyle effects [J]. Danish Medical Bulletin, 2000,47:132-137.
    [82]邢尚军,郗金标,张建锋,宋玉民,马丙尧.黄河三角洲植被基本特征及其主要类型[J].东北林业大学学报,2003,31:85-86.
    [83]叶庆华,田国良,刘高焕,叶景敏,娄维国.黄河三角洲新生湿地土地覆被演替图谱[J].地理研究,2004,23:257-264.
    [84]Wingfors H, Lindstrom G, Bavel BV, Schuhmacherb M, Hardellc L. Multivariate data evaluation of PCB and dioxin profiles in the general population in Sweden and Spain [J]. Chemosphere,2000,40:10.83-1088.
    [85]Esposito R. Genium's Handbook of Safety, Health, and Environmental Data for Common Hazardous Substances. Genium Publishing Corporation. New York, NY:McGraw-Hill,1999.
    [86]Brown DP. Mortality of workers exposed to polychlorinated biphenyls-an update [J]. Archives of Environmental Health:An International Journal,1987, 42:333-339.
    [87]黄健生,贾晓平.国外海豚体内多氯联苯的研究进展与概况[J].南方水产, 2006,2:66-71.
    [88]Borrell A, Bloch D, Desportes G. Age trends and reproductive transfer of organochlorine compounds in long-finned pilot whales from the Faroe Islands [J]. Environmental Pollution,1995,88:283-292.
    [89]Kania-Korwel I, Hornbuckle KC, Peck A, Ludewig G, Robertson LW, Sulkowski WW, Espandiari P, Gairola CG, Lehmler HJ. Congener-specific tissue distribution of Aroclor 1254 and a highly chlorinated environmental PCB mixture in rats [J]. Environmental Science & Technology,2005,39:3513-3520.
    [90]Needham LL, Grandjean P, Heinzow B, J(?)rgensen PJ, Nielsen F, Patterson DG, Sjodin A, Turner WE, Weihe P. Partition of Environmental Chemicals between Maternal and Fetal Blood and Tissues [J]. Environmental Science & Technology,2010,45:1121-1126.
    [91]Ma S, Yu Z, Zhang X, Ren G, Peng P, Sheng G, Fu J. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in breast milk from Shanghai:Implication for exposure route of higher brominated BDEs [J]. Environment international,2012,42:72-77.
    [92]Sala M, Ribas-Fito N, Cardo E, De Muga M, Marco E, Mazon C, Verdu A, Grimalt J, Sunyer J. Levels of hexachlorobenzene and other organochlorine compounds in cord blood:exposure across placenta [J]. Chemosphere,2001,43: 895-901.
    [93]Yu Y, Wang X, Wang B, Tao S, Liu W, Cao J, Li B, Lu X, Wong MH. Polycyclic Aromatic Hydrocarbon Residues in Human Milk, Placenta, and Umbilical Cord Blood in Beijing, China [J]. Environmental Science & Technology,2011,45: 10235-10242.
    [94]Wang F, Xia X, Sha Y. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China [J]. Journal of hazardous materials,2008,154: 317-324.
    [95]Yoo H, Kannan K, Kim SK, Lee KT, Newsted JL, Giesy JP. Perfluoroalkyl Acids in the Egg Yolk of Birds from Lake Shihwa, Korea [J]. Environmental Science & Technology,2008,42:5821-5827.
    [96]Kelly BC, Gobas FAPC. Bioaccumulation of Persistent Organic Pollutants in Lichen-Caribou-Wolf Food Chains of Canada's Central and Western Arctic [J]. Environmental Science & Technology,2000,35:325-334.
    [97]连子如,王江涛,谭丽菊,张文浩.青岛近海生物体内多环芳烃、多氯联苯和有机氯农药的含量和分布特征[J].生态毒理学报,2010,5(5):746-751.
    [98]Ferreira-Baptista L, Miguel ED. Geochemistry and risk assessment of street dust in Luanda, Angola:a tropical urban environment [J]. Atmospheric Environment,2005,39:4501-4512.
    [99]Halsall CJ, Lee RGM, Coleman PJ, Burnett V, Harding Jones P, Jones KC. PCBs in UK urban air [J]. Environmental Science & Technology,1995,29: 2368-2376.
    [100]Liu SZ, Tao S, Liu WX. Seasonal and spatial occurrence and distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in rural and urban areas of the North Chinese Plain [J]. Environmental Pollution,2008,156:651-656.
    [101]Smith KEC, Jones KC. Particles and vegetation:implications for the transfer of particle-bound organic contaminants to vegetation [J]. Science of the Total Environment,2000,246:207-236.
    [102]Liu J, Schnoora JL. Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure [J]. Chemosphere,2008,73:1608-1616.
    [103]Merier P G, Fook D C, Lagler K F. Organochlorine insecticides in rice paddies in Malaysia [J]. Bulletin of Environmental Contamination and Toxicology,1983, 30:351-357.
    [104]Wania F, Mackay D. Modeling the global distribution of toxaphene:A discussion of feasibility and desirability [J]. Chemosphere,1993,27:2079-2094.
    [105]孙娜,陆晨刚,高翔等.青藏高原东部土壤中多环芳烃的污染特征及来源解析[J].环境科学,2007,28(3):664-668.
    [106]Nam JJ, Song BH, Eom KC, Lee SH, Smith A. Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea [J]. Chemosphere, 2003,50:1281-1289
    [107]Whitfield Aslund ML, Zeeb BA, Rutter A, Reimer KJ. In situ phytoextraction of polychlorinated biphenyl-(PCB) contaminated soil [J]. Science of the Total Environment,2007,374:1-12.
    [108]Marsili L, Gaggi C, Bortolotto A, Stanzani L, Franchi A, Renzoni A, Bacci E. Recalcitrant organochlorine compounds in captive bottlenose dolphins (Tursiops truncatus):Biomagnification or bioaccumulation? [J]. Chemosphere, 1995,31:3919-3932.
    [109]Thomas GO, Sweetman AJ, Jones KC. Input-output balance of polychlorinated biphenyls in a long-term study of lactating dairy cows [J]. Environmental Science & Technology,1999,33:104-112.
    [110]Kania-Korwel I, Hornbuckle KC, Peck A, Ludewig G, Robertson LW, Sulkowski WW, Espandiari P, Gairola CG, Lehmler HJ. Congener-specific tissue distribution of Aroclor 1254 and a highly chlorinated environmental PCB mixture in rats [J]. Environmental Science & Technology,2005,39:3513-3520.
    [111]Wang XC, Maeda K, Chen XF, Takanabe K, Domen K, Hou YD, Fu XZ, Antonietti M. Polymer Semiconductors for Artificial Photosynthesis:Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light [J]. Journal of the American Chemical Society,2009,131:1680-1681.
    [112]Chen XF, Zhang JS, Fu X.Z, Antonietti M, Wang XC. Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J]. Journal of the American Chemical Society,2009,131:11658-11659
    [113]Thomas G O, Sweetman A J, Parker C A, Kreibich H, Jones K C. Development and validation of methods for the trace determination of PCBs in biological . matrices [J].Chemosphere,1998,36:2447-2459.
    [114]Frame GM. A collaborative study of 209 PCB congeners and 6 Aroclors on 20 different HRGC columns.1. Retention and coelution database [J]. Fresennius Journal of Analytical Chemistry,1997,357:701-713.
    [115]Janoszka B. HPLC-fluorescence analysis of polycyclic aromatic hydrocarbons (PAHs) in pork meat and its gravy fried without additives and in the presence of onion and garlic [J]. Food Chemistry,2011,126:1344-1353.
    [116]张建清,李敬光,吴永宁,姜杰,蒋友胜,周健.同位素稀释的气相色谱/ 高分辨质谱联用测定食品中二嗯英和共平面多氯联苯[J].分析化学,2005,33:296-300.
    [117]张国英.博士学位论文.多环芳烃、多氯联苯优良降解菌的分离鉴定及降解特性研究.2009.
    [118]范国兰.博士学位论文.黄河三角洲典型植物中类二噁英类多氯联苯来源、积累、分布规律研究.2008.
    [119]Maria VL, Correia AC, Santos MA. Benzo[a]pyrene and β-Naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction [J]. Ecotoxicology and Environmental Safety,2002,53:81-85.
    [120]Short JW, Rice SD, Heintz RA, Carls MG, Moles A. Long-term effects of crude oil on developing fish:lessons from the Exxon Valdez oil spill [J]. Energy Sources,2003,25:509-517.
    [121]Tsapakis M, Stephanou EG Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere:study of sources and ambient temperature effect on the gas/particle concentration and distribution [J]. Environmental Pollution,2005,133:147-156.
    [122]Tao S, Cui YH, Xu FL, Li BG, Cao J, Liu WX, Schmitt G, Wang XJ, Shen WR, Qing BP, Sun, R.. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin [J]. Science of the Total Environment,2004,320: 11-24.
    [123]Nadal M, Schuhmacher M, Domingo JL. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain [J]. Environment Pollution, 2004,132:1-11.
    [124]Grova N, Feidt C, Cre'pineau C, Laurent C, Lafargue PE, Hachimi A, Rychen G Detection of polycyclic aromatic hydrocarbon levels in milk collected near potential contamination sources [J]. Agricultural and Food Chemistry,2002,50:4640-4642.
    [125]Pavoni B, Salizzato M, Volpi Ghirardini A. Organic micropollutants (PCB, PAH, chlorinated pesticides) in sediments of Venice "RII". Chemical analyses and toxicity tests using Vibrio fischeri [J]. Annali Di Chimica,1998, 88:189-200.
    [126]Lerario VL, Giandomenico S, Lopez L, Cardellicchio N. Sources and distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from the Mar Piccolo of Taranto, Ionian Sea, southern Italy [J]. Annali Di Chimica,2003, 93:397-406.
    [127]Incardona JP, Collier TK, Scholz NL. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons[J]. Toxicology and Applied Pharmacology,2004,196:191-205.
    [128]Xia ZH, Duan XL, Qiu WX, Liu D, Wang B, Tao S, Jiang QJ, Lu B, Song YX, Hu XX. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China [J]. Science of the Total Environment, 2010,408:5331-5337.
    [129]杨意峰,陶澍,周东旭,礼晓.多环芳烃在养鸡场饲养鸡中的暴露吸收和积累.第五届全国环境化学大会,2009.
    [130]Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E, Kumata H. Distributions of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia:a widespread input of petrogenic PAHs [J]. Environmental Science & Technology,2002,36:1907-1918.
    [131]Neff JM. Polycyclic aromatic hydrocarbons in the aquatic environment:Sources, fates and biological effects. Applied Science, London, UK,1979.
    [132]NRCC. Polycyclic aromatic hydrocarbons in the aquatic environment: formation, sources, fate and effects on aquatic biota. National Research Council Canada, NRCC publication,1983.
    [133]May WE, Wasik SP, Freeman DH. Determination of the solubility behavior of some polycyclic aromatic hydrocarbons in water [J]. Analytical Chemistry,1978, 50:997-1000.
    [134]Ledicia RS, Elena MC, Mercedes Sonia GF, Carmen GB, Jesus SG. Occurrence of polycyclic aromatic hydrocarbons and their hydroxylated metabolites in infant foods. Food Chemistry,2009,115:814-819.
    [135]Qin YY, Leung CKM, Leung AOW, Zheng JS, Wong MH. Persistent organic pollutants in food items collected in Hong Kong [J]. Chemosphere,2011,82: 1329-1336.
    [136]Hellou J, Upshall C, Ni IH, Payne JF, Huang YS. Polycyclic aromatic hydrocarbons in harp seals (Phoca groenlandica) from the Northwest Atlantic [J]. Archives of Environmental Contamination and Toxicology,1991,21: 135-140.
    [137]Law RJ, Whinnett JA. Polycyclic aromatic hydrocarbons in muscle tissue of harbour porpoises (Phocoena phocoena) from UK waters [J]. Marine Pollution Bulletin,1992,24:550-553.
    [138]Dockery DW, Pope CA, Xu XP, et al. An association between air-pollution and mortality in 6 United States cities [J]. The New England Jouranl of Medicine, 1993,329:1753-1759.
    [139]Troisi GM, Bexton S, Robinson I. Polyaromatic hydrocarbon and PAH metabolite burdens in oiled common guillemots (Uria aalge) stranded on the east coast of England (2001-2002) [J]. Environmental Science & Technology,2006, 40:7938-7943.
    [140]Ounnas F, Jurjanz S, Dziurla MA, Guiavarc'h Y, Feidt C, Rychen G. Relative bioavailability of soil-bound polycyclic aromatic hydrocarbons in goats [J]. Chemosphere,2009,77:115-122.
    [141]Kishikawa N, Wada M, Kuroda N, Akiyama S, Nakashima K. Determination of polycyclic aromatic hydrocarbons in milk samples by high performance liquid chromatography with fluorescence detection [J]. Journal of Chromatography B,2003,789:257-264.
    [142]Del Bubba M, Zanieri L, Galvan P, Donzelli GP, Checchini L, Lepri L. Determination of polycyclic aromatic hydrocarbons (PAHs) and total fats in human milk [J]. Annali Di Chimica,2005,95:629-641.
    [143]Safe SH. Development validation and problems with the toxic equivalency factor approach of risk assessment of dioxins and related compounds [J]. Journal of Animal Science,1998,76:134-141.
    [144]Kong KY, Cheung KC, Wong CKC, Wong MH. The residual dynamic of polycyclic aromatic hydrocarbons and organochlorine pesticides in fishponds of the Pearl River Delta, South China [J]. Water Research,2005,39:1831-1843.
    [145]Wang W, Huang MJ, Kang Y, Wang HS, Leung AOW, Cheung KC, Wong MH. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China:Status, sources and human health risk assessment [J]. Science of the Total Environment,2011,409:4519-4527.
    [146]Peng C, Chen WP, Liao XL, et al. Polycyclic aromatic hydrocarbons in urban soils of Beijing:status, sources, distribution and potential risk [J]. Environmental Pollution,2011,159:802-808.
    [147]Cheung KC, Leung HM, Kong KY, Wong MH. Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment [J]. Chemosphere,2007,66:460-468.
    [148]Falco G, Domingo JL, Llobet JM, Teixido A, Casas C, Muller L. Polycyclic aromatic hydrocarbons in foods:human exposure through the diet in Catalonia, Spain [J]. Journal of Food Protection,2003,66:2325-2331.
    [149]Detmar J, Rabaglino T, Taniuchi Y, et al. Embryonic loss due to exposure to polycyclic aromatic hydrocarbons is mediated by Bax [J]. Apoptosis,2006,11: 1413-1425.
    [150]Grova N, Feidt C, Laurent C, Rychen G. [14C] Milk, urine and faeces excretion kinetics in lactating goats after an oral administration of [14C]polycyclic aromatic hydrocarbons [J]. International Dairy Journal,2002,12:1025-1031.
    [151]Grova N, Rychen G, Monteau F, Le Bizec B, Feidt C. Effect of oral exposure to polycyclic aromatic hydrocarbons on goat's milk contamination [J]. Agronomy for Sustainable Development,2006,26:195-199.
    [152]Lapole D, Rychen G, Grova N, Monteau F, Le Bizec B, Feidt C. Milk and urine excretion of polycyclic aromatic hydrocarbons and their hydroxylated metabolites after a single oral administration in ruminants [J]. Journal of Dairy Science,2007,90:2624-2629.
    [153]Lutz S, Feidt C, Monteau F, Rychen G, Le Bizec B, Jurjanz S. Effect of exposure to soil-bound polycyclic aromatic hydrocarbons on milk contaminations of parent compounds and their mono hydroxylated metabolites [J]. Journal of Agricultural and Food Chemistry,2006,54:263-268.
    [154]US Environmental Protection Agency, EPA 823-R-95-007, Office of Water, Washington, DC,2000.
    [155]Dybing E, O'Brien J, Renwick AG, Sanner T. Risk assessment of dietary exposures to compounds that are genotoxic and carcinogenic-An overview [J]. Toxicology Letters,2008,180:110-117.
    [156]Sinha R, Peters U, Cross AJ, Kulldorff M, Weissfeld JL, Pinsky PF, Rothman N, Hayes RB and Prostate, lung, colorectal, and ovarian cancer project team. Meat, meat cooking methods and preservation, and risk for colorectal adenoma [J]. Cancer Research,2005,65:8034-8041.
    [157]European Union, Commission Regulation (EC) 208/2005. Off. J. Eur. Comm., 2005, L34, p.3.
    [158]冯朝军,于培松,卢冰,蔡明红,武光海.南极阿德雷岛企鹅机体组织、蛋卵和粪土中PCBs和OCPs的分布[J].海洋环境科学,2010 29:308-313.
    [159]邵春岩.中国多氯联苯(PCBs)管理现状及污染防治对策。http://www.eedu.org.cn。
    [160]Zhao PL. Impact of Sediment on Water Quality and Pollution Control in the Yellow River (Huanghe)[J].Water Resource Press, Zhengzhou, China,2002.
    [161]Wang Y W, Wang T, Fu J J, et al. Selection of Bioindicators of Polybrominated Diphenyl Ethers, Polychlorinated Biphenyls, and Organochlorine Pesticides in Mollusks in the Chinese Bohai Sea [J]. Environmental Science and Technology, 2008,42:7159-7165.
    [162]孙成,许士奋,姚书春等.香港海域翡翠贻贝(Perna viridis L.)中多氯联苯的研究[J].环境化学,2003,22:182-188.
    [163]Nakataa H, Hirakawaa Y, Kawazoea M. Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China [J]. Environmental Pollution,2005,133:415-429.
    [164]杨志军,张青,倪余文等.牡蛎和贻贝中二嗯英及多氯联苯同类物的分布[J].生态环境,2004,13:512-514.
    [165]Jensen S. Report of a New Chemical Hazard. NEW SCIENTIST,1966,32: 612.
    [166]Addison R, Zinck M, Ackman R. Residues of organochlorine pesticides and polychlorinated biphenyls in some commercially produced Canadian marine oils [J]. Journal of the Fisheries Board of Canada,1972,29:349-355.
    [167]薛海全.硕士论文.典型农作物中多环芳烃和多氯联苯的分布、累积规律.2011.
    [168]Luo J, Cui ZJ, Du SY, Fan GL. Temporal Trends and Spatial Variations of Poly cyclic Aromatic Hydrocarbons in Atmospheric PM10 of Jinan, China [J]. Advanced Materials Research,2013,807-809:40-45.
    [169]Luo J, Cui ZJ, Du SY, Fan GL. Temporal variation and meteorological dependence of polychlorinated biphenyls in atmospheric PM10 of Jinan, China [J]. Advanced Materials Research,2013,779-780:1250-1253.
    [170]Dong F, Wu LW, Sun YJ, Fu M, Wu ZB, Lee SC. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts [J]. Journal of Materials Chemistry,2011,21:15171-15174.
    [171]Ding ZX, Chen XF, Antonietti M, Wang XC. Synthesis of Transition Metal-Modified Carbon Nitride Polymers for Selective Hydrocarbon Oxidation [J]. Chemsuschem,2011,4:274-281.
    [172]Hong JD, Xia XY, Wang YS, Xu R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light [J]. Journal of Materials Chemistry,2012,22:15006-15012.
    [173]Lotsch BV, Doblinger M, Sehnert J, Seyfarth L, Senker J, Oeckler O, Schnick W. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer [J]. Chemistry-a European Journal, 2007,13:4969-4980.
    [174]Lotsch BV, Schnick W. From triazines to heptazines:Novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials [J]. Chemistry of Materials,2006,18:1891-1900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700