用户名: 密码: 验证码:
微萃取与在柱富集毛细管电泳联用技术及其在元素形态分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
元素的毒性或有益作用及其在环境中的迁移途径和生物体的代谢行为不仅与其总含量有关,而且与其存在形式(形态)密切相关。因此,对某一元素进行形态分析比对其进行总量分析具有更加重要的意义。毛细管电泳(CE)是元素形态分析的一种重要分析手段。CE用于元素形态分析具有低消耗、低成本、高分离度、分离体系灵活、无需衍生等优点。但是,由于CE进样量小(纳升级),导致其浓度检出限低;此外,CE对样品基质的耐受能力弱,大量基质引入分离毛细管会导致目标分析物的迁移时间变化,从而导致分析结果不准确。因此,在CE分析前往往需要辅以合适的样品前处理技术和CE在柱富集技术。在诸多样品前处理技术中,微萃取技术如液相微萃取(LPME)、固相微萃取(SPME)和搅拌棒吸附萃取(SBSE)等因其具有微型化、环境友好、高灵敏、抗干扰能力强等优点而备受关注,将这些微萃取技术与CE联用可提高方法的检测灵敏度和净化样品基质。在柱富集技术具有模式众多、富集效率高、操作简便以及不影响CE分离度等优点,是改善CE检测灵敏度的另一种重要手段。因此,将微萃取技术与在柱富集技术分别或者二者相结合与CE联用用于实际样品中元素形态的分析具有很大的应用潜力,可拓展CE在元素形态分析领域的应用范围。
     本论文的研究目的是,探索和研究适用于元素形态分析的在柱富集体系;开发和研究可直接萃取(非衍生)极性元素形态的固相微萃取和液相微萃取新体系和新方法;建立微萃取和/或在柱富集-CE/UV联用用于元素形态分析的新方法,并将其应用于环境和生物样品的分析。本论文的主要研究内容包括:
     (1)建立了聚合物涂层中空纤维膜微萃取(PC-HFME)结合动态pH界面富集毛细管电泳紫外(CE/UV)检测分析环境水样中硒代氨基酸形态的新方法。对两种模式下动态pH界面在柱富集目标分析物的条件进行了优化,最后确定背景电解质(BGE)为极端酸性的磷酸缓冲溶液(pH 2.0),样品溶液基质为极端碱性的缓冲溶液(pH 12.4),样品进样量为分离毛细管总容量的90%。在此条件下,动态pH界面在柱富集目标分析物的富集倍数为430-590倍。将部分磺酸化的聚苯乙烯聚合物(PSP)涂覆在中空纤维膜上制备了PSP涂覆中空纤维膜,并将其应用于硒代氨基酸的萃取。这种PC-HFME-动态pH界面富集-CE/UV方法对硒代氨基酸的富集倍数为3171-18525倍,检出限在0.32-4.10μg/L之间。将该方法应用于自来水和东湖水样的分析,加标回收率在82.4%-106.5%的范围内。
     (2)以PDMS粘附法制备了纳米Zr02涂层搅拌棒,并利用Zr02与含磷化合物之间的选择性作用,将制备的纳米Zr02涂层搅拌棒用于强极性化学战剂降解产物甲基磷酸(MPA)、甲基膦酸乙酯(EMPA和甲基膦酸片呐酯(PMPA)的直接搅拌棒吸附萃取(SBSE)。将ZrO2-SBSE与大体积样品堆积(LVSS)相结合,建立了ZrO2-SBSE-LVSS-毛细管电泳间接紫外(CE/indirect UV)分析实际环境水样中EMPA、PMPA和MPA的新方法。对影响ZrO2-SBSE萃取、解吸的因素以及影响LVSS堆积的条件分别进行了优化。在最优的萃取条件和堆积条件下,该方法对三种目标分析物的检出限在1.2-3.1μg/L之间,富集倍数为742-1583倍。该方法已成功应用于环境水样中目标分析物的分析,加标回收率在93.8%-105.3%之间。
     (3)以磷酸三丁酯作为萃取溶剂,采用U型中空纤维膜-液液液微萃取(HF-LLLME)模式,实现了HF-LLLME对硫酸介质中五种极性苯砷酸类化合物的选择性萃取:提出一种阴离子耗尽进样(ASEI)堆积的新策略,即在样品电动进样前,先引入几乎整管的水柱(长度占91%的分离毛细管),从而在不改变分离度的情况下增加了样品溶液的最大进样量,提高了ASEI在柱富集苯砷酸类化合物的富集倍数。将HF-LLLME强的基质净化能力与ASEI高富集倍数的优点有机结合,建立了简便、快速、高灵敏的HF-LLLME-ASEI-CE/UV分析复杂环境样品中苯砷酸类化合物的新方法。该方法对目标分析物的检出限在0.68-6.9μg/L之间,富集倍数为155-1780倍,相对标准偏差在5.6-11.8%范围内。将所建立的方法用于当地某养猪场使用的浓缩猪饲料以及该养猪场附近环境中样品包括堆放的猪粪、耕地中的土壤、东湖水的分析并进行了加标回收实验。结果发现,该方法应用于浓缩猪饲料和东湖水中苯砷酸化合物分析的回收率在85-110%之间;堆放的猪粪样品的回收率在66.7-96.2%之间;土壤样品中各物质的回收率均低于50%。
     (4)以SDS为离子对试剂,采用离子对-中空纤维膜-液液液微萃取(IP-HF-LLLME)成功实现了极性相差较大的四种甲状腺素化合物包括四碘甲状腺原氨酸(T4)、三碘甲状腺原氨酸(T3)、3,5-二碘-甲状腺素(T2)、3,3',5-三碘代-甲腺原氨酸(reverse T3, rT3)以及两种合成甲状腺素的原料3,5-二碘酪氨酸(DIT)和单碘酪氨酸(MIT)的同时萃取。据此,建立了简便、快速、高灵敏、高选择性的同时分析药物中六种目标分析物的IP-HF-LLLME-CE/UV新方法。对影响IP-HF-LLLME萃取效率的主要因素,如样品溶液pH值、有机溶剂、SDS浓度、萃取时间、搅拌速率以及盐效应等进行了系统考察。在最优的实验条件下,该方法分析六种目标分析物的检出限在0.54-1.43μg/L之间,富集倍数为183-366倍,相对标准偏差在3.19-8.98%范围内。将所建立的IP-HF-LLLME-CE/UV方法应用于两种药物中甲状腺素含量的测定,获得了满意的结果。
     (5)以L-半胱氨酸作为反萃取试剂,采用U型中空纤维膜液液液微萃取(HF-LLLME)模式,实现了三种毒性较大的有机汞形态的萃取。将HF-LLLME与大体积样品堆积(LVSS)结合,建立了HF-LLLME-LVSS-CE/UV分析人发和海鱼样品中三种有机汞形态的新方法。对影响HF-LLLME的萃取条件和LVSS的电泳参数进行了优化,该方法分析甲基汞、乙基汞和苯基汞的检出限分别为0.03、0.07和0.14μg/L,富集倍数为2400-4300倍,线性范围达到两个数量级,其相关系数在0.9992-0.9999范围内。将该方法应用于标准参考物质DORM-2、人发样品和海鱼肌肉组织的分析,获得了满意的结果。该方法灵敏度高、选择性强、操作简单、分析仪器廉价,采用CE/UV可获得比CE-等离子体质谱(ICP/MS)更低的检出限水平,可应用于复杂基质样品中低含量的有机汞形态的分析。
     (6)设计了简单的自动化动态中空纤维膜-液液液微萃取(AD-HF-LLLME)装置,该装置采用流动注射仪辅助,通过程序控制可实现上样、清洗、动态萃取步骤的自动化。采用18-冠-6作为给予相络合试剂,L-半胱氨酸作为接受相反萃取试剂实现了无机汞和有机汞的同时萃取。其中,实验发现在萃取过程中存在乙基汞形态转化为无机汞的现象。据此,将AD-HF-LLLME与大体积样品堆积(LVSS)技术相结合,建立了AD-HF-LLLME-LVSS-CE/UV分析人发样品和环境水样中甲基汞、苯基汞和无机汞形态的新方法。该方法具有装置简单、自动化程度高、重现性好和样品基质净化能力强等优点;与静态萃取模式相比,AD-HF-LLLME的萃取动力学更快,所需萃取平衡时间更短,并且可获得较低的检出限和较高的富集倍数。
     (7)提出了一种基于相转移原理的液相微萃取新技术-相转移液液液微萃取(PT-LLLME)。采用乙腈作为分散剂,DDA作为络合试剂,该技术成功实现了无机汞和有机汞的同时萃取,具有操作简单、萃取动力学快、萃取平衡时间短等优点,为拓展LPME在元素及其形态分析领域中的应用提供了一条新的思路。为实现PT-LLLME,设计了新的膜支撑-液液液微萃取(MS-LLLME)装置,该装置可允许大体积的接受相液滴,既可满足商用毛细管电泳仪自动进样的要求,又可以与HPLC等其他仪器大体积进样相匹配。据此,将PT/MS-LLLME与大体积样品堆积(LVSS)毛细管电泳紫外(CE/UV)检测联用,建立了PT/MS-LLLME-LVSS-CE/UV同时分析无机汞和有机汞形态的新方法,并将其成功的应用于复杂基质样品包括环境和生物样品的分析。
It has been recognized that the toxicity, bioavailability, transportation, metabolism, and other specific biological functions of a given element are highly dependent on its physicochemical forms in environmental and biological samples. Therefore, identification and quantification of different elemental species, termed as elemental speciation, are more important than the determination of its total content of an element. Capillary electrophoresis (CE) has been demonstrated to be one of the effective analytical techniques for elemental speciation due to the merits of low cost, low-sample consumption, high resolution, rapid separation and no need for derivatization. However, insufficient detection sensitivity and low tolerance of sample matrix have limited the application of CE in real sample analysis. To overcome such limitations, effective sample pretreatment techniques and on-column preconcentration methods are highly demanded. An appropriate sample pretreatment technique could isolate the target analytes from the sample matrix and concentrate the analytes simultaneously. In recent years, a variety of novel sample pretreatment techniques such as liquid phase microextraction (LPME), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE) have been developing rapidly and gained great interest in analytical community. On the other hand, on-column preconcentration techniques such as staking, sweeping, dynamic pH junction and t-isotachophoresis are also excellent alternative methods to improve the detection sensitivity of CE, and they deserve special attention for their simple operation and high enrichment factor. However, to the best of our knowledge, the research on the combination of effective sample pretreatment techniques and/or on-column preconcentration methods with CE is very scarce until to present for elemental speciation.
     The aim of this dissertation is to explore efficient on-column methods for elemental speciation and investigate the concentration mechanism; to develop new microextraction methods for the direct extraction of polar elemental species; and to establish new methods by combining microextraction techniques and/or on-column preconcentration methods with CE/UV detection for elemental speciation in environmental and biological samples. The major contents of this dissertation are described as follows:
     (1) A novel method of polymer-coated hollow fiber microextraction (PC-HFME) combined with dynamic pH junction-CE/UV detection was developed for the speciation of four selenoamino acids. The enrichment resulted from dynamic pH junction is attributed to the migration velocity decreases of target analytes ions when migrating from a high-pH sample zone (pH 12.4) to a low-pH (pH 2.0) back ground electrolyte (BGE) buffer. In comparison to standard injection mode, the dynamic pH junction alone provided 430- to 590-fold improvement in terms of sensitivity. In PC-HFME, partially sulfonated polystyrene (PSP) coated hollow fibers were prepared for the simultaneous extraction of four selenoamino acids in acid media based on electrostatic interaction. With two-step enrichment procedure of dynamic pH junction and PC-HFME, enhancement factors (EFs) of 3171 to 19388 folds were obtained, and the limits of detections (LODs) (S/N=3) of 0.32-4.10μg/L were achieved for CE/UV determination of target selenoamino acids. The application potential of this method was successfully demonstrated by the analysis of selenoamino acids in environmental water samples.
     (2) Zirconia (ZrO2) coated stir bar sorptive extraction (SBSE) coupled with on-column large volume sample injection (LVSS)-CE with indirect UV detection was developed for the direct analysis of strong polar chemical warfare agent degradation products of methylphosphonic acid (MPA), ethyl methylphosphonic acid (EMPA) and pinacolyl methylphosphonate (PMPA). Nanometer-sized ZrO2 coated stir bars were prepared by a PDMS adhesion method, and successfully applied in the extraction of the target strongly polar analytes due to the high affinity of ZrO2 to electronegative phosphonate group containing compounds. By combination of ZrO2-SBSE with LVSS-CE/ indirect UV, the LODs were found to be 1.4,1.2 and 3.1μg/L for PMPA, EMPA, and MPA, respectively. The reproducibility (RSD) was in the range of 9.0-11.8%. The EFs were up to 1583-fold. The proposed ZrO2-SBSE-LVSS-CE/indirect UV method has been applied to the analysis of three target analytes in different environmental water samples with recoveries ranging from 93.8% to 105.3%.
     (3) Off-line hollow fiber liquid liquid liquid microextraction (HF-LLLME) combined with on-column anion selective exhaustive injection (ASEI)-CE/UV detection was proposed for the speciation of phenylarsenic compounds. By the use of tributyl phosphate (TBP) as the organic phase and 0.8 mmol/L Tris solution as acceptor phase in HF-LLLME, a simultaneous preconcentration of target analytes in pH 2.15 H2SO4 medium as the donor phase was realized. In ASEI, a large plug of water (91% length of total capillary) was introduced into the separation capillary before sample injection in order to prolong the sample injection time and thus enhance the stacking efficiency of ASEI. Under the optimized conditions, up to 236-fold of EF was obtained for the ASEI-CE/UV determination of target phenylarsenic compounds. Compared with reported LVSS technique, ASEI is more effective. By combining HF-LLLME with ASEI-CE/UV, the obtained LODs were in the range of 0.68-6.90μg/L for five phenylarsenic compounds with RSDs (n=5) of 5.6-11.8%. The proposed HF-LLLME-ASEI-CE/UV method was applied for the determination of target phenylarsenic compounds in pig feed, stored pig litter, soil and water samples obtained in a local pig farm.
     (4) Taking four thyroid hormones including thyroxine (T4),3,5,3-triiodo-L-thyronine (T3), reverse 3,3,5-triiodo-L-thyronine (rT3) and 3,5-diiodo-L-thyronine dihydrate (T2), and two other related compounds of 3,5-diiodo-L-tyrosine (DIT) and 3-iodo-L-tyrosine (MIT) as the target analytes, a new method of ion pair based hollow fiber liquid-liquid-liquid microextraction (IP-HF-LLLME) combined with CE-UV detection was developed for the simultaneous determination of six target analytes in pharmaceutical formulations. The extraction was facilitated by adding sodium dodecyl sulfate (SDS) in the donor phase to form ion pairs with target analytes. The factors affecting the extraction efficiency of IP-HF-LLLME were optimized. Under the optimum conditions, the LODs (S/N=3) for six target analytes were in the range of 0.54-1.43μg/L with RSDs (n=7) ranging from 3.19 to 8.98%. The enrichment factors obtained by this method ranged from 183 to 366 folds. The proposed method is simple, inexpensive, high selective and sensitive for the simultaneous analysis of thyroid hormones and related compounds.
     (5) U-shaped hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) combined with large-volume sample stacking (LVSS)-CE/UV detection has been proposed for the speciation of organomercury in biological samples. In LVSS, a polarity switch mode was applied. In HF-LLLME, the analytes were extracted from 12 mL sample solution (pH 3.0) into an acceptor solution of L-cysteine (15μL,0.02% w/v) inside the hollow fiber through bromobenzene impregnated in the pores of the hollow fiber. Under the optimized conditions, EFs of 2610-4580 were achieved with the LODs in the range of 0.03-0.14μg/L. The developed method has been validated using a certified reference material (DORM-2, dogfish muscle), and the determined values coincided very well with the certified values. The developed method was also applied to the speciation of organomercury in real fish samples and human hair samples.
     (6) A simple automatic dynamic hollow fiber based liquid liquid liquid (AD-HF-LLLME) device was designed for the mercury speciation by using a programmable flow injection analyser. With 18-crown-6 as the complexing reagent, mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were first extracted into the organic phase (chlorobenzene), and then transferred into 0.1%(m/v) 3-mercapto-l-propanesulfonic acid (MPS) aqueous solution in the hollow fiber lumen as acceptor phase. However, ethylmercury was found to be partially decomposed during the AD-HF-LLLME process, and was not included in the developed method. Based on it, a new method of AD-HF-LLLME combined with LVSS-CE/UV detection was established for the simultaneous analysis of methyl-, phenyl- and inorganic mercury species in water and human hair samples.
     (7) A novel extraction technique termed phase transfer based liquid-liquid-liquid microextraction (PT-LLLME) was proposed for the simultaneous extraction of inorganic mercury and three organic mercury species. To ensure a maximum contact between the target mercury species and the complexing reagent of dodecylamine (DDA) in donor phase, an intermediate solvent, which is miscible with water, was added into the sample solution. Furthermore, a membrane supported liquid-liquid-liquid phase microextraction (MS-LLLME) unit was designed. By using nylon membrane as supporting carrier, larger than 50μL of acceptor solution could be hung up in MS-LLLME unit. Parameters affecting the extraction efficiency of PT/MS-LLLME were investigated in details. Under the optimized conditions, EFs ranging from 160- to 478-fold were obtained for the mercury species by PT/MS-LLLME. The acceptor phase was directly injected into CE for LVSS-CE/UV analysis. By combination of PT/MS-LLLME with LVSS-CE/UV, the limits of detection (LODs) at lowμg/L level were achieved with the EFs up to 12138- fold. This newly established approach of PT/MS-LVSS-LLLME-CE/UV was successfully applied to simultaneous determination of inorganic and organic mercury species in biological samples and environmental water samples.
引文
[1]K. Hirose, Chemical speciation of trace metals in seawater:A review, Anal. Sci.,22 (2006) 1055-1063.
    [2]胡斌,江祖成,色谱-原子光谱/质谱联用技术及形态分析,科学出版社,(2005)p5.
    [3]A. Marin, A. Lopez-Gonzalvez, C. Barbas, Development and validation of extraction methods for determination of zinc and arsenic speciation in soils using focused ultrasound-Application to heavy metal study in mud and soils, Anal. Chim. Acta,442 (2001) 305-318.
    [4]Y.G. Yin, M. Chen, J.F. Peng, J.F. Liu, GB. Jiang, Dithizone-functionalized solid phase extraction-displacement elution-high performance liquid chromatography-inductively coupled plasma mass spectrometry for mercury speciation in water samples, Talanta,81 (2010) 1788-1792.
    [5]Z.H. Wang, Y.G Yin, B. He, J.B. Shi, J.F. Liu, G.B. Jiang, L-cysteine-induced degradation of organic mercury as a novel interface in the HPLC-CV-AFS hyphenated system for speciation of mercury, J. Anal. At. Spectrom.,25 (2010) 810-814.
    [6]J.L. Rodrigues, S.S. de Souza, V.C.D. Souza, F. Barbosa, Methylmercury and inorganic mercury determination in blood by using liquid chromatography with inductively coupled plasma mass spectrometry and a fast sample preparation procedure, Talanta,80 (2010) 1158-1163.
    [7]R. Ito, M. Kawaguchi, N. Sakui, N. Okanouchi, K. Saito, Y. Seto, H. Nakazawa, Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry for trace analysis of methylmercury and mercury(Ⅱ) in water sample, Talanta,77 (2009) 1295-1298.
    [8]W.C. Davis, S.S. Vander Pol, M.M. Schantz, S.E. Long, R.D. Day, S.J. Christopher, An accurate and sensitive method for the determination of methylmercury in biological specimens using GC-ICP-MS with solid phase microextraction, J. Anal. At. Spectrom.,19 (2004) 1546-1551.
    [9]J. Qvarnstrom, L. Lambertsson, S. Havarinasab, P. Hultman, W. Frech, Determination of methylmercury, ethylmercury, and inorganic mercury in mouse tissues, following administration of thimerosal, by species-specific isotope dilution GC-inductively coupled plasma-MS, Anal. Chem.,75 (2003) 4120-4124.
    [10]X.H. Bai, Z.F. Fan,3-Mercaptopropyltrimethoxysilane coated capillary micro-extraction coupled to capillary electrophoresis for the determination of methylmercury, phenylmercury and mercury in biological sample, Microchim. Acta,170(2010) 107-112.
    [11]Z.F. Fan, X.J. Liu, Determination of methylmercury and phenylmercury in water samples by liquid-liquid-liquid microextraction coupled with capillary electrophoresis, J. Chromatogr. A,1180 (2008) 187-192.
    [12]X.B. Yin, Dual-cloud point extraction as a preconcentration and clean-up technique for capillary electrophoresis speciation analysis of mercury, J. Chromatogr. A,1154 (2007) 437-443.
    [13]M.S. da Rocha, A.B. Soldado, E. Blanco, A. Sanz-Medel, Speciation of mercury using capillary electrophoresis coupled to volatile species generation-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom.,16 (2001) 951-956.
    [14]M.S. da Rocha, A.B. Soldado, E. Blanco-Gonzalez, A. Sanz-Medel, Speciation of mercury compounds by capillary electrophoresis coupled on-line with quadrupole and double-focusing inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom.,15 (2000) 513-518.
    [15]T.H. Lee, S.J. Jiang, Determination of mercury compounds by capillary electrophoresis inductively coupled plasma mass spectrometry with microconcentric nebulization, Anal. Chim. Acta,413 (2000) 197-205.
    [16]B.Y. Deng, Y. Xiao, X.S. Xu, P.C. Zhu, S.J. Liang, W.M. Mo, Cold vapor generation interface for mercury speciation coupling capillary electrophoresis with electrothermal quartz tube furnace atomic absorption spectrometry:Determination of mercury and methylmercury, Talanta,79 (2009) 1265-1269.
    [17]Y. Li, Y. Jiang, X.P. Yan, On-line hyphenation of capillary electrophoresis with flame-heated furnace atomic absorption spectrometry for trace mercury speciation, Electrophoresis,26 (2005) 661-667.
    [18]Y. Li, Y. Jiang, X.P. Yan, Probing mercury species-DNA interactions by capillary electrophoresis with on-line electrothermal atomic absorption spectrometric detection, Anal. Chem.,78 (2006) 6115-6120.
    [19]X.P. Yan, X.B. Yin, D.Q. Jiang, X.W. He, Speciation of mercury by hydrostatically modified electroosmotic flow capillary electrophoresis coupled with volatile species generation atomic fluorescence spectrometry, Anal. Chem.,75 (2003) 1726-1732.
    [20]邓延倬,何金兰,高效毛细管电泳,科学出版社,(2000)p1.
    [21]C. Haberhauer-Troyer, G. Alvarez-Llamas, E. Zitting, P. Rodriguez-Gonzalez, E. Rosenberg, A. Sanz-Medel, Comparison of different chloroformates for the derivatisation of seleno amino acids for gas chromatographic analysis, J. Chromatogr. A,1015 (2003) 1-10.
    [22]L. Yang, R.E. Sturgeon, S. McSheehy, Z. Mester, Comparison of extraction methods for quantitation of methionine and selenomethionine in yeast by species specific isotope dilution gas chromatography-mass spectrometry, J. Chromatogr. A,1055 (2004) 177-184.
    [23]P. Kuban, P. Houserova, P. Kuban, P.C. Hauser, V. Kuban, Mercury speciation by CE:A review, Electrophoresis,28 (2007) 58-68.
    [24]P. Kuban, P. Pelcova, J. Margetinova, V. Kuban, Mercury speciation by CE:An update, Electrophoresis,30 (2009) 92-99.
    [25]A.R. Timerbaev, Recent trends in CE of inorganic cons:From individual to multiple elemental species analysis, Electrophoresis,28 (2007) 3420-3435.
    [26]C. Vogt, G.L. Klunder, Separation of metal ions by capillary electrophoresis-diversity, advantages, and drawbacks of detection methods, Fresenius J. Anal. Chem.,370 (2001) 316-331.
    [27]B. Michalke, Capillary electrophoresis-inductively coupled plasma-mass spectrometry:A report on technical principles and problem solutions, potential, and limitations of this technology as well as on examples of application, Electrophoresis,26 (2005) 1584-1597.
    [28]B.G. Sun, M. Macka, P.R. Haddad, Separation of organic and inorganic arsenic species by capillary electrophoresis using direct spectrophotometric detection, Electrophoresis,23 (2002) 2430-2438.
    [29]S. Pedersen-Bjergaard, K.E. Rasmussen, T.G. Halvorsen, Liquid-liquid extraction procedures for sample enrichment in capillary zone electrophoresis, J. Chromatogr. A,902 (2000) 91-105.
    [30]S.R. Liu, P.K. Dasgupta, Liquid droplet. A renewable gas sampling interface, Anal. Chem.,67 (1995) 2042-2049.
    [31]L.H. Hui, P.K. Dasgupta, Analytical chemistry in a drop. Solvent extraction in a microdrop, Anal. Chem., 68(1996)1817-1821.
    [32]M.A. Jeannot, F.F. Cantwell, Solvent microextraction into a single drop, Anal. Chem.,68 (1996) 2236-2240.
    [33]M.A. Jeannot, F.F. Cantwell, Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle, Anal. Chem.,69 (1997) 235-239.
    [34]T.S. Ho, S. Pedersen-Bjergaard, K.E. Rasmussen, Recovery, enrichment and selectivity in liquid-phase microextraction. Comparison with conventional liquid-liquid extraction, J. Chromatogr. A,963 (2002) 3-17.
    [35]M.H. Ma, F.F. Cantwell, Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration:Preconcentration into a single microdrop, Anal. Chem.,71 (1999) 388-393.
    [36]Y.L. Wu, Z.C. Jiang, B. Hu, A novel micro drop solvent extraction technique combined with low temperature electrothermal vaporization ICP-AES for ultra trace element analysis, Chem. J. Chin. Univ.-Chin., 24(2003)1793-1794.
    [37]L.B. Xia, B. Hu, Z.C. Jiang, Y.L. Wu, Y. Liang, Single-drop microextraction combined with low-temperature electrothermal vaporization ICP-MS for the determination of trace Be, Co, Pd, and Cd in biological samples, Anal. Chem.,76 (2004) 2910-2915.
    [38]W.P. Liu, H.K. Lee, Continuous-flow microextraction exceeding 1000-fold concentration of dilute analytes, Anal. Chem.,72 (2000) 4462-4467.
    [39]M.A. Jeannot, A. Przyjazny, J.M. Kokosa, Single drop microextraction-Development, applications and future trends, J. Chromatogr. A,1217 (2010) 2326-2336.
    [40]Y. He, H.K. Lee, Liquid-phase microextraction in a single drop of organic solvent by using conventional microsyringe, Anal. Chem.,69 (1997) 4634-4640.
    [41]B.O. Keller, L. Li, Nanoliter solvent extraction combined with microspot MALDI TOF mass spectrometry for the analysis of hydrophobic biomolecules, Anal. Chem.,73 (2001) 2929-2936.
    [42]E. Psillakis, N. Kalogerakis, Developments in single-drop microextraction, Trac-Trends Anal. Chem.,21 (2002) 53-63.
    [43]L. Xu, C. Basheer, H.K. Lee, Developments in single-drop microextraction, J. Chromatogr. A,1152 (2007) 184-192.
    [44]S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis, Anal. Chem.,71 (1999) 2650-2656.
    [45]S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction, J. Chromatogr. A, 1184 (2008) 132-142.
    [46]J.Y. Lee, H.K. Lee, K.E. Rasmussen, S. Pedersen-Bjergaard, Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction:A review, Anal. Chim. Acta,624 (2008) 253-268.
    [47]S. Berijani, Y. Assadi, M. Anbia, M.R.M. Hosseini, E. Aghaee, Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection-very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water, J. Chromatogr. A,1123 (2006) 1-9.
    [48]K.J. Huang, C.Y. Wei, W.L. Liu, W.Z. Xie, J.F. Zhang, W. Wang, Ultrasound-assisted dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-fluorescence detection for sensitive determination of biogenic amines in rice wine samples, J. Chromatogr. A,1216 (2009) 6636-6641.
    [49]H. Chen, R.W. Chen, S.Q. Li, Low-density extraction solvent-based solvent terminated dispersive liquid-liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples, J. Chromatogr. A,1217 (2010) 1244-1248.
    [50]A.V. Herrera-Herrera, M. Asensio-Ramos, J. Hernandez-Borges, M.A. Rodriguez-Delgado, Dispersive liquid-liquid microextraction for determination of organic analytes, Trac-Trends Anal. Chem.,29 (2010) 728-751.
    [51]M. Rezaee, Y. Yamini, M. Faraji, Evolution of dispersive liquid-liquid microextraction method, J. Chromatogr. A,1217 (2010) 2342-2357.
    [52]C.B. Ojeda, F.S. Rojas, Separation and preconcentration by dispersive liquid-liquid microextraction procedure:A review, Chromatographia,69 (2009) 1149-1159.
    [53]X.H. Zang, Q.H. Wu, M.Y. Zhang, G.H. Xi, Z. Wang, Developments of dispersive liquid-liquid microextraction technique, Chin. J. Anal. Chem.,37 (2009) 161-168.
    [54]M.R.K. Zanjani, Y. Yamini, S. Shariati, J.A. Jonsson, A new liquid-phase microextraction method based on solidification of floating organic drop, Anal. Chim. Acta,585 (2007) 286-293.
    [55]C.A. Sahin, I. Tokgoz, A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry, Anal. Chim. Acta,667 (2010) 83-87.
    [56]S. Dadfarnia, A.M.H. Shabani, Recent development in liquid phase microextraction for determination of trace level concentration of metals-A review, Anal. Chim. Acta,658 (2010) 107-119.
    [57]N. Fattahi, S. Samadi, Y. Assadi, M.R.M. Hosseini, Solid-phase extraction combined with dispersive liquid-liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples, J. Chromatogr. A, 1169(2007)63-69.
    [58]A. Gjelstad, T.M. Andersen, K.E. Rasmussen, S. Pedersen-Bjergaard, Microextraction across supported liquid membranes forced by pH gradients and electrical fields, J. Chromatogr. A,1157 (2007) 38-45.
    [59]A. Berduque, D.W.M. Arrigan, Selectivity in the coextraction of cation and anion by electrochemically modulated liquid-liquid extraction, Anal. Chem.,78 (2006) 21\1-2125.
    [60]A. Gjelstad, K.E. Rasmussen, S. Pedersen-Bjergaard, Simulation of flux during electro-membrane extraction based on the Nernst-Planck equation, J. Chromatogr. A,1174 (2007) 104-111.
    [61]L. Xu, P.C. Hauser, H.K. Lee, Electro membrane isolation of nerve agent degradation products across a supported liquid membrane followed by capillary electrophoresis with contactless conductivity detection, J. Chromatogr. A,1214 (2008) 17-22.
    [62]M. Balchen, A. Gjelstad, K.E. Rasmussen, S. Pedersen-Bjergaard, Electrokinetic migration of acidic drugs across a supported liquid membrane, J. Chromatogr. A,1152 (2007) 220-225.
    [63]J. Lee, F. Khalilian, H. Bagheri, H.K. Lee, Optimization of some experimental parameters in the electro membrane extraction of chlorophenols from seawater, J. Chromatogr. A,1216 (2009) 7687-7693.
    [64]M. Balchen, L. Reubsaet, S. Pedersen-Bjergaard, Electromembrane extraction of peptides, J. Chromatogr. A,1194(2008)143-149.
    [65]M. Balchen, T.G. Halvorsen, L. Reubsaet, S. Pedersen-Bjergaard, Rapid isolation of angiotensin peptides from plasma by electromembrane extraction, J. Chromatogr. A,1216 (2009) 6900-6905.
    [66]M. Balchen, H. Jensen, L. Reubsaet, S. Pedersen-Bjergaard, Potential-driven peptide extractions across supported liquid membranes:Investigation of principal operational parameters, J. Sep. Sci.,33 (2010) 1665-1672.
    [67]N.J. Petersen, H. Jensen, S.H. Hansen, S.T. Foss, D. Snakenborg, S. Pedersen-Bjergaard, On-chip electro membrane extraction, Microfluid. Nanofluid.,9 (2010) 881-888.
    [68]M. Kumar, B.P. Tripathi, V.K. Shahi, Electro-membrane process for the separation of amino acids by iso-electric focusing, J. Chem. Technol. Biotechnol.,85 (2010) 648-657.
    [69]J. Duan, B. Hu, Separation and determination of seleno amino acids using gas chromatography hyphenated with inductively coupled plasma mass spectrometry after hollow fiber liquid phase microextractiion, J. Mass Spectrom.,44 (2009) 605-612.
    [70]Q. Xiao, B. Hu, J.K. Duan, M. He, W.Q. Zu, Analysis of PBDEs in soil, dust, spiked lake water, and human serum samples by hollow fiber-liquid phase microextraction combined with GC-ICP-MS, J. Am. Soc. Mass Spectrom.,18(2007) 1740-1748.
    [71]Q. Xiao, B. Hu, M. He, Speciation of butyltin compounds in environmental and biological samples using headspace single drop microextraction coupled with gas chromatography-inductively coupled plasma mass spectrometry, J. Chromatogr. A,1211 (2008) 135-141.
    [72]H. Shioji, S. Tsunoi, H. Harino, M. Tanaka, Liquid-phase microextraction of tributyltin and triphenyltin coupled with gas chromatography-tandem mass spectrometry-Comparison between 4-fluorophenyl and ethyl derivatizations, J. Chromatogr. A,1048 (2004) 81-88.
    [73]V. Colombini, C. Bancon-Montigny, L. Yang, P. Maxwell, R.E. Sturgeon, Z. Mester, Headspace single-drop microextration for the detection of organotin compounds, Talanta,63 (2004) 555-560.
    [74]L. Li, B. Hu, L.B. Xia, Z.C. Jiang, Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction, Talanta,70 (2006) 468-473.
    [75]L.B. Xia, X. Li, Y.L. Wu, B. Hu, R. Chen, Ionic liquids based single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of Co, Hg and Pb in biological and environmental samples, Spectroc. Acta Pt. B-Atom. Spectr.,63 (2008) 1290-1296.
    [76]L. Xia, Y. Wu, B. Hu, Hollow-fiber liquid-phase microextraction prior to low-temperature electrothermal vaporization ICP-MS for trace element analysis in environmental and biological samples, J. Mass Spectrom.,42(2007)803-810.
    [77]L.B. Xia, B. Hu, Z.C. Jiang, Y.L. Wu, L. Li, R. Chen,8-Hydroxyquinoline-chloroform single drop microextraction and electrothermal vaporization ICP-MS for the fractionation of aluminium in natural waters and drinks, J. Anal. At. Spectrom.,20 (2005) 441-446.
    [78]L.B. Xia, B. Hu, Z.C. Jiang, Y.L. Wu, R. Chen, L. Li, Hollow fiber liquid phase microextraction combined with electrothermal vaporization ICP-MS for the speciation of inorganic selenium in natural waters, J. Anal. At.Spectrom.,21(2006)362-365.
    [79]H.M. Jiang, B. Hu, Determination of trace Cd and Pb in natural waters by direct single drop microextraction combined with electrothermal atomic absorption spectrometry, Microchim. Acta,161 (2008)101-107.
    [80]H.M. Jiang, Y.C. Qin, B. Hu, Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples, Talanta,74 (2008) 1160-1165.
    [81]H.M. Jiang, B. Hu, B.B. Chen, W.Q. Zu, Hollow fiber liquid phase microextraction combined with graphite furnace atomic absorption spectrometry for the determination of methylmercury in human hair and sludge samples, Spectroc. Acta Pt. B-Atom. Spectr.,63 (2008) 770-776.
    [82]L.B. Xia, B. Hu, Y.L. Wu, Hollow fiber-based liquid-liquid-liquid microextraction combined with high-performance liquid chromatography for the speciation of organomercury, J. Chromatogr. A,1173 (2007)44-51.
    [83]A. Saleh, Y. Yamini, M. Faraji, S. Shariati, M. Rezaee, Hollow fiber liquid phase microextraction followed by high performance liquid chromatography for determination of ultra-trace levels of Se(IV) after derivatization in urine, plasma and natural water samples, J. Chromatogr. B,877 (2009) 1758-1764.
    [84]C. Basheer, S.H. Tan, H.K. Lee, Extraction of lead ions by electromembrane isolation, J. Chromatogr. A,1213(2008)14-18.
    [85]Y.L. Wu, Z.C. Jiang, B. Hu, Micro drop solvent extraction combined with low temperature electrothermal vaporization ICP-AES for ultra trace element analysis, Chem. J. Chin. Univ.-Chin.,24 (2003) 1793-1794.
    [86]Y.J. Li, B. Hu, Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples, J. Hazard. Mater.,174 (2010) 534-540.
    [87]S. Dadfarnia, A.M. Salmanzadeh, A.M.H. Shabani, A novel separation/preconcentration system based on solidification of floating organic drop microextraction for determination of lead by graphite furnace atomic absorption spectrometry, Anal. Chim. Acta,623 (2008) 163-167.
    [88]M. Ghambarian, M.R. Khalili-Zanjani, Y. Yamini, A. Esrafili, N. Yazdanfar, Preconcentration and speciation of arsenic in water specimens by the combination of solidification of floating drop microextraction and electrothermal atomic absorption spectrometry, Talanta,81 (2010) 197-201.
    [89]I. Lopez-Garcia, R.E. Rivas, M. Hernandez-Cordoba, Liquid-phase microextraction with solidification of the organic floating drop for the preconcentration and determination of mercury traces by electrothermal atomic absorption spectrometry, Anal. Bioanal. Chem.,396 (2010) 3097-3102.
    [90]S. Dadfarnia, A.M.H. Shabani, E. Kamranzadeh, Separation/preconcentration and determination of cadmium ions by solidification of floating organic drop microextraction and FI-AAS, Talanta,79 (2009) 1061-1065.
    [91]M. Rezaee, Y. Yamini, A. Khanchi, M. Faraji, A. Saleh, A simple and rapid new dispersive liquid-liquid microextraction based on solidification of floating organic drop combined with inductively coupled plasma-optical emission spectrometry for preconcentration and determination of aluminium in water samples, J. Hazard. Mater.,178 (2010) 766-770.
    [92]Y. Yamini, M. Rezaee, A. Khanchi, M. Faraji, A. Saleh, Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by inductively coupled plasma-optical emission spectrometry as a fast technique for the simultaneous determination of heavy metals, J. Chromatogr. A,1217 (2010) 2358-2364.
    [93]Z.Q. Ding, Q.Y. Zhang, G.D. Liu, Determination of vanadium in environmental water samples by dispersive liquid-liquid microextraction coupled with digital colorimetry, Acta Chim. Sin.,67 (2009) 1962-1966.
    [94]S.Z. Mohammadi, D. Afzali, Y.M. Baghelani, Ligandless-dispersive liquid-liquid microextraction of trace amount of copper ions, Anal. Chim. Acta,653 (2009) 173-177.
    [95]P. Berton, R.G. Wuilloud, Highly selective ionic liquid-based microextraction method for sensitive trace cobalt determination in environmental and biological samples, Anal. Chim. Acta,662 (2010) 155-162.
    [96]S. Almeda, L. Arce, M. Valcarcel, The more and less common approaches to enhancing sensitivity in capillary electrophoresis, Curr. Anal. Chem.,6 (2010) 126-143.
    [97]S.H. Zhang, C. Li, S.J. Song, T. Feng, C. Wang, Z. Wang, Application of dispersive liquid-liquid microextraction combined with sweeping micellar electrokinetic chromatography for trace analysis of six carbamate pesticides in apples, Anal. Methods,2 (2010) 54-62.
    [98]W. Zhan, T.L. Wang, S.F.Y. Li, Coupling of solvent semimicroextraction with capillary electrophoresis using ethyl acetate as sample matrix, Electrophoresis,21 (2000) 573-578.
    [99]T.L. Wang, J. Tang, W. Wan, S.Z. Zhao, Methyl chloroacetate as an extraction solvent for coupling liquid-liquid semimicroextraction with micellar electrokinetic chromatography through on-capillary decomposition for the separation of neutral compounds with concentration enhancement, J. Chromatogr. A, 1147(2007)105-110.
    [100]H.F. Fang, Z.R. Zeng, L. Liu, Centrifuge microextraction coupled with on-line back-extraction field-amplified sample injection method for the determination of trace ephedrine derivatives in the urine and serum, Anal. Chem.,78 (2006) 6043-6049.
    [101]H.F. Fang, Z.R. Zeng, L. Liu, D.W. Pang, On-line back-extraction field-amplified sample injection method for directly analyzing cocaine and thebaine in the extractants by solvent microextraction, Anal. Chem., 78 (2006) 1257-1263.
    [102]Y. He, A. Vargas, Y.J. Kang, Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop, Anal. Chim. Acta,589 (2007) 225-230.
    [103]J. Zhang, T. Su, H.K. Lee, Headspace water-based liquid-phase microextraction, Anal. Chem.,77 (2005) 1988-1992.
    [104]S. Jermak, B. Pranaityte, A. Padarauskas, Ligand displacement, headspace single-drop microextraction, and capillary electrophoresis for the determination of weak acid dissociable cyanide, J. Chromatogr. A,1148 (2007) 123-127.
    [105]S. Jermak, B. Pranaityte, A. Padarauskas, Headspace single-drop microextraction with in-drop derivatization and capillary electrophoretic determination for free cyanide analysis, Electrophoresis,27 (2006) 4538-4544.
    [106]B. Pranaityte, S. Jermak, E. Naujalis, A. Padarauskas, Capillary electrophoretic determination of ammonia using headspace single-drop microextraction, Microchem J.,86 (2007) 48-52.
    [107]K.M. Al Azzam, A. Makahleah, B. Saad, S.M. Mansor, Hollow fiber liquid-phase microextraction for the determination of trace amounts of rosiglitazone (anti-diabetic drug) in biological fluids using capillary electrophoresis and high performance liquid chromatographic methods, J. Chromatogr. A,1217 (2010) 3654-3659.
    [108]L. Hou, X.J. Wen, C.H. Tu, H.K. Lee, Combination of liquid-phase microextraction and on-column stacking for trace analysis of amino alcohols by capillary electrophoresis, J. Chromatogr. A,979 (2002) 163-169.
    [109]S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-phase microextraction and capillary electrophoresis of acidic drugs, Electrophoresis,21 (2000) 579-585.
    [110]A. Rodriguez, S. Pedersen-Bjergaard, K.E. Rasmussen, C. Nerin, Selective three-phase liquid phase microextraction of acidic compounds from foodstuff simulants, J. Chromatogr. A,1198 (2008) 38-44.
    [111]L. Hou, H.K. Lee, Dynamic three-phase microextraction as a sample preparation technique prior to capillary electrophoresis, Anal. Chem.,75 (2003) 2784-2789.
    [112]P. Liang, J. Xu, L. Guo, F. Song, Dynamic liquid-phase microextraction with HPLC for the determination of phoxin in water samples, J. Sep. Sci.,29 (2006) 366-370.
    [113]Y. Wang, Y.C. Kwok, Y. He, H.K. Lee, Application of dynamic liquid-phase microextraction to the analysis of chlorobenzenes in water by using a conventional microsyringe, Anal. Chem.,70 (1998) 4610-4614.
    [114]H.F. Wu, J.H. Yen, Dynamic liquid phase nanoextraction coupled to GUMS for rapid analysis of methoxyacetophenone and anisaidehye isomers in urine, J. Sep. Sci.,31 (2008) 2295-2302.
    [115]H.H. See, P.C. Hauser, M.M. Sanagi, W.A.W. Ibrahim, Dynamic supported liquid membrane tip extraction of glyphosate and aminomethylphosphonic acid followed by capillary electrophoresis with contactless conductivity detection, J. Chromatogr. A,1217 (2010) 5832-5838.
    [116]J. Zhang, H.K. Lee, Application of dynamic liquid-phase microextraction and injection port derivatization combined with gas chromatography-mass spectrometry to the determination of acidic pharmaceutically active compounds in water samples, J. Chromatogr. A,1216 (2009) 7527-7532.
    [117]X.M. Jiang, C. Basheer, H. Zhang, H.K. Lee, Dynamic hollow fiber-supported headspace liquid-phase microextraction, J. Chromatogr. A,1087 (2005) 289-294.
    [118]S.P. Huang, S.D. Huang, Determination of organochlorine pesticides in water using solvent cooling assisted dynamic hollow-fiber-supported headspace liquid-phase microextraction, J. Chromatogr. A,1176 (2007) 19-25.
    [119]A. Mohammadi, N. Alizadeh, Automated dynamic headspace organic solvent film microextraction for benzene, toluene, ethylbenzene and xylene, J. Chromatogr. A,1107 (2006) 19-28.
    [120]P. Chen, S. Huang, M. Fuh, S. Huang, Determination of organochlorine pesticides in water using dynamic hook-type liquid-phase microextraction, Anal. Chim. Acta,647 (2009) 177-181.
    [121]H. Hansson, U. Nilsson, Assessment of a dynamic hollow-fibre liquid phase microextraction system for human blood plasma samples, Talanta,77 (2009) 1309-1314.
    [122]G. Ouyang, W.N. Zhao, J. Pawliszyn, Automation and optimization of liquid-phase microextraction by gas chromatography, J. Chromatogr. A,1138 (2007) 47-54.
    [123]X.M. Jiang, S.Y. Oh, H.K. Lee, Dynamic liquid-liquid-liquid microextraction with automated movement of the acceptor phase, Anal. Chem.,77 (2005) 1689-1695.
    [124]L. Arce, L. Nozal, B.M. Simonet, A. Rios, M. Valcarcel, Liquid-phase microextraction techniques for simplifying sample treatment in capillary electrophoresis, Trac-Trends Anal. Chem.,28 (2009) 842-853.
    [125]H.Y. Xie, Y.Z. He, Green analytical methodologies combining liquid-phase microextraction with capillary electrophoresis, Trac-Trends Anal. Chem.,29 (2010) 629-635.
    [126]S. Palmarsdottir, E. Thordarson, L.E. Edholm, J.A. Jonsson, L. Mathiasson, Miniaturized supported liquid membrane device for selective on-line enrichment of basic drugs in plasma combined with capillary zone electrophoresis, Anal. Chem.,69 (1997) 1732-1737.
    [127]P. Kuban, B. Karlberg, On-line dialysis coupled to a capillary electrophoresis system for determination of small anions, Anal. Chem.,69 (1997) 1169-1173.
    [128]Q. Wang, H.D. Qiu, J. Li, X. Liu, S.X. Jiang, On-line coupling of ionic liquid-based single-drop microextraction with capillary electrophoresis for sensitive detection of phenols, J. Chromatogr. A,1217 (2010) 5434-5439.
    [129]K.W. Choi, S.J. Kim, E.S. Moon, J.H. Kim, D.S. Chung, Liquid-phase microextraction as an on-line preconcentration method in capillary electrophoresis, Abstr. Pap. Am. Chem. Soc.,228 (2004) U153-U153.
    [130]K. Choi, S.J. Kim, Y.G. Jin, Y.O. Jang, J.S. Kim, D.S. Chung, Single drop microextraction using commercial capillary electrophoresis instruments, Anal. Chem.,81 (2009) 225-230.
    [131]H.Y. Xie, Y.Z. He, W.E. Gan, C.Z. Yu, F. Han, D.S. Ling, In-line coupling headspace liquid-phase microextraction with capillary electrophoresis, J. Chromatogr. A,1217 (2010) 1203-1207.
    [132]Z.F. Zhu, X.M. Zhou, N. Yan, L. Zhou, X.G Chen, On-line combination of single-drop liquid-liquid-liquid microextraction with capillary electrophoresis for sample cleanup and preconcentration:A simple and efficient approach to determining trace analyte in real matrices, J. Chromatogr. A,1217 (2010) 1856-1861.
    [133]L. Nozal, L. Arce, B.M. Simonet, A. Rios, M. Valcarcel, In-line liquid-phase microextraction for selective enrichment and direct electrophoretic analysis of acidic drugs, Electrophoresis,28 (2007) 3284-3289.
    [134]H.Y. Xie, Y.Z. He, W.E. Gan, GN. Fu, L. Li, F. Han, Y. Gao, On-column liquid-liquid-liquid microextraction coupled with base stacking as a dual preconcentration method for capillary zone electrophoresis, J. Chromatogr. A,1216 (2009) 3353-3359.
    [135]V. Camel, Solid phase extraction of trace elements, Spectroc. Acta Pt. B-Atom. Spectr.,58 (2003) 1177-1233.
    [136]V. Walker, GA. Mills, Solid-phase extraction in clinical biochemistry, Ann. Clin. Biochem.,39 (2002) 464-477.
    [137]V.A. Lemos, L.S.G. Teixeira, M.D. Bezerra, A.C.S. Costa, J.T. Castro, L.A.M. Cardoso, D.S. de Jesus, E.S. Santos, P.X. Baliza, L.N. Santosi, New materials for solid-phase extraction of trace elements, Appl. Spectrosc. Rev.,43 (2008) 303-334.
    [138]T. Stroink, E. Paarlberg, J.C.M. Waterval, A. Bult, W.J.M. Underberg, On-line sample preconcentration in capillary electrophoresis, focused on the determination of proteins and peptides, Electrophoresis,22 (2001) 2375-2383.
    [139]L. Saavedra, C. Barbas, Chromatography-based on- and in-line pre-concentration methods in capillary electrophoresis, J. Biochem. Biophys. Methods,70 (2007) 289-297.
    [140]P. Puig, F. Borrull, M. Calull, C. Aguilar, Recent advances in coupling solid-phase extraction and capillary electrophoresis (SPE-CE), Trac-Trends Anal. Chem.,26 (2007) 664-678.
    [141]Z. Mester, R. Sturgeon, Trace element speciation using solid phase microextraction, Spectroc. Acta Pt. B-Atom. Spectr.,60 (2005) 1243-1269.
    [142]C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem.,62 (1990) 2145-2148.
    [143]Z. Mester, R. Sturgeon, J. Pawliszyn, Solid phase microextraction as a tool for trace element speciation, Spectroc. Acta Pt. B-Atom. Spectr.,56 (2001) 233-260.
    [144]F. Pragst, Application of solid-phase microextraction in analytical toxicology, Anal. Bioanal. Chem.,388 (2007) 1393-1414.
    [145]G. Ouyang, J. Pawliszyn, SPME in environmental analysis, Anal. Bioanal. Chem.,386 (2006) 1059-1073.
    [146]H.H. Jelen, Solid-phase microextraction in the analysis of food taints and off-flavors, J. Chromatogr. Sci, 44(2006)399-415.
    [147]F. Belliardo, C. Bicch, C. Cordero, E. Liberto, P. Rubiolo, B. Sgorbini, Headspace-solid-phase microextraction in the analysis of the volatile fraction of aromatic and medicinal plants, J. Chromatogr. Sci,44 (2006)416-429.
    [148]M.C. Quintana, L. Ramos, Sample preparation for the determination of chlorophenols, TrAC, Trends Anal. Chem.,27 (2008) 418-436.
    [149]R. Rodriguez, J. Manes, Y. Pico, Off-line solid-phase microextraction and capillary electrophoresis mass spectrometry to determine acidic pesticides in fruits, Anal. Chem.,75 (2003) 452-459.
    [150]X.W. Zhou, X.J. Li, Z.R. Zeng, Solid-phase microextraction coupled with capillary electrophoresis for the determination of propranolol enantiomers in urine using a sol-gel derived calix 4 arene fiber, J. Chromatogr. A, 1104(2006)359-365.
    [151]R. Eisert, J. Pawliszyn, Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography, Anal. Chem.,69 (1997) 3140-3147.
    [152]B. Hu, F. Zheng, M. He, N. Zhang, Capillary microextraction (CME) and its application to trace elements analysis and their speciation, Anal. Chim. Acta,650 (2009) 23-32.
    [153]J.P. Hutchinson, M. Macka, N. Avdalovic, P.R. Haddad, Use of coupled open-tubular capillaries for in-line ion-exchange preconcentration of anions by capillary electrochromatography with elution by a transient isotachophoretic gradient, J. Chromatogr. A,1039 (2004) 187-192.
    [154]S. Sentellas, L. Puignou, M.T. Galceran, Capillary electrophoresis with on-line enrichment for the analysis of biological samples, J. Sep. Sci.,25 (2002) 975-987.
    [155]R. Jarmalaviciene, M. Szumski, O. Kornysova, E. Klodzinska, D. Westerlund, S. Krawczyk, D. Mickevicius, B. Buszewski, A. Maruska, Coupling of solid-phase microextraction continuous bed (monolithic) capillaries with capillary zone electrophoresis for direct analysis of drugs in biological fluids, Electrophoresis, 29(2008)1753-1760.
    [156]H. Kataoka, A. Ishizaki, Y. Nonaka, K. Saito, Developments and applications of capillary microextraction techniques:A review, Anal. Chim. Acta,655 (2009) 8-29.
    [157]E. Baltussen, P. Sandra, F. David, C. Cramers, Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples:Theory and principles, J. Micrbcolumn Sep.,11 (1999) 737-747.
    [158]T. Benijts, J. Vercammen, R. Dams, H.P. Tuan, W. Lambert, P. Sandra, Stir bar sorptive extraction-thermal desorption-capillary gas chromatography-mass spectrometry applied to the analysis of polychlorinated biphenyls in human sperm, J. Chromatogr. B,755 (2001) 137-142.
    [159]L.Q. Yang, X.M. Zhao, J. Zhou, Selective enrichment and determination of nicosulfuron in water and soil by a stir bar based on molecularly imprinted polymer coatings, Anal. Chim. Acta,670 (2010) 72-77.
    [160]C. Bicchi, C. Cordero, C. Iori, P. Rubiolo, P. Sandra, Headspace sorptive extraction (HSSE) in the headspace analysis of aromatic and medicinal plants, HRC-J. High Resolut. Chromatogr.,23 (2000) 539-546.
    [161]F.M. Lancas, M.E.C. Queiroz, P. Grossi, I.R.B. Olivares, Recent developments and applications of stir bar sorptive extraction, J. Sep. Sci.,32 (2009) 813-824.
    [162]A. Prieto, O. Basauri, R. Rodil, A. Usobiaga, L.A. Fernandez, N. Etxebarria, O. Zuloaga, Stir-bar sorptive extraction:A view on method optimisation, novel applications, limitations and potential solutions, J. Chromatogr. A,1217 (2010) 2642-2666.
    [163]N. Unceta, A. Ugarte, A. Sanchez, A. Gomez-Caballero, M.A. Goicolea, R.J. Barrio, Development of a stir bar sorptive extraction based HPLC-FLD method for the quantification of serotonin reuptake inhibitors in plasma, urine and brain tissue samples, J. Pharm. Biomed. Anal.,51 (2010) 178-185.
    [164]C.H. Yu, B. Hu, Automated stir plate (bar) sorptive extraction coupled to high-performance liquid chromatography for the determination of polycyclic aromatic hydrocarbons, J. Sep. Sci.,33 (2010) 2176-2183.
    [165]J. Sanchez-Avila, J. Quintana, F. Ventura, R. Tauler, C.M. Duarte, S. Lacorte, Stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry:an effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing directives, Mar. Pollut. Bull.,60 (2010) 103-112.
    [166]F.C.M. Portugal, M.L. Pinto, J. Pires, J.M.F. Nogueira, Potentialities of polyurethane foams for trace level analysis of triazinic metabolites in water matrices by stir bar sorptive extraction, J. Chromatogr. A,1217 (2010) 3707-3710.
    [167]L.P. Melo, M.E.C. Queiroz, Simultaneous analysis of parabens in cosmetic products by stir bar sorptive extraction and liquid chromatography, J. Sep. Sci.,33 (2010) 1849-1855.
    [168]X.J. Huang, N.N. Qiu, D.X. Yuan, Q.M. Lin, Preparation of a mixed stir bar for sorptive extraction based on monolithic material for the extraction of quinolones from wastewater, J. Chromatogr. A,1217 (2010) 2667-2673.
    [169]K. Ridgway, S.P.D. Lalljie, R.M. Smith, The use of stir bar sorptive extraction-A potential alternative method for the determination of furan, evaluated using two example food matrices, Anal. Chim. Acta,657 (2010) 169-174.
    [170]C. Basheer, V. Suresh, R. Renu, H.K. Lee, Development and application of polymer-coated hollow fiber membrane microextraction to the determination of organochlorine pesticides in water, J. Chromatogr. A,1033 (2004)213-220.
    [171]C. Basheer, M. Vetrichelvan, S. Valiyaveettil, H.K. Lee, On-site polymer-coated hollow fiber membrane microextraction and gas chromatography-mass spectrometry of polychlorinated biphenyls and polybrominated diphenyl ethers, J. Chromatogr. A,1139 (2007) 157-164.
    [172]S.C. Lin, C.W. Whang, Capillary electrophoretic separation of tricyclic antidepressants using a polymer-coated capillary and beta-cyclodextrin as an electrolyte additive, J. Sep. Sci.,31 (2008) 3921-3929.
    [173]J. Vercauteren, C. Peres, C. Devos, P. Sandra, F. Vanhaecke, L. Moens, Stir bar sorptive extraction for the determination of ppq-level traces of organotin compounds in environmental samples with thermal desorption-capillary gas Chromatography-ICP mass spectrometry, Anal. Chem.,73 (2001) 1509-1514.
    [174]A. Prieto, O. Zuloaga, A. Usobiaga, N. Etxebarria, L.A. Fernandez, C. Marcic, A. de Diego, Simultaneous speciation of methylmercury and butyltin species in environmental samples by headspace-stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry, J. Chromatogr. A,1185 (2008) 130-138.
    [175]R. Ito, M. Kawaguchi, N. Sakui, H. Honda, N. Okanouchi, K. Saito, H. Nakazawa, Mercury speciation and analysis in drinking water by stir bar sorptive extraction with in situ propyl derivatization and thermal desorption-gas chromatography-mass spectrometry, J. Chromatogr. A,1209 (2008) 267-270.
    [176]Z.N. Mester, J. Lam, R. Sturgeon, J. Pawliszyn, Determination of methylmercury by solid-phase microextraction inductively coupled plasma mass spectrometry:A new sample introduction method for volatile metal species, J. Anal. At. Spectrom.,15 (2000) 837-842.
    [177]GA. Zachariadis, E. Rosenberg, Determination of butyl-and phenyltin compounds in human urine by HS-SPME after derivatization with tetraethylborate and subsequent determination by capillary GC with microwave-induced plasma atomic emission and mass spectrometric detection, Talanta,78 (2009) 570-576.
    [178]A.M. Carro, I. Neira, R. Rodil, R.A. Lorenzo, Speciation of mercury compounds by gas chromatography with atomic emission detection. Simultaneous optimization of a headspace solid-phase microextraction and derivatization procedure by use of chemometric techniques, Chromatographia,56 (2002) 733-738.
    [179]M. Crnoja, C. Haberhauer-Troyer, E. Rosenberg, M. Grasserbauer, Determination of Sn- and Pb-organic compounds by solid-phase microextraction-gas chromatography-atomic emission detection (SPME-GC-AED) after in situ propylation with sodium tetrapropylborate, J. Anal. At. Spectrom.,16 (2001) 1160-1166.
    [180]Z. Mester, J. Pawliszyn, Speciation of dimethylarsinic acid and monomethylarsonic acid by solid-phase microextraction-gas chromatography-ion trap mass spectrometry, J. Chromatogr. A,873 (2000) 129-135.
    [181]F. Zheng, B. Hu, MPTS-silica coated capillary microextraction on line hyphenated with inductively coupled plasma atomic emission spectrometry for the determination of Cu, Hg and Pb in biological samples, Talanta,73 (2007) 372-379.
    [182]F. Zheng, B. Hu, Novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry, Spectroc. Acta Pt. B-Atom. Spectr.,63(2008)9-18.
    [183]W.L. Hu, B. Hu, Z.C. Jiang, On-line preconcentration and separation of Co, Ni and Cd via capillary microextraction on ordered mesoporous alumina coating and determination by inductively plasma mass spectrometry (ICP-MS), Anal. Chim. Acta,572 (2006) 55-62.
    [184]W.L. Hu, F. Zheng, B. Hu, Simultaneous separation and speciation of inorganic As(Ⅲ)/As(Ⅴ) and Cr(Ⅲ)/Cr(Ⅵ) in natural waters utilizing capillary microextraction on ordered mesoporous Al2O3 prior to their on-line determination by ICP-MS, J. Hazard. Mater.,151 (2008) 58-64.
    [185]J. Yin, B. Hu, M. He, M.M. Zheng, Y.Q. Feng, Polymer monolith microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace Cd, T1, and Pb in human serum and urine, J. Anal. At. Spectrom.,24 (2009) 76-82.
    [186]Y.W. Wu, B. Hu, Z.C. Jiang, Y.Q. Feng, P. Lu, B.Z. Li, Sol-gel zirconia coating capillary microextraction on-line hyphenated with inductively coupled plasma mass spectrometry for the determination of Cr, Cu, Cd and Pb in biological samples, Rapid Commun. Mass Spectrom.,20 (2006) 3527-3534.
    [187]Y.W. Wu, B. Hu, W.L. Hu, Z.C. Jiang, B.Y.Z. Li, A novel capillary microextraction on ordered mesoporous titania coating combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of V, Cr and Cu in environmental and biological samples, J. Mass Spectrom., 42 (2007) 467-475.
    [188]X.L. Pu, Z.C. Jiang, B. Hu, Zirconia-coated graphite adsorption bar micro-extraction combined with ETV-ICP-MS for the determination of trace amounts of Cd, Hg and Pb in environmental and biological samples, J. Mass Spectrom.,41 (2006) 887-893.
    [189]J.K. Duan, X. Li, C.H. Yu, B. Hu, Headspace stir bar sorptive extraction combined with GC-ICP-MS for the speciation of dimethylselenide and dimethyldiselenide in biological samples, J. Anal. At. Spectrom.,24 (2009) 297-303.
    [190]C.M. Xiong, B. Hu, Headspace trapping of the hydrides on a Pd(Ⅱ)-coated graphite adsorptive bar as a microextraction method for ETV-ICP-MS determination of Se, Te and Bi in seawater and human hair samples, Talanta,81 (2010)578-585.
    [191]X. Mao, B. Chen, C. Huang, M. He, B. Hu, Titania immobilized polypropylene hollow fiber as a disposable coating for stir bar sorptive extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry speciation of arsenic in chicken tissues, J. Chromatogr. A, (2010) In Press.
    [192]F. Zheng, B. Hu, Dual silica monolithic capillary microextraction (CME) on-line coupled with ICP-MS for sequential determination of inorganic arsenic and selenium species in natural waters, J. Anal. At. Spectrom., 24(2009)1051-1061.
    [193]R. Garcia-Sanchez, R. Feldhaus, J. Bettmer, L. Ebdon, Lead speciation in rainwater samples by modified fused silica capillaries coupled to a direct injection nebulizer (DIN) for sample introduction in ICP-MS, J. Anal. At. Spectrom.,16 (2001) 1028-1034.
    [194]J.C. Wu, Z. Mester, J. Pawliszyn, Speciation of organoarsenic compounds by polypyrrole-coated capillary in-tube solid phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry, Anal. Chim. Acta,424 (2000) 211-222.
    [195]J.C. Wu, Z. Mester, J. Pawliszyn, Determination of tributyltin by automated in-tube solid-phase microextraction coupled with HPLC-ES-MS, J. Anal. At. Spectrom.,16 (2001) 159-165.
    [196]S. Mishra, R.M. Tripathi, S. Bhalke, V.K. Shukla, V.D. Puranik, Determination of methylmercury and mercury(II) in a marine ecosystem using solid-phase microextraction gas chromatography-mass spectrometry, Anal. Chim. Acta,551 (2005) 192-198.
    [197]A. De Villiers, G. Vanhoenacker, F. Lynen, P. Sandra, Stir bar sorptive extraction-liquid desorption applied to the analysis of hop-derived bitter acids in beer by micellar electrokinetic chromatography, Electrophoresis,25 (2004) 664-669.
    [198]P.M.A. do Rosario, J.M.F. Nogueira, Combining stir bar sorptive extraction and MEKC for the determination of polynuclear aromatic hydrocarbons in environmental and biological matrices, Electrophoresis, 27 (2006) 4694-4702.
    [199]B. Santos, B.M. Simonet, A. Rios, M. Valcarcel, Automatic sample preparation in commercial capillary-electrophoresis equipment, Trac-Trends Anal. Chem.,25 (2006) 968-976.
    [200]F.W.A. Tempels, W.J.M. Underberg, GW. Somsen, G.J. de Jong, On-line coupling of SPE and CE-MS for peptide analysis, Electrophoresis,28 (2007) 1319-1326.
    [201]F.P. Capote, M.D.L. de Castro, On-line preparation of microsamples prior to CE, Electrophoresis,28 (2007) 1214-1220.
    [202]T. Stroink, P. Schravendijk, G. Wiese, J. Teeuwsen, H. Lingeman, J.C.M. Waterval, A. Bult, G.J. de Jong, W.J.M. Underberg, On-line coupling of size-exclusion chromatography and capillary zone electrophoresis via a reversed-phase C18 trapping column for the determination of peptides in biological samples, Electrophoresis, 24(2003)1126-1134.
    [203]P. Puig, F.W.A. Tempels, F. Borrull, M. Calull, C. Aguilar, GW. Somsen, G.J. de Jong, On-line coupling of solid-phase extraction and capillary electrophoresis for the determination of cefoperazone and ceftiofur in plasma, J. Chromatogr. B,856 (2007) 365-370.
    [204]B. Lin, M.M. Zheng, S.C. Ng, Y.Q. Feng, Development of in-tube solid-phase microextraction coupled to pressure-assisted CEC and its application to the analysis of propranolol enantiomers in human urine, Electrophoresis,28 (2007) 2771-2780.
    [205]B. Santos, B.M. Simonet, A. Rios, M. Valcarcel, On-line coupling of solid-phase microextraction to commercial CE-MS equipment, Electrophoresis,28 (2007) 1312-1318.
    [206]A.L. Nguyen, J.H.T. Luong., Separation and determination of polycyclic aromatic hydrocarbons by solid phase microextraction/cyclodextrin-modified capillary electrophoresis, Anal. Chem.,69 (1997) 1726-1731.
    [207]Z. Liu, J. Pawliszyn, Coupling of solid-phase microextraction and capillary isoelectric focusing with laser-induced fluorescence whole column imaging detection for protein analysis, Anal. Chem.,77 (2005) 165-171.
    [208]Z. Liu, J. Pawliszyn, Online coupling of solid-phase microextraction and capillary electrophoresis, J. Chromatogr. Sci.,44 (2006) 366-374.
    [209]C.W. Whang, J. Pawliszyn, Solid phase microextraction coupled to capillary electrophoresis, Anal. Commun.,35 (1998) 353-356.
    [210]A.S. Ptolemy, P. Britz-McKibbin, New advances in on-line sample preconcentration by capillary electrophoresis using dynamic pH junction, Analyst,133 (2008) 1643-1648.
    [211]M. Urbanek, L. Krivankova, P. Bocek, Stacking phenomena in electromigration:From basic principles to practical procedures, Electrophoresis,24 (2003) 466-485.
    [212]J.P. Quirino, S. Terabe, Online concentration of neutral analytes for micellar electrokinetic chromatography. I. normal stacking mode, J. Chromatogr. A,781 (1997) 119-128.
    [213]M. Albert, L. Debusschere, C. Demesmay, J.L. Rocca, Large-volume stacking for quantitative analysis of anions in capillary electrophoresis. Ⅰ. Large-volume stacking with polarity switching, J. Chromatogr. A,757 (1997)281-289.
    [214]M. Albert, L. Debusschere, C. Demesmay, J.L. Rocca, Large-volume stacking for quantitative analysis of anions in capillary electrophoresis. Ⅱ. Large-volume stacking without polarity switching, J. Chromatogr. A,757 (1997)291-296.
    [215]L.Y. Fan, Y.Q. Cheng, Y.Q. Li, H.L. Chen, X.G. Chen, Z.D. Hu, Head-column field-amplified sample stacking in a capillary electrophoresis-flow injection system, Electrophoresis,26 (2005) 4345-4354.
    [216]J.B. Kim, K. Otsuka, S. Terabe, Anion selective exhaustive injection-sweep-micellar electrokinetic chromatography, J. Chromatogr. A,932 (2001) 129-137.
    [217]L.Y. Zhu, C.H. Tu, H.K. Lee, On-line concentration of acidic compounds by anion-selective exhaustive injection-sweeping-micellar electrokinetic chromatography, Anal. Chem.,74 (2002) 5820-5825.
    [218]J.P. Quirino, S. Terabe, Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography, Science,282 (1998) 465-468.
    [219]M. Molina, M. Silva, Micellar electrokinetic chromatography:current developments and future, Electrophoresis,23 (2002) 3907-3921.
    [220]S.L. Simpson, J.P. Quirino, S. Terabe, On-line sample preconcentration in capillary electrophoresis fundamentals and applications, J. Chromatogr. A,1184 (2008) 504-541.
    [221]O. Nunez, J.B. Kim, E. Moyano, M.T. Galceran, S. Terabe, Analysis of the herbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection, J. Chromatogr. A,961 (2002) 65-75.
    [222]R.B. Taylor, R.G. Reid, A.S. Low, Analysis of proguanil and its metabolites by application of the sweeping technique in micellar electrokinetic chromatography, J. Chromatogr. A,916 (2001) 201-206.
    [223]H.Y. Chiang, S.J. Sheu, Analysis of ephedra-alkaloids using sweeping and cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography methods, Electrophoresis,25 (2004) 670-676.
    [224]M.J. Gong, K.R. Wehmeyer, P.A. Limbach, W.R. Heineman, On-line sample preconcentration by sweeping with dodecyltrimethylammonium bromide in capillary zone electrophoresis, J. Chromatogr. A,1125 (2006) 263-269.
    [225]J.B. Kim, K. Otsuka, S. Terabe, On-line sample preconcentration in micellar electrokinetic chromatography using ion-pair reagents, J. Chromatogr. A,979 (2002) 131-136.
    [226]C.W. Huang, H.P. Jen, R.D. Wang, Y.Z. Hsieh, Sweeping technique combined with micellar electrokinetic chromatography for the simultaneous determination of flunitrazepam and its major metabolites, J. Chromatogr. A,1110(2006)240-244.
    [227]M.R.N. Monton, J.P. Quirino, K. Otsuka, S. Terabe, Separation and on-line preconcentration by sweeping of charged analytes in electrokinetic chromatography with nonionic micelles, J. Chromatogr. A,939 (2001) 99-108.
    [228]H.M. Tseng, D.A. Barrett, Micellar electrokinetic biofluid analysis of biogenic amines using on-line sample concentration and UV laser-induced native fluorescence detection, J. Chromatogr. A,1216 (2009) 3387-3391.
    [229]J.B. Kim, J.P. Quirino, K. Otsuka, S. Terabe, On-line sample concentration in micellar electrokinetic chromatography using cationic surfactants, J. Chromatogr. A,916 (2001) 123-130.
    [230]L.P. Quirino, S. Terabe, K. Otsuka, J.B. Vincent, G. Vigh, Sample concentration by sample stacking and sweeping using a microemulsion and a single-isomer sulfated beta-cyclodextrin as pseudostationary phases in electrokinetic chromatography, J. Chromatogr. A,838 (1999) 3-10.
    [231]W.A.W. Ibrahim, D. Hermawan, M.M. Sanagi, On-line preconcentration and chiral separation of propiconazole by cyclodextrin-modified micellar electrokinetic chromatography, J. Chromatogr. A,1170 (2007) 107-113.
    [232]X. Cahours, Y. Daali, S. Cherkaoui, J.L. Veuthey, Simultaneous analysis of polyhydroxylated alkaloids by capillary electrophoresis using borate complexation and evaluation of sweeping technique for sensitivity improvement, Chromatographia,55 (2002) 211-216.
    [233]J.P. Quirino, S. Terabe, Sweeping of neutral analytes via complexation with borate in capillary zone electrophoresis, Chromatographia,53 (2001) 285-289.
    [234]K. Isoo, S. Terabe, Analysis of metal ions by sweeping via dynamic complexation and cation-selective exhaustive injection in capillary electrophoresis, Anal. Chem.,75 (2003) 6789-6798.
    [235]K. Isoo, S. Terabe, Sweeping via dynamic complexation with cyclohexane-1,2-diaminetetraacetic acid for trace metal analysis in capillary electrophoresis, Chromatographia,61 (2005) 49-53.
    [236]K. Isoo, S. Terabe, Metal complex separation with on-line sample preconcentration in micellar electrokinetic chromatography, Anal. Sci.,21 (2005) 43-47.
    [237]P. Britz-Mckibbin, A.R. Kranack, A. Paprica, D.D.Y. Chen, Quantitative assay for epinephrine in dental anesthetic solutions by capillary electrophoresis, Analyst,123 (1998) 1461-1463.
    [238]Z. Mala, L. Krivankova, P. Gebauer, P. Bocek, Contemporary sample stacking in CE:A sophisticated tool based on simple principles, Electrophoresis,28 (2007) 243-253.
    [239]L.Y. Fan, L.H. Liu, H.L. Chen, X.G. Chen, Z.D. Hu, Continuous on-line concentration based on dynamic pH junction for trimethoprim and sulfamethoxazole by microfluidic capillary electrophoresis combined with flow injection analysis system, J. Chromatogr. A,1062 (2005) 133-137.
    [240]S.J. Wang, W.L. Tseng, Y.W. Lin, H.T. Chang, On-line concentration of trace proteins by pH junctions in capillary electrophoresis with UV absorption detection, J. Chromatogr. A,979 (2002) 261-270.
    [241]K. Imami, M.R.N. Monton, Y. Ishihama, S. Terabe, Simple on-line sample preconcentration technique for peptides based on dynamic pH junction in capillary electrophoresis-mass spectrometry, J. Chromatogr. A,1148 (2007) 250-255.
    [242]P. Britz-McKibbin, K. Otsuka, S. Terabe, On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection, Anal. Chem.,74 (2002) 3736-3743.
    [243]M.C. Breadmore, R.A. Mosher, W. Thormann, High-resolution computer simulations of stacking of weak bases using a transient pH boundary in capillary electrophoresis.1. Concept and impact of sample ionic strength, Anal. Chem.,78 (2006) 538-546.
    [244]J. Jaafar, Z. Irwan, R. Ahamad, S. Terabe, T. Ikegami, N. Tanaka, Online preconcentration of arsenic compounds by dynamic pH junction-capillary electrophoresis, J. Sep. Sci.,30 (2007) 391-398.
    [245]A.R. Timerbaev, T. Hirokawa, Recent advances of transient isotachophoresis-capillary electrophoresis in the analysis of small ions from high-conductivity matrices, Electrophoresis,27 (2006) 323-340.
    [246]J. Valaskova, E. Havranek, Isotachophoretic analysis of inorganic ions, J. Chromatogr. A,836 (1999) 201-208.
    [247]C.H. Lin, T. Kaneta, On-line sample concentration techniques in capillary electrophoresis:Velocity gradient techniques and sample concentration techniques for biomolecules, Electrophoresis,25 (2004) 4058-4073.
    [248]Y.M. An, J.W. Cooper, B.M. Balgley, C.S. Lee, Selective enrichment and ultrasensitive identification of trace peptides in proteome analysis using transient capillary isotachophoresis/zone electrophoresis coupled with nano-ESI-MS, Electrophoresis,27 (2006) 3599-3608.
    [249]P. Mikus, P. Kubacak, I. Valaskova, E. Havranek, Analysis of enantiomers in biological matrices by charged cyclodextrin-mediated capillary zone electrophoresis in column-coupling arrangement with capillary isotachophoresis, Talanta,70 (2006) 840-846.
    [250]J. Petr, S. Gerstmann, H. Frank, Determination of some heavy metal cations in molten snow by transient isotachophoresis/capillary zone electrophoresis, J. Sep. Sci.,29 (2006) 2256-2260.
    [251]Z. Huang, K. Ito, T. Hirokawa, Further research on iodine speciation in seawater by capillary zone electrophoresis with isotachophoresis preconcentration, J. Chromatogr. A,1055 (2004) 229-234.
    [252]L. Krivankova, P. Pantuckova, P. Bocek, Isotachophoresis in zone electrophoresis, J. Chromatogr. A,838 (1999)55-70.
    [253]Y. Chou, R.J. Yang, Numerical solutions for isoelectric focusing and isotachophoresis problems, J. Chromatogr. A,1217 (2010) 394-404.
    [254]P. Gebauer, Z. Mala, P. Bocek, Recent progress in capillary ITP, Electrophoresis,28 (2007) 26-32.
    [255]H.Y. Huang, S.H. Hsieh, Analysis of tobacco alkaloids by cation-selective exhaustive injection sweeping microemulsion electrokinetic chromatography, J. Chromatogr. A,1164 (2007) 313-319.
    [256]Y.H. Lin, M.R. Lee, R.J. Lee, W.K. Ko, S.M. Wu, Hair analysis for methamphetamine, ketamine, morphine and codeine by cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography, J. Chromatogr. A,1145 (2007) 234-240.
    [257]J.P. Quirino, S. Terabe, Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection:Cation-selective exhaustive injection and sweeping, Anal. Chem.,72 (2000) 1023-1030.
    [258]Y.H. Lin, J.H. Li, W.K. Ko, S.M. Wu, Direct and sensitive analysis of methamphetamine, ketamine, morphine and codeine in human urine by cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography, J. Chromatogr. A,1130 (2006) 281-286.
    [259]M. Gong, K.R. Wehmeyer, P.A. Limbach, W.R. Heineman, Unlimited-volume electrokinetic stacking injection in sweeping capillary electrophoresis using a cationic surfactant, Anal. Chem.,78 (2006) 6035-6042.
    [260]L.J. Yu, S.F.Y. Li, Dynamic pH junction-sweeping capillary electrophoresis for online preconcentration of toxic pyrrolizidine alkaloids in Chinese herbal medicine, Electrophoresis,26 (2005) 4360-4367.
    [261]P. Britz-McKibbin, M.J. Markuszewski, T. Iyanagi, K. Matsuda, T. Nishioka, S. Terabe, Picomolar analysis of flavins in biological samples by dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection, Anal. Biochem.,313 (2003) 89-96.
    [262]C.M. Shih, C.H. Lin, Full-capillary sample stacking/sweeping-MEKC for the separation of naphthalene-2,3-dicarboxaidehyde-derivatized tryptophan and isoleucine, Electrophoresis,26 (2005) 3495-3499.
    [263]T. Hirokawa, H. Okamoto, B. Gas, High-sensitive capillary zone electrophoresis analysis by electrokinetic injection with transient isotachophoretic preconcentration:Electrokinetic supercharging, Electrophoresis,24 (2003) 498-504.
    [264]J. Horakova, J. Petr, V. Maier, J. Znaleziona, A. Stanova, J. Marak, D. Kaniansky, J. Sevcik, Combination of large volume sample stacking and dynamic pH junction for on-line preconcentration of weak electrolytes by capillary electrophoresis in comparison with isotachophoretic techniques, J. Chromatogr. A,1155 (2007) 193-198.
    [265]C.H. Tsai, J.D. Lin, C.H. Lin, Optimization of the separation of malachite green in water by capillary electrophoresis raman spectroscopy (CE-RS) based on the stacking and sweeping modes, Talanta,72 (2007) 368-372.
    [266]S.R. Mei, Q.H. Yao, L.s. Cai, J. Xing, G.W. Xu, C.y. Wu, Capillary electrophoresis with end-column amperometric detection of urinary 8-hydroxy-2'-deoxyguanosine, Electrophoresis,24 (2003) 1411-1415.
    [267]Y. Xu, W. Qin, Y.H. Lau, S.F.Y. Li, Combination of cationic surfactant-assisted solid-phase extraction with field-amplified sample stacking for highly sensitive analysis of chlorinated acid herbicides by capillary zone electrophoresis, Electrophoresis,26 (2005) 3507-3517.
    [268]Y.F. Yang, M.C. Breadmore, W. Thormann, Analysis of the disaccharides derived from hyaluronic acid and chondroitin sulfate by capillary electrophoresis with sample stacking, J. Sep. Sci.,28 (2005) 2381-2389.
    [269]C. Wang, C.R. Li, X.H. Zang, D.D. Han, Z.M. Liu, Z. Wang, Hollow fiber-based liquid-phase microextraction combined with on-line sweeping for trace analysis of Strychnos alkaloids in urine by micellar electrokinetic chromatography, J. Chromatogr. A,1143 (2007) 270-275.
    [270]L.M. Ravelo-Perez, J. Hernandez-Borges, T.M. Borges-Miquel, M.A. Rodriguez-Delgado, Solid-phase microextraction and sample stacking micellar electrokinetic chromatography for the analysis of pesticide residues in red wines, Food Chem.,111 (2008) 764-770.
    [271]M. Lagarrigue, A. Bossee, A. Begos, N. Delaunay, A. Varenne, P. Gareil, B. Bellier, Field-amplified sample stacking for the detection of chemical warfare agent degradation products in low-conductivity matrices by capillary electrophoresis-mass spectrometry, J. Chromatogr. A,1178 (2008) 239-247.
    [272]L. Xu, X.Y. Gong, H.K. Lee, P.C. Hauser, Ion-pair liquid-liquid-liquid microextraction of nerve agent degradation products followed by capillary electrophoresis with contactless conductivity detection, J. Chromatogr. A,1205 (2008) 158-162.
    [273]J. Jiang, C.A. Lucy, Determination of alkylphosphonic acids using micellar electrokinetic chromatography with laser-induced fluorescence detection and high-salt stacking, J. Chromatogr. A,966 (2002) 239-244.
    [274]K. Fukushi, K. Sagishima, K. Saito, S. Takeda, S. Wakida, K. Hiiro, Simultaneous determination of tributyltin and triphenyltin cations by capillary isotachophoresis with potential-gradient detector for direct detection, Anal. Chim. Acta,383 (1999) 205-211.
    [275]B.G. Sun, M. Macka, P.R. Haddad, Trace determination of arsenic species by capillary electrophoresis with direct UV detection using sensitivity enhancement by counter- or co-electroosmotic flow stacking and a high-sensitivity cell, Electrophoresis,24 (2003) 2045-2053.
    [276]K. Kutschera, A.C. Schmidt, S. Kohler, M. Otto, CZE for the speciation of arsenic in aqueous soil extracts, Electrophoresis,28 (2007) 3466-3476.
    [277]P.D. Zhang, GW. Xu, J.H. Xiong, Y.F. Zheng, Q. Yang, F.S. Wei, Determination of arsenic species by capillary zone electrophoresis with large-volume field-amplified stacking injection, Electrophoresis,22 (2001) 3567-3572.
    [278]E.P. Gil, P. Ostapczuk, H. Emons, Determination of arsenic species by field amplified injection capillary electrophoresis after modification of the sample solution with methanol, Anal. Chim. Acta,389 (1999) 9-19.
    [279]K. Li, F.Y. Li, Speciation of selenium and arsenic compounds in natural waters by capillary zone electrophoresis after on-column preconcentration with field-amplified injection, Analyst,120 (1995) 361-366.
    [280]P. Kuban, P. Houserova, P.C. Hauser, V. Kuban, Sensitive capillary electrophoretic determination of mercury species with amperometric detection at a copper electrode after cation exchange preconcentration, J. Sep. Sci.,30 (2007) 1070-1076.
    [281]P. Houserova, P. Kuban, V. Kuban, Ion exchange preconcentration and separation of mercury species by CE with indirect contactless conductometric detection, Electrophoresis,27 (2006) 4508-4515.
    [282]Z.-L. Peng, G. Song, L. Zhao, J.-M. Lin, Separation of organomercury species using nonaqueous capillary electrophoresis coupled with sample stacking and electrokinetic injection techniques, Chromatographia,64 (2006)281-285.
    [283]W.P. Liu, H.K. Lee, Simultaneous analysis of lead, mercury and selenium species by capillary electrophoresis with combined ethylenediaminetetraacetic acid complexation and field-amplified stacking injection, Electrophoresis,20 (1999) 2475-2483.
    [284]F. Tan, B.C. Yang, Y.F. Guan, Determination of heavy metal ions by capillary electrophoresis with contactless conductivity detection after field-amplified sample injection, Anal. Sci.,21 (2005) 955-958.
    [285]A. Rudnev, B. Spivakov, A. Timerbaev, Solid-phase extraction and subsequent capillary zone electrophoresis of trace metal ions as soluble dithiocarbamate complexes, Chromatographia,52 (2000) 99-102.
    [286]Z. Huang, K. Ito, A.R. Timerbaev, T. Hirokawa, Speciation studies by capillary electrophoresis-simultaneous determination of iodide and iodate in seawater, Anal. Bioanal. Chem.,378 (2004) 1836-1841.
    [287]S.S. Kannamkumarath, R.G. Wuilloud, S. Jayasinghe, J.A. Caruso, Fast speciation analysis of iodophenol compounds in river waters by capillary electrophoresis-inductively coupled plasma-mass spectrometry with off-line solid-phase microextraction, Electrophoresis,25 (2004) 1843-1851.
    [288]W.P. Liu, H.K. Lee, Use of triethylenetetraminehexaacetic acid combined with field-amplified sample injection in speciation analysis by capillary electrophoresis, Anal. Chem.,70 (1998) 2666-2675.
    [289]K. Yokota, K. Fukushi, S. Takeda, S.I. Wakida, Simultaneous determination of iodide and iodate in seawater by transient isotachophoresis-capillary zone electrophoresis with artificial seawater as the background electrolyte, J. Chromatogr. A,1035 (2004) 145-150.
    [290]L.N. Moskvin, M.Y. Kamentsev, GL. Grigor'ev, N.M. Yakimova, Capillary-electrophoretic determination of zinc and cadmium ions in aqueous solutions with ion-exchange preconcentration, J. Anal. Chem.,65 (2010) 99-102.
    [291]J. Chamoun, A. Hagege, Sensitivity enhancement in capillary electrophoresis-inductively coupled plasma-mass spectrometry for metal/protein interactions analysis by using large volume stacking with polarity switching, J. Anal. At. Spectrom.,20 (2005) 1030-1034.
    [292]G Alvarez-Llamas, M.D.F. de la Campa, A. Sanz-Medel, Sample stacking capillary electrophoresis with ICP-(Q) MS detection for Cd, Cu and Zn speciation in fish liver metallothioneins, J. Anal. At. Spectrom.,18 (2003) 460-466.
    [293]P.J. Li, J. Duan, B. Hu, High-sensitivity capillary electrophoresis for speciation of organomercury in biological samples using hollow fiber-based liquid-liquid-liquid microextraction combined with on-line preconcentration by large-volume sample stacking, Electrophoresis,29 (2008) 3081-3089.
    [294]A. Polatajko, N. Jakubowski, J. Szpunar, State of the art report of selenium speciation in biological samples, J. Anal. At. Spectrom.,21 (2006) 639-654.
    [295]Z. Mala, A. Slampova, P. Gebauer, P. Bocek, Contemporary sample stacking in CE, Electrophoresis,30 (2009)215-229.
    [296]Speciation analysis of selenoamino acids by combining liquid phase microextraction with high performance liquid chromatography and inductively coupled plasma mass spectrometry in clover, In preparation.
    [297]N. Fontanals, R.M. Marce, F. Borrull, New materials in sorptive extraction techniques for polar compounds, J. Chromatogr. A,1152 (2007) 14-31.
    [298]C. Basheer, H.J. Wang, A. Jayaraman, S. Valiyaveettil, H.K. Lee, Polymer-coated hollow fiber microextraction combined with on-column stacking in capillary electrophoresis, J. Chromatogr. A,1128 (2006) 267-272.
    [299]A.P. Vonderheide, M. Montes-Bayon, J.A. Caruso, Solid-phase microextraction as a sample preparation strategy for the analysis of seleno amino acids by gas chromatography-inductively coupled plasma mass spectrometry, Analyst,127 (2002) 49-53.
    [300]K. Abbas-Ghaleb, N. Gilon, G. Cretier, J.M. Mermet, Preconcentration of selenium compounds on a porous graphitic carbon column in view of HPLC-ICP-AES speciation analysis, Anal. Bioanal. Chem.,377 (2003)1026-1031.
    [301]W.H. Oin, C.X. Cao, S. Li, W. Zhang, W. Liu, Quantitative study on selective stacking of zwitterions in large-volume sample matrix by moving reaction boundary in capillary electrophoresis, Electrophoresis,26 (2005)3113-3124.
    [302]L. Bendahl, B. Gammelgaard, O. Jons, O. Farver, S.H. Hansen, Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry by direct injection nebulization for selenium speciation, J. Anal. At. Spectrom.,16 (2001) 38-42.
    [303]L. Bendahl, B. Gammelgaard, Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples, J. Anal. At. Spectrom.,19 (2004) 143-148.
    [304]S.Y. Lin, G.R. Wang, Q.P. Huang, C.Y. Liu, Speciation of selenium compounds by open tubular capillary electrochromatography-inductively coupled plasma mass spectrometry, Electrophoresis,27 (2006) 4257-4265.
    [305]B.D. Wake, A.R. Bowie, E.C.V. Butler, P.R. Haddad, Modern preconcentration methods for the determination of selenium species in environmental water samples, Trac-Trends Anal. Chem.,23 (2004) 491-500.
    [306]B.G. Sun, M. Macka, P.R. Haddad, Speciation of arsenic and selenium by capillary electrophoresis, J. Chromatogr. A,1039 (2003) 201-208.
    [307]S.Y. Chang, W.L. Tseng, S. Mallipattu, H.T. Chang, Determination of small phosphorus-containing compounds by capillary electrophoresis, Talanta,66 (2005) 411-421.
    [308]U. Saradhi, S. Prabhakar, T.J. Reddy, M. Vairamani, Ion-pair solid-phase extraction and gas chromatography-mass spectrometric determination of acidic hydrolysis products of chemical warfare agents from aqueous samples, J. Chromatogr. A,1129 (2006) 9-13.
    [309]V. Tak, D. Pardasani, P.K. Kanaujia, D.K. Dubey, Liquid-liquid-liquid microextraction of degradation products of nerve agents followed by liquid chromatography-tandem mass spectrometry, J. Chromatogr. A,1216 (2009)4319-4328.
    [310]T. Zhou, C.A. Lucy, Selective preconcentration of chemical warfare agent degradation products using a zirconia preconcentration column, J. Chromatogr. A,1213 (2008) 8-13.
    [311]M. Katagi, M. Tatsuno, M. Nishikawa, H. Tsuchihashi, On-line solid-phase extraction liquid chromatography-continuous flow frit fast atom bombardment mass spectrometric and tandem mass spectrometric determination of hydrolysis products of nerve agents alkyl methylphosphonic acids by p-bromophenacyl derivatization, J. Chromatogr. A,833 (1999) 169-179.
    [312]Q.Q. Wang, J.W. Xie, M.S. Gu, J.L. Feng, J.X. Ruan, Gas chromatographic-mass spectrometric method for quantitation of trimethylsilyl derivatives of nerve agent degradation products in human plasma, using strong anion-exchange solid-phase extraction, Chromatographia,62 (2005) 167-173.
    [313]M. Kataoka, K. Tsuge, Y. Seto, Efficiency of pretreatment of aqueous samples using a macroporous strong anion-exchange resin on the determination of nerve gas hydrolysis products by gas chromatography-mass spectrometry after tert-butyldimethylsilylation, J. Chromatogr. A,891 (2000)295-304.
    [314]P.K. Kanaujia, D. Pardasani, A.K. Gupta, R. Kumar, R.K. Srivastava, D.K. Dubey, Extraction of acidic degradation products of organophosphorus chemical warfare agents Comparison between silica and mixed-mode strong anion-exchange cartridges, J. Chromatogr. A,1161 (2007) 98-104.
    [315]L. Xu, H.K. Lee, Zirconia hollow fiber:Preparation, characterization, and microextraction application, Anal. Chem.,79 (2007) 5241-5248.
    [316]H.S.N. Lee, M.T. Sng, C. Basheer, H.K. Lee, Determination of degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry, J. Chromatogr. A,1148 (2007) 8-15.
    [317]H. Lakso, W.F. Ng, Determination of chemical warfare agents in natural water samples by solid-phase microextraction, Anal. Chem.,69 (1997) 1866-1872.
    [318]M.M. Liu, Z.R. Zeng, C.L. Wang, Y.J. Tan, H. Liu, Solid-phase microextraction of phosphate and methylphosphonate using novel fibers coated with a sol-gel-derived silicone-divinylbenzene co-polymer, Chromatographia,58 (2003) 597-605.
    [319]C.h. Yu, B. Hu, C18-coated stir bar sorptive extraction combined with liquid chromatography-electrospray tandem mass spectrometry for the analysis of sulfonamides in milk and milk powder, In press.
    [320]D.D. Richardson, J.A. Caruso, Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICP-MS and TOF-MS detection, Anal. Bioanal. Chem.,388 (2007) 809-823.
    [321]Data obtained from SRC PhysProp Database, http://epa.gov/oppt/exposure/pubs/episetup_v400.exe.
    [322]J.L. Blin, R. Flamant, B.L. Su, Synthesis of nanostructured mesoporous zirconia using CTMABr-ZrOCl2 center dot 8H(2)O systems:A kinetic study of synthesis mechanism, Int. J. Inorg. Mater.,3 (2001) 959-972.
    [323]C.H. Yu, Z.M. Yao, B. Hu, Preparation of polydimethylsiloxane/beta-cyclodextrin/divinylbenzene coated "dumbbell-shaped" stir bar and its application to the analysis of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles compounds in lake water and soil by high performance liquid chromatography, Anal. Chim. Acta,641 (2009) 75-82.
    [324]A.E.F. Nassar, S.V. Lucas, L.D. Hoffland, Determination of chemical warfare agent degradation products at low-part-per-billion levels in aqueous samples and sub-part-per-million levels in soils using capillary electrophoresis, Anal. Chem.,71 (1999) 1285-1292.
    [325]J.E. Melanson, B.L.Y. Wong, C.A. Boulet, C.A. Lucy, High-sensitivity determination of the degradation products of chemical warfare agents by capillary electrophoresis-indirect UV absorbance detection, J. Chromatogr. A,920 (2001) 359-365.
    [326]J. Nawrocki, M. Rigney, A. McCormick, P. Carr, Chemistry of zirconia and its use in chromatography, J. Chromatogr. A,657 (1993) 229-282.
    [327]U. Saradhi, S. Prabhakar, T.J. Reddy, M. Murty, Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation, J. Chromatogr. A,1157 (2007) 391-398.
    [328]J.E. Melanson, B.L.Y. Wong, C.A. Boulet, C.A. Lucy, High-sensitivity determination of the degradation products of chemical warfare agents by capillary electrophoresis-indirect UV absorbance detection, J. Chromatogr. A,920 (2001) 359-365.
    [329]R. Ahamad, J. Barek, A.R. Yusoff, S.M. Sinaga, J. Zima, Determination of roxarsone using carbon paste and amberlite LA2 modified carbon paste electrodes, Electroanalysis,12 (2000) 1220-1226.
    [330]I. Cortinas, J.A. Field, M. Kopplin, J.R. Garbarino, A.J. Gandolfi, R. Sierra-Alvarez, Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids, Environ. Sci. Technol.,40 (2006) 2951-2957.
    [331]A.R. Roerdink, J.H. Aldstadt, Sensitive method for the determination of roxarsone using solid-phase microextraction with multi-detector gas chromatography, J. Chromatogr. A,1057 (2004) 177-183.
    [332]Z. Mester, G Horvath, G. Vitanyi, L. Lelik, P. Fodor, Simultaneous determination of dimethylarsinic acid and monomethylarsonic acid after derivatization with thioglycol methylate by gas chromatography/mass spectrometry, Rapid Commun. Mass Spectrom.,13 (1999) 350-353.
    [333]Y.L. Wu, B. Hu, Y.L. Hou, Headspace single drop and hollow fiber liquid phase microextractions for HPLC determination of phenols, J. Sep. Sci.,31 (2008) 3772-3781.
    [334]S. Andersen, T.G Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen, Liquid-phase microextraction combined with capillary electrophoresis, a promising tool for the determination of chiral drugs in biological matrices, J. Chromatogr. A,963 (2002) 303-312.
    [335]S. Andersen, T.G Halvorsen, S. Pedersen-Bjergaard, K.E. Rasmussen, L. Tanum, H. Refsum, Stereospecific determination of citalopram and desmethylcitalopram by capillary electrophoresis and liquid-phase microextraction, J. Pharm. Biomed. Anal.,33 (2003) 263-273.
    [336]L. Xu, C. Basheer, H.K. Lee, Chemical reactions in liquid-phase microextraction, J. Chromatogr. A,1216 (2009)701-707.
    [337]X.L. Pu, B.B. Chen, B. Hu, Solvent bar microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic arsenic in water samples, Spectroc. Acta Pt. B-Atom. Spectr.,64 (2009) 679-684.
    [338]M.E.M. Perez, J.A. Reyes-Aguilera, T.I. Saucedo, M.P. Gonzalez, R. Navarro, M. Avila-Rodriguez, Study of As(V) transfer through a supported liquid membrane impregnated with trioctylphosphine oxide (Cyanex 921), J. Membr. Sci.,302 (2007) 119-126.
    [339]T. Prapasawat, P. Ramakul, C. Satayaprasert, U. Pancharoen, A.W. Lothongkum, Separation of As(Ⅲ) and As(V) by hollow fiber supported liquid membrane based on the mass transfer theory, Korean J. Chem. Eng.,25 (2008) 158-163.
    [340]K. Hylton, S. Mitra, A microfluidic hollow fiber membrane extractor for arsenic(Ⅴ) detection, Anal. Chim. Acta,607 (2008) 45-49.
    [341]X.B. Yin, On-line preconcentration for capillary electrophoresis-atomic fluorescence spectrometric determination of arsenic compounds, Electrophoresis,25 (2004) 1837-1842.
    [342]C.G. Rosal, G.M. Momplaisir, E.M. Heithmar, Roxarsone and transformation products in chicken manure: Determination by capillary electrophoresis-inductively coupled plasma-mass spectrometry, Electrophoresis,26 (2005)1606-1614.
    [343]L. Iberhan, M. Wisniewski, Removal of arsenic(Ⅲ) and arsenic(Ⅴ) from sulfuric acid solution by liquid-liquid extraction, J. Chem. Technol. Biotechnol.,78 (2003) 659-665.
    [344]J.P. Quirino, S. Terabe, Sample stacking of cationic and anionic analytes in capillary electrophoresis, J. Chromatogr. A,902 (2000) 119-135.
    [345]Y.T. Zhang, A.H. Conrad, G.W. Conrad, Detection and quantification of 3,5,3'-triiodothyronine and 3,3,5-triiodothyronine by electrospray ionization tandem mass spectrometry, J. Am. Soc. Mass Spectrom.,16 (2005) 1781-1786.
    [346]Y. Sun, X.Y. Zhao, P. Li, G.Y. Shi, T.S. Zhou, Simultaneous determination of thyroxine and triiodothyronine in pharmaceutical formulations using capillary electrophoresis with amperometric detection, J. Sep. Sci.,33 (2010) 2417-2422.
    [347]V.F. Samanidou, H.G. Gika, I.N. Papadoyannis, Rapid HPLC analysis of thyroid gland hormones tri-iodothyronine (T-3) and thyroxine (T-4) in human biological fluids after SPE, J. Liq. Chromatogr. Relat. Technol.,23 (2000) 681-692.
    [348]H.G. Gika, V.F. Samanidou, I.N. Papadoyannis, Development of a validated HPLC method for the determination of iodotyrosines and iodothyronines in pharmaceuticals and biological samples using solid phase extraction, J. Chromatogr. B,814 (2005) 163-172.
    [349]S. Piehl, T. Heberer, G Balizs, T.S. Scanlan, J. Kohrle, Development of a validated liquid chromatography/tandem mass spectrometry method for the distinction of thyronine and thyronamine constitutional isomers and for the identification of new deiodinase substrates, Rapid Commun. Mass Spectrom., 22 (2008) 3286-3296.
    [350]Z. Wang, M. Lv, D. Li, Z. Zhou, L. Zhang, W. Yang, High-Performance Liquid Chromatographic Analysis of Iodoamino Acids Produced by Hydrolysis of Iodinated Casein with Barium Hydroxide, Acta Chromatogr.,20 (2008) 59-69.
    [351]H. Gika, M. Lammerhofer, I. Papadoyannis, W. Lindner, Direct separation and quantitative analysis of thyroxine and triiodothyronine enantiomers in pharmaceuticals by high-performance liquid chromatography, J. Chromatogr. B,800 (2004) 193-201.
    [352]J.Z. Kang, D. Kutscher, M. Montes-Bayon, E. Blanco-Gonzalez, A. Sanz-Medel, Enantioselective determination of thyroxine enantiomers by ligand-exchange CE with UV absorbance and ICP-MS detection, Electrophoresis,30 (2009) 1774-1782.
    [353]B. Michalke, P. Schramel, Iodine speciation in biological samples by capillary electrophoresis-inductively coupled plasma mass spectrometry, Electrophoresis,20 (1999) 2547-2553.
    [354]Z.Y. Wang, L.Y. Zhang, P.L. He, M. Li, W.J. Yang, HPLC-MS analysis of iodotyrosines produced by sample hydrolysis:A simple method for monitoring iodinated casein in feed premixes, J. Chromatogr. B,877 (2009)4175-4179.
    [355]A.G. Kazemifard, D.E. Moore, A. Aghazadeh, Identification and quantitation of sodium-thyroxine and its degradation products by LC using electrochemical and MS detection, J. Pharm. Biomed. Anal.,25 (2001) 697-711.
    [356]Data obtained from SciFinder Scholar.
    [357]D. Belder, A. Deege, H. Husmann, F. Kohler, M. Ludwig, Cross-linked poly(vinyl alcohol) as permanent hydrophilic column coating for capillary electrophoresis, Electrophoresis,22 (2001) 3813-3818.
    [358]M. Gilar, A. Belensky, A.S. Cohen, Polymer solutions as a pseudostationary phase for capillary electrochromatographic separation of DNA diastereomers, Electrophoresis,21 (2000) 2999-3009.
    [359]T. Shimizu, E. Kenndler, Capillary electrophoresis of small solutes in linear polymer solutions:Relation between ionic mobility, diffusion coefficient and viscosity, Electrophoresis,20 (1999) 3364-3372.
    [360]D. Pabla, F. Akhlaghi, H. Zia, A comparative pH-dissolution profile study of selected commercial levothyroxine products using inductively coupled plasma mass spectrometry, Eur. J. Pharm. Biopharm.,72 (2009)105-110.
    [361]T. Kunisue, J.W. Fisher, B. Fatuyi, K. Kannan, A method for the analysis of six thyroid hormones in thyroid gland by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B,878 (2010) 1725-1730.
    [362]J. Svanfelt, J. Eriksson, L. Kronberg, Analysis of thyroid hormones in raw and treated waste water, J. Chromatogr. A,1217 (2010) 6469-6474.
    [363]M. Leermakers, W. Baeyens, P. Quevauviller, M. Horvat, Mercury in environmental samples:Speciation, artifacts and validation, Trac-Trends Anal. Chem.,24 (2005) 383-393.
    [364]S.S. Chen, S.S. Chou, D.F. Hwang, Determination of methylmercury in fish using focused microwave digestion following by Cu2+ addition, sodium tetrapropylborate derivatization, n-heptane extraction, and gas chromatography-mass spectrometry, J. Chromatogr. A,1024 (2004) 209-215.
    [365]B.F. Liu, X.H. Zhong, Y.T. Lu, Analysis of plant hormones in tobacco flowers by micellar electrokinetic capillary chromatography coupled with on-line large volume sample stacking, J. Chromatogr. A,945 (2002) 257-265.
    [366]J. Ruiz-Jimenez, M.D.L. de Castro, On-line pervaporation-capillary electrophoresis for the determination of volatile acidity and free sulfur dioxide in wines, Electrophoresis,26 (2005) 2231-2238.
    [367]D.M. Osbourn, D.J. Weiss, C.E. Lunte, On-line preconcentration methods for capillary electrophoresis, Electrophoresis,21 (2000)2768-2779.
    [368]P. Britz-McKibbin, S. Terabe, On-line preconcentration strategies for trace analysis of metabolites by capillary electrophoresis, J. Chromatogr. A,1000 (2003) 917-934.
    [369]J. Horakova, V. Maier, J. Sevcik, On-line preconcentration techniques in capillary electrophoresis, Chem. Listy,100(2006)163-168.
    [370]M.S. Chun, D.S. Chung, Large volume sample stacking in capillary electrophoresis of weakly acidic compounds using coated capillaries at high pH, Anal. Chim. Acta,491 (2003) 173-179.
    [371]J. Kruaysawat, P.J. Marriott, J. Hughes, C. Trenerry, Large-volume stacking with polarity switching and sweeping for chlorophenols and chlorophenoxy acids in capillary electrophoresis, Electrophoresis,24 (2003) 2180-2187.
    [372]G. McGrath, W.F. Smyth, Large-volume sample stacking of selected drugs of forensic significance by capillary electrophoresis, J. Chromatogr. B-Biomed. Appl.,681 (1996) 125-131.
    [373]A.M. CarroDiaz, R.A. LorenzoFerreira, R. CelaTorrijos, Capillary electrophoresis of methylmercury with injection by sample stacking, J. Chromatogr. A,730 (1996) 345-351.
    [374]A.N. Tang, D.Q. Jiang, X.P. Yan, Cloud point extraction preconcentration for capillary electrophoresis of metal ions, Anal. Chim. Acta,507 (2004) 199-204.
    [375]S. Cerutti, M.F. Silva, J.A. Gasquez, R.A. Olsina, L.D. Martinez, Cloud point preconcentration prior to capillary zone electrophoresis:Simultaneous determination of platinum and palladium at trace levels, Electrophoresis,26 (2005) 3500-3506.
    [376]M.O. Luconi, R.A. Olsina, L.P. Fernandez, M.F. Silva, Determination of lead in human saliva by combined cloud point extraction-capillary zone electrophoresis with indirect UV detection, J. Hazard. Mater., 128(2006)240-246.
    [377]S. Tutschku, M.M. Schantz, S.A. Wise, Determination of methylmercury and butyltin compounds in marine biota and sediments using microwave-assisted acid extraction, solid-phase microextraction, and gas chromatography with microwave-induced plasma atomic emission spectrometric detection, Anal. Chem.,74 (2002)4694-4701.
    [378]P. Jitaru, H.G. Infante, F.C. Adams, Simultaneous multi-elemental speciation analysis of organometallic compounds by solid-phase microextraction and multicapillary gas chromatography hyphenated to inductively coupled plasma-time-of-flight-mass spectrometry, J. Anal. At. Spectrom.,19 (2004) 867-875.
    [379]S. Li, S.G. Weber, Determination of barbiturates by solid-phase microextraction and capillary electrophoresis,69 (1997) 1217-1222.
    [380]J. Hernandez-Borges, F.J. Garcia-Montelongo, A. Cifuentes, M.A. Rodriguez-Delgado, Analysis of triazolopyrimidine herbicides in soils using field-enhanced sample injection-coelectroosmotic capillary electrophoresis combined with solid-phase extraction, J. Chromatogr. A,1100 (2005) 236-242.
    [381]L.Y. Zhu, C.H. Tu, H.K. Lee, Liquid-phase microextraction of phenolic compounds combined with on-line preconcentration by field-amplified sample injection at low pH in micellar electrokinetic chromatography, Anal. Chem.,73 (2001) 5655-5660.
    [382]A. I. C. Ortiz, Y. M. Albarran, C. C. Rica, evaluation of the different sample pretreatment and extraction procedures for mercury speciation in fish samples, J. Anal. At. Spectrom.,17 (2002) 1595-1601.
    [383]S. Diez, J.M. Bayona, Determination of methylmercury in human hair by ethylation followed by headspace solid-phase microextraction-gas chromatography-cold-vapour atomic fluorescence spectrometry, J. Chromatogr. A,963 (2002) 345-351.
    [384]J. Morton, V.A. Carolan, P.H.E. Gardiner, The speciation of inorganic and methylmercury in human hair by high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom.,17 (2002) 377-381.
    [385]D. R. Jenke, D. S. Brown, determination of cysteine in pharmaceuticals via liquid chromatography with postcolumn derivation, Anal. Chem.,59 (1987) 1509-1512.
    [386]E. Psillakis, N. Kalogerakis, Developments in liquid-phase microextraction, Trac-Trends Anal. Chem.,22 (2003) 565-574.
    [387]E.P.C. Lai, W.G. Zhang, X.N. Trier, A. Georgi, S. Kowalski, S. Kennedy, T. MdMuslim, E. Dabek-Zlotorzynska, Speciation of mercury at ng/mL concentration levels by capillary electrophoresis with amperometric detection,364 (1998) 63-74.
    [388]Q. Tu, J. Qvarnstrom, W. Frech, Determination of mercury species by capillary zone electrophoresis-inductively coupled plasma mass spectrometry:A comparison of two spray chamber-nebulizer combinations, Analyst,125 (2000) 705-710.
    [389]R. Ahmed, M. Stoeppler, Decomposition and stability studies of methylmercury in water using cold vapour atomic absorption spectrometry, Analyst,111 (1986) 1371-1374.
    [390]M. Wang, W.Y. Feng, F. Zhang, B. Wang, J.W. Shi, B. Li, Z.F. Chai, Y.L. Zhao, Determination of inorganic and methyl mercury in biological samples by high performance liquid chromatography coupled with inductively coupled plasma-mass spectrometry, Chin. J. Anal. Chem.,33 (2005) 1671-1675.
    [391]F. Pena-Pereira, I. Lavilla, C. Bendicho, Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation:A review, Spectroc. Acta Pt. B-Atom. Spectr.,64 (2009) 1-15.
    [392]F. Pena-Pereira, I. Lavilla, C. Bendicho, L. Vidal, A. Canals, Speciation of mercury by ionic liquid-based single-drop microextraction combined with high-performance liquid chromatography-photodiode array detection, Talanta,78 (2009) 537-541.
    [393]Speciation analysis of mercury in a micro-ecosystem of East Lake by liquid-liquid-liquid microextraction-HPLC-ICP-MS, In preparation.
    [394]On-line three phase liquid phase microextraction coupled with high performance liquid chromatography for the analysis of methamphetamine and amphetamine in urine, In preparation.
    [395]A.I.C. Ortiz, Y.M. Albarran, C.C. Rica, Evaluation of different sample pre-treatment and extraction procedures for mercury speciation in fish samples, J. Anal. At. Spectrom.,17 (2002) 1595-1601.
    [396]C.J. Pedersen, The discovery of crown ethers, Science,241 (1988) 536-540.
    [397]A.S. Yazdi, Z. Es'haghi, Liquid-liquid-liquid phase microextraction of aromatic amines in water using crown ethers by high-performance liquid chromatography with monolithic column, Talanta,66 (2005) 664-669.
    [398]H.J. Buschmann, L. Mutihac, Complexation, liquid-liquid extraction, and transport through a liquid membrane of protonated peptides using crown ethers, Anal. Chim. Acta,466 (2002) 101-108.
    [399]S. Wang, S. Elshani, C.M. Wai, Selective extraction of mercury with ionizable crown ethers in supercritical carbon dioxide, Anal. Chem.,67 (1995) 919-923.
    [400]Y. Takeda, H. Kato, The solvent extraction of bivalent metal picrates by 15-crown-5,18-crown-6, and dibenzo-18-crown-6, Bull. Chem. Soc. Jpn.,52 (1979) 1027-1030.
    [401]J.G. Chen, H.W. Chen, X.Z. Jin, H.T. Chen, Determination of ultra-trace amount methyl-, phenyl- and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration, Talanta,77 (2009) 1381-1387.
    [402]A.H. Bond, M.L. Dietz, R. Chiarizia, Incorporating size selectivity into synergistic solvent extraction:A review of crown ether-containing systems, Ind. Eng. Chem. Res.,39 (2000) 3442-3464.
    [403]S. Diez, J.M. Bayona, Determination of Hg and organomercury species following SPME:A review, Talanta,77(2008)21-27.
    [404]D.A. Lambropoulou, I.K. Konstantinou, T.A. Albanis, Recent developments in headspace microextraction techniques for the analysis of environmental contaminants in different matrices, J. Chromatogr. A,1152 (2007) 70-96.
    [405]V. Kaur, A.K. Malik, N. Verma, Applications of solid phase microextraction for the determination of metallic and organometallic species, J. Sep. Sci.,29 (2006) 333-345.
    [406]J. Yang, J.Y. Ying, A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis, Nat. Mater.,8 (2009) 683-689.
    [407]C.H. Yu, B. Hu, Sol-gel polydimethylsiloxane/poly(vinylalcohol)-coated stir bar sorptive extraction of organophosphorus pesticides in honey and their determination by large volume injection GC, J. Sep. Sci.,32 (2009) 147-153.
    [408]S. Alex, R. Ravoie, A raman spectroscopic study of the complexation of the methylmercury(Ⅱ) cation by amino acids, Can. J. Chem.,65 (1987) 491-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700