用户名: 密码: 验证码:
慢病毒载体介导的CXCR7shRNA对结肠癌生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤的发生发展过程涉及多个趋化因子和受体的异常表达,CXCL12和受体CXCR4是肿瘤生长和转移的关键因子。最近在前列腺癌的研究中发现仅抑制CXCR4的表达,只能部分地阻断恶性肿瘤的生长、转移。进一步研究发现,CXCR7(孤儿受体RDC1)与CXCL12具有高亲和力,表达于许多肿瘤细胞系,直接参与调节肿瘤的发生发展。CXCR7信号传导机制还不确切,推测可能是通过结构性激活机制来活化细胞,此结构性激活机制通过可逆性地与配体结合的形式活化。
     体外实验证实CXCR7能提高肿瘤细胞的生长、粘附和侵袭能力。导入CXCR7序列的乳腺癌细胞MDA-MB435s,体内成瘤性显著提高;而CXCR7siRNA可使乳腺癌细胞4T1体内成瘤性显著降低。用CXCR7的小分子拮抗剂也可使肿瘤生长显著减小。
     目前研究CXCR7对肿瘤生物学行为的影响仅限于乳腺癌、肺癌、前列腺癌、膀胱癌等。本文拟展开“CXCR7与结肠癌”的实验研究,首先假定CXCR7是人结肠癌发生发展的促进因子,在结肠癌组织中高表达,并与结肠癌细胞的增殖、迁移相关,靶向沉默CXCR7的表达能有效抑制结肠癌的恶性进展,由此实验研究设计如下:
     1.研究CXCR7在人结肠癌组织、正常结肠组织以及结肠癌细胞系中的表达,探讨其表达水平与淋巴结转移以及肿瘤分化程度的关系。
     2.设计、筛选有效抑制人结肠癌细胞CXCR7表达的siRNA序列,并构建重组慢病毒CXCR7shRNA(lentiviraus-CXCR7shRNA,LV-CXCR7shRNA)表达载体。
     3.研究靶向CXCR7的慢病毒shRNA表达载体对人结肠癌细胞增殖、迁移活性的调节作用,从细胞水平探讨CXCR7对结肠癌的生物学行为的影响。
     4.研究靶向CXCR7的慢病毒shRNA表达载体对人结肠癌荷瘤裸鼠瘤体的治疗作用,在动物体内进一步证实CXCR7对结肠癌的生物学行为的影响。
     第一章CXCR7在人结肠癌组织和结肠癌细胞系中的表达及其意义
     目的
     研究CXCR7在人结肠癌组织、正常结肠组织以及结肠癌细胞系中的表达水平。
     方法
     1.CXCR7在人结肠癌组织中的表达水平:分别采用实时荧光定量PCR(Real-time fluorescent quantitative PCR,FQ-PCR)和Westernblotting(WB)方法测定人结肠癌组织和正常结肠组织中CXCR7mRNA和蛋白的表达水平,结合临床资料分析CXCR7的表达水平与淋巴结转移和肿瘤分化程度的关系。
     2.CXCR7在人结肠癌细胞系中的表达水平:FQ-PCR方法测定CXCR7mRNA在2种人结肠癌细胞系HT-29和SW480中的表达水平,选择其中CXCR7表达较高的一株结肠癌细胞进入后续部分的实验。
     结果
     1.人结肠癌组织和正常结肠组织中CXCR7mRNA相对表达的中位数分别为1.14和0.22,差异有统计学意义(P<0.05)。结肠癌组织中CXCR7蛋白的相对表达量为0.245±0.059,与正常结肠组织中的0.17±0.064相比差异有统计学意义(P<0.05)。
     2.在伴有和不伴有淋巴结转移的结肠癌组织中,CXCR7mRNA相对表达的中位数分别为1.455和0.74,差异有统计学意义(P<0.05);CXCR7蛋白的相对表达量分别为0.276±0.055和0.2±0.026,差异有统计学意义(P<0.05)。
     3.在不同分化程度的肿瘤组织中,CXCR7mRNA和蛋白的表达无显著性差异(P>0.05)。
     4.CXCR7mRNA在人结肠癌细胞系HT-29中的表达水平高于在SW-480中的表达水平。
     结论
     1.CXCR7在人结肠癌组织中的表达显著增高,并且在伴有区域淋巴结转移的结肠癌组织中表达上调。
     2.在不同分化程度的结肠癌组织中,CXCR7的表达无差异。
     3.HT-29细胞中CXCR7mRNA的表达较高。
     第二章
     构建CXCR7shRNA重组慢病毒表达载体
     目的
     筛选有效的CXCR7siRNA序列,构建重组慢病毒CXCR7shRNA表达载体。
     方法
     1.筛选有效抑制人结肠癌细胞CXCR7表达的siRNA序列:设计3个针对CXCR7靶基因序列的siRNA序列,分别构建重组shRNA质粒,小量包装shRNA慢病毒载体,并转染人结肠癌细胞HT-29,FQ-PCR和WB方法分别测定转染后HT-29细胞中CXCR7mRNA和蛋白的表达水平,证实沉默效果,筛选出有效靶点。
     2.构建LV-CXCR7shRNA:用所筛选出的siRNA序列构建重组shRNA质粒,大量包装LV-CXCR7shRNA,并检测病毒滴度。
     结果
     1.FQ-PCR检测3个siRNA序列对CXCR7基因的沉默效应,其中以LV-CXCR7shRNA-2下调最为明显(72%),WB检测结果与其一致。
     2.选择沉默效应为72%的siRNA序列包装shRNA慢病毒载体,测定病毒滴度为4.0×10~8TU/mL。
     结论
     成功构建慢病毒CXCR7shRNA表达载体,可有效下调人结肠癌HT-29细胞中CXCR7mRNA和蛋白的表达。
     第三章靶向抑制CXCR7的表达对人结肠癌细胞生物学特性的影响
     目的
     研究靶向抑制CXCR7的表达对人结肠癌细胞增殖、迁移活性的影响。
     方法
     1.将人结肠癌细胞HT-29分为3组:实验组、阴性对照组和空白对照组,实验组加入LV-CXCR7shRNA;阴性对照组加入LV-shRNA阴性对照;空白对照组不予任何处理。
     2.FQ-PCR和WB方法分别测定各组细胞CXCR7mRNA和蛋白的表达水平
     3.细胞活性实验(MTT)、Transwell细胞迁移实验检测各组细胞的增殖和迁移活力。
     结果
     1.CXCR7mRNA和蛋白的表达水平:FQ-PCR结果显示实验组CXCR7mRNA的相对表达水平低于阴性对照组和空白对照组(P<0.05),而两组对照组之间相比较无显著性差异(P>0.05)。WB结果与FQ-PCR一致,提示LV-CXCR7shRNA对HT-29细胞的CXCR7基因沉默有效。
     2.细胞活性实验(MTT):结果显示实验组细胞生长曲线较平缓,细胞生长速度较阴性对照组和空白对照组显著降低(P<0.05);阴性对照组细胞生长曲线较空白对照组低平,提示靶向沉默CXCR7的表达明显抑制结肠癌细胞的增殖活性,同时慢病毒载体本身具有的潜在细胞毒性。
     3.Transwell细胞迁移实验:结果显示实验组穿透滤过膜细胞数量较阴性对照组和空白对照组明显减少(P<0.05),两对照组比较无显著性差异(P>0.05)。结果提示靶向抑制CXCR7的表达明显抑制人结肠癌细胞HT-29的迁移活性。
     结论
     靶向沉默CXCR7的表达抑制结肠癌细胞增殖和迁移活性
     第四章CXCR7shRNA重组慢病毒表达载体对人结肠癌荷瘤裸鼠皮下种植瘤的治疗作用
     目的
     探讨慢病毒载体介导的CXCR7shRNA对人结肠癌裸鼠皮下种植瘤生长的抑制作用,为进一步研究以CXCR7为靶点的结肠癌基因治疗奠定基础。
     方法
     1.建立人结肠癌荷瘤鼠模型,计算成瘤率。
     2.动物分组:
     将人结肠癌荷瘤裸鼠随机分为3组,每组8只:
     治疗组:瘤体内注射LV-CXCR7shRNA 50μL;
     阴性对照组:瘤体内注射LV-shRNA negative control 50μL;
     空白对照组:瘤体内注射PBS 50μL。
     3.给药后各组裸鼠每3天测量荷瘤裸鼠肿瘤体积,绘制瘤体增长曲线。
     4.24天后处死动物,取出种植瘤,测量其体积、重量,计算抑瘤率。
     5.FQ-PCR和WB方法分别测定肿瘤组织的CXCR7mRNA和CXCR7蛋白表达水平。
     结果
     1.人结肠癌荷瘤鼠模型构建成功,成瘤率为100%。
     2.与阴性对照组和空白对照组比较,治疗组瘤体的增长速度慢、体积小(P<0.05),重量减轻(P<0.05),抑瘤率分别为38%和34.04%。
     3.治疗组的瘤体组织中CXCR7mRNA和蛋白的表达水平低于阴性对照组和空白对照组(P<0.05),阴性对照组和空白对照组比较无显著性差异(P>0.05),提示瘤体内注射靶向CXCR7shRNA慢病毒表达载体能有效下调荷瘤鼠瘤体组织中CXCR7的表达。
     结论
     CXCR7-shRNA慢病毒表达载体能显著抑制人结肠癌荷瘤裸鼠的瘤体生长。
The occurrence and deterioration of malignant tumor involve abnormal expression of a number of chemokine receptors.CXCL12 and its receptor CXCR4 are the key factors in tumor growth and metastasis. Recent study of prostate cancer showed that the expression of CXCR4 inhibited could only partially block the malignant growth and metastasis. Further study found that CXCR7(orphan receptor RDC1),with high affinity to CXCL12,is expressed in many tumor cell lines and directly involved in regulating the occurrence and deterioration of tumor.The signal pathway of CXCR7 is unclear and presumed to activate cells by a structural activate mechanism of reversible binding with its ligand.
     CXCR7 can enhance growth,adhesion and invasion of tumor cell in vitro.Tumorigenicity was significantly increased by transfecting CXCR7 sequence into breast cancer cells MDA-MB435s,but suppressed by transfecting CXCR7siRNA into other breast cancer cells 4T1 in vivo.The small molecule antagonist of CXCR7 could also significantly suppress the tumor growth.
     Present investigation of the effects of CXCR7 on biological behavior of tumor only involve in breast cancer,lung cancer,prostate cancer, bladder cancer and so on.This article intended to study "CXCR7 and colon cancer".First of all,CXCR7 was envisaged as a promotive factor of colon cancer,high-expression in colon cancer tissue and to associate with proliferation and migration of colon cancer cell.Furthermore,it was also assumed that gene silence of CXCR7-targeting could effectively inhibit malignant progression of colon cancer.Accordingly,the design of this experiment was as follows:
     1.To investigate the expression levels of CXCR7 in human colon cancer,normal colon tissue and colon cancer cell lines and to explore the relationships between CXCR7 expression level and colon cancer,lymph node metastasis and tumor differentiation.
     2.Designing and screening the siRNA sequence which can effectively inhibit the expression of CXCR7 of human colon cancer cell for constructing the recombinant lentiviral vector of CXCR7shRNA (lentivirus-CXCR7shRNA,LV-CXCR7shRNA).
     3.Research on the regulatory roles of LV-CXCR7shRNA on proliferative and migratory activities of human colon cancer cell for exploring the effect of CXCR7 on biological behaviors of colon cancer from the cellular level.
     4.Research on the therapeutic effect of LV-CXCR7shRNA on bearing-tumor nude mice of human colon cancer,which further confirm the role of CXCR7 on biological behaviors of colon cancer from in vivo of animals.
     Part one To investigate the expressive significance of CXCR7 in human colon cancer tissues and cell lines
     Objective
     Study the expression level and significance of CXCR7 in human colon cancer tissues,normal colon tissues and cell lines.
     Methods
     1.Expressive level of CXCR7 in human colon cancer tissues:the expression levels of CXCR7mRNA and protein were determined by Real-time fluorescent quantitative PCR(FQ-PCR) and Western blotting (WB) in human colon cancer tissues and normal colon tissue, respectively.Data were analyzed together with lymph node metastasis and tumor differentiation.
     2.Expression level of CXCR7 in human colon cancer cell lines:the expression levels of CXCR7mRNA were determined by FQ-PCR in HT-29 and SW480 of human colon cancer cell lines and the higher was selected for further experiment.
     Results
     1.The medians of CXCR7mRNA relative expression were 1.14 and 0.22,with statistically significant(P<0.05),in human colon cancer and normal colon tissue,respectively.The relative expression levels of CXCR7 protein were 0.245±0.0591 and 0.17±0.064 in colon cancer and normal colon tissue,the difference was statistically significant(P<0.05).
     2.The medians of CXCR7mRNA relative expression were 1.455 and 0.74 in colon cancer tissues with and without lymph node metastasis, respectively.The difference was statistically significant(P<0.05).The relative expression levels of CXCR7 protein were 0.276±0.055 and 0.2±0.026,with significance difference(P<0.05),in above two tissues, respectively.
     3.The expression levels of CXCR7mRNA and protein were no significant difference(P>0.05) in tumor tissues with different differentiations.
     4.The expression level of CXCR7mRNA of human colon cancer cell line HT-29 was higher than that of SW-480.
     Conclusions
     1.The expression of CXCR7 is significantly up-regulated in the colon cancer tissue with higher expressions as lymph node metastasis.
     2.The expressions of CXCR7 are not difference in differentiations.
     3.HT-29 cell was selected for higher expression of CXCR7mRNA for further experiment.
     Part two To construction the recombinant lentiviral expression vector of CXCR7shRNA
     Objective
     Screening effective sequence of CXCR7siRNA and constructing the LV-CXCR7shRNA.
     Methods
     1.Screening effective sequence of CXCR7siRNA in human colon cancer cell:3 siRNA interference sequences of CXCR7-targeting gene were designed for constructing recombinant plasmid-shRNA,respectively. A small amount of shRNA lentiviral vectors of 3 kinds of plasmid-shRNA was constructed and then transfected into human colon cancer cells HT-29,respectively.CXCR7 expressions of mRNA and protein were detected by FQ-PCR and WB,respectively.Then the effects of gene silence were determined for screening the effective target.
     2.Constructing LV-CXCR7shRNA:to construct the recombinant plasmid using the selected target sequence of siRNA for constructing a large number of LV-CXCR7shRNA,and then detecting the titer of virus.
     Results
     1.FQ-PCR detected the effects of 3 siRNA sequences on CXCR7 gene silencing.The decline of CXCR7mRNA was most marked(72%) by LV-CXCR7shRNA-2.This result was consistent with that of WB.
     2.To construct the lentvirus-shRNA vector using the siRNA sequence of 72%silence effect.The titer of virus detected was 4.0×10~8 TU/mL.
     Conclusions
     LV-CXCR7shRNA vector was constructed successfully which effectively reduced the expressions of CXCR7mRNA and protein in human colon cancer cell HT-29.
     Part three Effects of gene silence of CXCR7-targeting on biological characteristics of human colon cancer cell
     Objective
     To study the proliferative and migratory activities of human colon cancer cell after CXCR7-targeting inhibition.
     Methods
     1.Human colon cancer cells HT-29 were divided into 3 groups: experimental group,negative control group and blank control group.The experimental group was administrated with LV-CXCR7shRNA,negative control group with LV-shRNA negative control and blank control group without the any.
     2.CXCR7mRNA and protein of every group were detected using FQ-PCR and WB methods,respectively.
     3.The proliferative and migratory activities of every group were detected using cell active assay(MTT) and Transwell cell migratory assay.
     Results
     1.Expression levels of CXCR7mRNA and protein:CXCR7mRNA was lower expression in experimental group than the negative control group and blank control group(P<0.05),but no significant difference (P>0.05) between the two control groups.These results were consistent with protein expression.It is prompted that LV-CXCR7shRNA can effectively silence the gene expression of CXCR7 in HT-29 cell.
     2.Cell activity assay(MTT):the cell growth curve of experimental group was flatter and the level of cell growth was significantly lower(P <0.05)than the negative control group and blank control group.The cell growth curve of negative control group was lower than blank control group.These results suggest that the gene silencing of CXCR7-targetting significantly inhibit the proliferative activity of colon cancer cell.In addition,lentiviral vector has potential cytotoxicity.
     3.Transwell cell migratory assay:the cell populations of penetrating the filtrative membrane in experimental group were significantly lower(P<0.05)than negative control group and blank control group,with no significant difference(P>0.05) between the two control groups, suggesting that inhibition of CXCR7 expression suppress migratory activity of colon cancer cell.
     Conclusions
     Gene silence of CXCR7-targeting suppresses the proliferative and migratory activities of colon cancer cell.
     Part four The therapeutic effect of recombinant lentiviral-CXCR7shRNA vector on planted subcutaneous tumors of human colon tumor-bearing nude mice
     Objective
     To explore the growth inhibition of planted subcutaneous tumors in human colon tumor-bearing nude mice using lentivirus-CXCR7shRNA, for enlightening further study of CXCR7-targeting gene therapy toward human.
     Methods
     1.To establish the animal model of human colon tumor-bearing mice and calculate the tumor-formation rate.
     2.Tumor-bearing nude mice were randomized into 3 groups and each group contained 8.
     Treatment groups:injecting 50μL of LV-CXCR7shRNA into tumor;
     Negative control group:injecting 50μL of LV-shRNA negative control into tumor;
     Blank control group:injecting 50μL PBS into tumor.
     3.Tumor volumes were measured per 3 days after administration for mapping tumor growth curves.
     4.To sacrifice animals after 24 days,remove tumors,measure tumor volumes and weights and calculate inhibition rates,respectively.
     5.CXCR7mRNA and protein of tumors were measured by FQ-PCR and WB.
     Results
     1.The model animals of human colon tumor-bearing mice were established successfully by 100%.
     2.As compared with negative control and blank control group,the tumor growth of treatment group was slow and the tumor volume and weight of treatment group decreased significantly(P<0.05) with 38% and 34.04%tumor-growth-inhibition rates,respectively.
     3.As compared with negative control and blank control group,the expression of CXCR7mRNA and protein in tumors of treatment group were down-regulated significantly(P<0.05),with no significant difference(P>0.05) between the negative control group and blank control group.It was prompted that lentiviral-CXCR7shRNA effectively inhibited the expression of CXCR7 in tumors of human colon cancer-bearing nude mice.
     Conclusions
     The LV-CXCR7shRNA can effectively inhibit the growth of tumor of human colon tumor-bearing nude mouse.
引文
[1] Frieden TR, Myers JE, Krauskopf MS, et al. A public health approach to winning the war against cancer. Oncologist, 2008, 13(12): 1306-1313.
    [2] Li FY, Lai MD. Colorectal cancer, one entity or three. J Zhejiang Univ Sci B,2009, 10(3):219-229.
    [3] Colombo R, Moll J. Target validation to biomarker development: focus on RNA interference. Mol Diagn Ther, 2008, 12(2):63-70.
    [4] Szajda SD, Jankowska A, Zwierz K. Carbohydrate markers in colon carcinoma. Dis Markers, 2008, 25(4-5):233-242.
    [5] Kim J, Takeuchi H, Lam ST, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol, 2005, 23(12):2744-2753.
    [6] Rubie C, Kollmar O, Frick VO, et al. Differential CXC receptor expression in colorectal carcinomas. Scand J Immunol, 2008, 68(6):635-644.
    [7] Wang J, Shiozawa Y, Wang J, et al. The Role of CXCR7/RDC1 as a Chemokine Receptor for CXCL12/SDF-1 in Prostate Cancer. J Biol Chem, 2008,283(7):4283-4294.
    [8] Balabanian K, Lagane B, Infantino S, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem, 2005, 280(42):35760-35766.
    [9] Holger Knaut, Alexander F Schier. Clearing the Path for Germ Cells. Cell,2008,132(3):337-339.
    [10] Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med, 2006, 203(9):2201-2213.
    [11] Thelen M, Thelen S. CXCR7, CXCR4 and CXCL12:An eccentric trio? J Neuroimmunol, 2008, 198(1-2):9-13.
    [12] Proost P, Mortier A, Loos T, et al. Proteolytic processing of CXCL11 by CD 13/aminopeptidase N impairs CXCR3 and CXCR7 binding and signaling and reduces lymphocyte and endothelial cell migration. Blood, 2007,110(1):37-44.
    [13] Miao Z, Luker KE, Summers BC, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature.PNAS, 2007,104(40): 15735-15740.
    [14] Foerster, B R, Luker, K E, Luker, G D. Role of CXCR7 in breast cancer using molecular imaging techniques . FASEB Journal, 2007, 21(6):A775-776.
    [15] Raggo C, Ruhl R, McAllister S, et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus.Cancer Res, 2005, 65(12):5084-5095.
    [16] Goldmann T, Dromann D, Radtke J, et al. CXCR7 transcription in human non-small cell lung cancer and tumor-free lung tissues; possible regulation upon chemotherapy. Virchows Arch, 2008, 452(3):347-348.
    [17] S Iwakiri, M Sonobe, S Nagai, et al. Expression of CXCR7 in p-stage I non-small cell lung cancer increases the risk for postoperative recurrence at the distant site and correlates with poor disease free survival. European Journal of Cancer Supplements, 2008, 6(9): 157.
    [18] Natt F. siRNAs in drug discovery: target validation and beyond . Curr Opin Mol Ther, 2007, 9(3):242-247.
    [19] Tong AW. Small RNAs and non-small cell lung cancer. Curr Mol Med, 2006,6(3):339-349.
    [20] Takeshita F, Ochiya T. Therapeutic potential of RNA interference against cancer. Cancer Sci, 2006, 97(8):689-696.
    [21] Goldmann T, Dromann D, Radtke J, et al. CXCR7 transcription in human non-small cell lung cancer and tumor-free lung tissues; possible regulation upon chemotherapy. Virchows Arch, 2008, 452(3):347-348.
    [22] Khare S, Chaudhary K, Bissonnette M, et al. Aberrant crypt foci in colon cancer epidemiology. Methods Mol Biol, 2009, 472:373-386.
    [23] Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol, 2002, 283(1): R7-28.
    [24] Zlotnik A, Yoshie 0. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12(2):121-127.
    [25] Tskeshita F, Ochiya T. Therapeutic potential of RNA interference against cancer. Cancer Sci, 2006, 97(8):689-696.
    [26] Jana S, Chakraborty C, Nandi S, et al. RNA interference:potential therapeutic targets. Appl Microbiol Biotechnol, 2004, 65(6):649-657.
    [27] Jo Vandercappellen, Jo Van Damme, Sofie Struyf The role of CXC chemokines and their receptors in cancer. Cancer Letters, 2008, 267(2):226-244.
    [28] Bradley R. Foerster, Kathryn E, et al. Role of CXCR7 in breast cancer using molecular imaging techniques . FASEB Journal, 2007, 21(6):A775-776.
    [29] Wright FC, Law CH, Berry S, et al. Clinically important aspects of lymph node assessment in colon cancer. J Surg Oncol, 2009, 99(4):248-255.
    [30] Fujimori T, Fujii S, Saito N, et al. Pathological diagnosis of early colorectal carcinoma and its clinical implications. Digestion, 2009, Suppl 1: 40-51.
    [31] Rossi JJ. Expression strategies for short hairpin RNA interference triggers .Hum Gene Ther, 2008, 19(4):313-317.
    [32] Ma Y, Chan CY, He ML. RNA interference and antiviral therapy . World J Gastroenterol, 2007, 13(39):5169-5179.
    [33] Lech P, Somia NV. Retrovirus vectors . Contrib Nephrol, 2008, 159:30-46.
    [34] Lim KI, Schaffer DV. Library selection approaches to engineering enhanced retroviral and lentiviral vectors . Comb Chem High Throughput Screen, 2008,11(2):111-117.
    [35] Kloc M. Emerging novel functions of RNAs, and binary phenotype? Dev Biol,2008, 317(2):401-404.
    [36] Wan H, Xiong CL. RNA interference and its application in andrology research.Zhonghua Nan Ke Xue, 2008, 14(6):545-549.
    [37] Fuchs U, Borkhardt A. The application of siRNA technology to cancer biology discovery. Adv Cancer Res, 2007, 96:75-102.
    [38] Kolfschoten IG, Regazzi R. Technology Insight: small, noncoding RNA molecules as tools to study and treat endocrine diseases. Nat Clin Pract Endocrinol Metab, 2007, 3(12):827-834.
    [39] St0rvold GL, Andersen TI, Perou CM,et al. siRNA: a potential tool for future breast cancer therapy? Crit Rev Oncog, 2006,12(1-2):127-150.
    [40] Barariska M, Skretkowicz J, Prospects of gene therapy. Wiad Lek, 2007,60(7-8):305-311.
    [41] Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001,409(6818):363-366.
    [42] Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets, 2007, 8(3):469-482.
    [43] Ji X. The mechanism of RNase Ⅲ action: how dicer dices. Curr Top Microbiol Immunol, 2008, 320:99-116.
    [44] [44]Barber GN. The NFAR's (nuclear factors associated with dsRNA):evolutionarily conserved members of the dsRNA binding protein family. RNA Biol,2009,6(1):35-39.
    [45] Pushparaj PN, Melendez AJ. Short interfering RNA (siRNA) as a novel therapeutic. Clin Exp Pharmacol Physiol, 2006, 33(5-6):504-510.
    [46] Boisvert ME, Simard MJ. RNAi pathway in C. elegans: the argonautes andcollaborators. Curr Top Microbiol. Immunol, 2008, 320:21-36.
    [47] Zofall M, Grewal SI. RNAi-mediated heterochromatin assembly in fission yeast.Cold Spring Harb Symp Quant Biol, 2006, 71:487-496.
    [48] Patel DJ, Ma JB, Yuan YR, et al. Structural biology of RNA silencing and its functional implications. Cold Spring Harb Symp Quant Biol, 2006, 71:81-93.
    [49] Parker JS, Roe SM, Barford D. Molecular mechanism of target RNA transcript recognition by Argonaute-guide complexes. Cold Spring Harb Symp Quant Biol,2006,71:45-50.
    [50] Aigner A. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol, 2007, 76(1):9-21.
    [51] Takahashi Y, Nishikawa M, Takakura Y. In vivo siRNA delivery to tumor cells and its application to cancer gene therapy. Yakugaku Zasshi, 2007, 127(10):1525-1531.
    [52] Huang C, Li M, Chen C, et al. Small interfering RNA therapy in cancer:mechanism, potential targets, and clinical applications. Expert Opin Ther Targets., 2008, 12(5):637-645.
    [53] Pappas TC, Bader AG, Andruss BF, et al. Applying small RNA molecules to the directed treatment of human diseases: realizing the potential. Expert Opin Ther Targets, 2008, 12(1): 115-127.
    [54] Honma K, Takeshita F, Ochiya T. Application of atelocollagen-mediated siRNA delivery for RNAi therapies. Yakugaku Zasshi, 2007, 127(5):807-812.
    [55] Li W, Cha L. Predicting siRNA efficiency. Cell Mol Life Sci, 2007,64(14):1785-1792.
    [56] Jazag A, Ijichi H, Kanai F, et al. Smad4 silencing in colon cancer cell lines using stable RNA interference and gene expression profiles induced by transforming growth factor p . Oncogene, 2005, 24(4):662-671.
    [57] Wagner E. Advances in cancer gene therapy: tumor-targeted delivery of therapeutic pDNA, siRNA, and dsRNA nucleic acids. J BUON, 2007, 12 Suppl 1:S77-82.
    [58] Young LS, Searle PF, Onion D, et al. Viral gene therapy strategies: from basic science to clinical application. J Pathol., 2006, 208(2):299-318.
    [59] Gardlik R, Palffy R, Hodosy J, et al. Vectors and delivery systems in gene therapy. Med Sci Monit, 2005, 11(4):RA110-121.
    [60] Worgall S. A realistic chance for gene therapy in the near future. Pediatr Nephrol, 2005, 20(2): 118-124.
    [61] Sandoval Rodriguez AS, Salazar Montes AM, Armendariz-Borunda J. Viral vectors in gene therapy. Advantages of the adenoassociated vectors. Rev Gastroenterol Mex., 2005, 70(2): 192-202.
    [62] Sumimoto H, Kawakami Y. Lentiviral vector-mediated RNAi and its use for cancer research . Future Oncol, 2007, 3(6):655-664.
    [63] Frecha C, Szecsi J, Cosset FL, et al. Strategies for targeting lentiviral vectors. Curr Gene Ther, 2008, 8(6):449-460.
    [64] Schambach A, Baum C. Clinical application of lentiviral vectors-concepts and practice. Curr Gene Ther, 2008, 8(6):474-482.
    [65] Singer O, Verma IM. Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther. 2008, 8(6):483-488.
    [66] Follenzi A, Santambrogio L, Annoni A. Immune responses to lentiviral vectors .Curr Gene Ther, 2007, 7(5):306-315.
    [67] Cockrell AS, Kafri T. Gene delivery by lentivirus vectors . Mol Biotechnol,2007, 36(3): 184-204.
    [68] R(?)ty JK, Lesch HP, Wirth T, et al. Improving safety of gene therapy . Curr Drug Saf, 2008, 3(1):46-53.
    [69] Sarkis C, Philippe S, Mallet J, et al. Non-integrating lentiviral vectors. Curr Gene Ther, 2008, 8(6):430-437.
    [70] Flotte TR. Gene therapy:the first two decades and the current state-of-the-art. J Cell Physiol, 2007, 213(2):301-305.
    [71] Mandel RJ, Burger C, Snyder RO. Viral vectors for in vivo gene transfer in Parkinson's disease: properties and clinical grade production. Exp Neurol, 2008,209(1):58-71.
    [72] Deryugina El, Quigley JP. Matrix metalloproteinases and tumor metastasis.Cancer Metastastic Rev, 2006, 25(1):9-34.
    [73] Tanaka T. Colorectal carcinogenesis: Review of human and experimental animal studies. J Carcinog, 2009, 8:5.
    [74] Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett, 2008, 267(2):226-244.
    [75] Shimizu N, Soda Y, Kanbe K, et al. A putative G protein-coupled receptor,RDC1, is a novel coreceptor for human and simian immunodeficiency viruses. J Virol, 2000, 74(2): 619-626.
    [76] Hegde SR, Sun W, Lynch JP. Systemic and targeted therapy for advanced colon cancer. Expert Rev Gastroenterol Hepatol, 2008, 2(1):135-149.
    [77] Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses:strike and counterstrike. Nat Biotechnol, 2007, 25(12): 1435-1443.
    [78] Cheema SK, Chen E, Shea LD, et al. Regulation and guidance of cell behavior for tissue regeneration via the siRNA mechanism. Wound Repair Regen, 2007,15(3):286-295.
    [79] Lv W, Zhang C, Hao J. RNAi technology: a revolutionary tool for the colorectal cancer therapeutics. World J Gastroenterol, 2006, 12(29):4636-4639.
    [80] Li SD, Huang L. Targeted delivery of siRNA by nonviral vectors: lessons learned from recent advances. Curr Opin Investig Drugs, 2008,9(12):1317-1323.
    [81] Dalmay T. MicroRNAs and cancer. J Intern Med. 2008, 263(4):366-375.
    [82] Micklem DR, Lorens JB. RNAi screening for therapeutic targets in human malignancies. Curr Pharm Biotechnol, 2007, 8(6):337-343.
    [83] Martin SE, Caplen NJ. Applications of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet, 2007, 8:81-108.
    [84] Chen Y, Huang L. Tumor-targeted delivery of siRNA by non-viral vector: safe and effective cancer therapy. Expert Opin Drug Deliv, 2008, 5(12): 1301-1311.
    [85] Schwartz EI. Potential application of RNAi for understanding and therapy of neurodegenerative diseases. Front Biosci, 2009, 14: 297-320.
    [86] Lochmanova J, Bartos M. RNA interference and molecular pathology of selected diseases. Cas Lek Cesk, 2008, 147(12):607-615.
    [87] Pushparaj PN, Aarthi JJ, Manikandan J, et al. siRNA, miRNA, and shRNA: in vivo applications. J Dent Res, 2008, 87(11):992-1003.
    [88] Love TM, Moffett HF, Novina CD. Not miR-ly small RNAs: big potential for microRNAs in therapy. J Allergy Clin Immunol, 2008, 121(2):309-319.
    [89] Durcan N, Murphy C, Cryan SA. Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol Pharm, 2008, 5(4):559-566.
    [90] Iorns E, Lord CJ, Turner N, Ashworth A. Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov, 2007, 6(7):556-568.
    [91] Hadj-Slimane R, Lepelletier Y, Lopez N, et al. Short interfering RNA (siRNA),a novel therapeutic tool acting on angiogenesis. Biochimie, 2007, 89(10):1234-1244.
    [92] Pardridge WM. shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev,2007, 59(2-3): 141-152.
    [93] White K, Nicklin SA, Baker AH. Novel vectors for in vivo gene delivery to vascular tissue. Expert Opin Biol Ther, 2007, 7(6):809-821.
    [94] Martinez-Flores F, Jimenez-Orozco FA, Villegas-Castrej(?)n H. Molecular biology of adenoviral vectors. Cir Cir, 2006, 74(6):483-493.
    [95] Witlox MA, Lamfers ML, Wuisman PI, et al. Evolving gene therapy approaches for osteosarcoma using viral vectors: review. Bone, 2007, 40(4):797-812.
    [96] Berges BK, Wolfe JH, Fraser NW. Transduction of brain by herpes simplex virus vectors. Mol Ther, 2007, 15(1):20-29.
    [97] Sumimoto H, Kawakami Y. Lentiviral vector-mediated RNAi and its use for cancer research. Future Oncol, 2007, 3(6):655-664.
    [98] Ciuffi A. Mechanisms governing lentivirus integration site selection. Curr Gene Ther, 2008, 8(6):419-429.
    [99] Wang X, Mani P, Sarkar DP, et al. Ex vivo gene transfer into hepatocytes.Methods Mol Biol, 2009, 481:117-140.
    [100]Ohrt T, Schwille P. siRNA modifications and sub-cellular localization: a question of intracellular transport? Curr Pharm Des, 2008,14(34):3674-3685.
    [101]Munkacsy G, Tulassay Z, Gyorffy B. RNA interference and its clinical applications. Orv Hetil, 2007, 148(47):2235-2240.
    [102] Bahadori M. New Advances in RNAs. Arch Iran Med, 2008, 11(4):435-443.
    [103] Gu W, Putral LN, Irving A, et al. The development and future of oligonucleotide-based therapies for cervical cancer. Curr Opin Mol Ther, 2007,9(2):126-131.
    [104] Ma Y, Chan CY, He ML. RNA interference and antiviral therapy. World J Gastroenterol, 2007, 13(39):5169-5179.
    [105] Sanguino A, Lopez-Berestein G, Sood AK. Strategies for in vivo siRNA delivery in cancer. Mini Rev Med Chem, 2008, 8(3):248-555.
    [106] Wang QZ, Lv YH, Diao Y, et al. The design of vectors for RNAi delivery system. Curr Pharm Des, 2008, 14(13):1327-1340.
    [107] Liu Y, Deisseroth A. Tumor vascular targeting therapy with viral vectors. Blood,2006, 107(8):3027-3033.
    [108]Teschemacher AG, Wang S, Lonergan T, et al. Targeting specific neuronal populations using adeno-and lentiviral vectors: applications for imaging and studies of cell function. Exp Physiol, 2005, 90(1):61-69.
    [109] Spirin PV, Vil'gelm AE, Prasolov VS. Lentiviral vectors. Mol Biol (Mosk),2008,42(5):913-926.
    [110] Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 2003, 21(6):635-637.
    [111]Masiero M, Nardo G, Indraccolo S, et al. RNA interference:implications for cancer treatment. Mol Aspects Med, 2007, 28(1):143-166.
    [112] Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA "off-target"transcript silencing mediated by seed region sequence complementarity. RNA,2006, 12(7): 1179-1187.
    [113] Svoboda P. Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr Opin Mol Ther, 2007, 9(3):248-257.
    [114] Sledz CA, Williams BR. RNA interference and double-stranded-RNA-activated pathways. Biochem Soc Trans, 2004, 32(Pt6):952-956.
    [115] Jackson AL, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. RNA, 2006, 12(7):1197-1205.
    [1]Vicari AP,Caux C.Chemokines in cancer.Cytokine Growth Factor Rev,2002,13(2):143-154.
    [2]Balkwill F,Mantovani A.Inflammation and cancer:back to Virchow? Lancet,2001,357(9255):539-545.
    [3]Olson TS,Ley K.Chemokines and chemokine receptors in leukocyte trafficking.Am J Physiol Regul Integr Comp Physiol,2002,283(1):R7-28.
    [4]Zlotnik A,Yoshie O.Chemokines:a new classification system and their role in immunity.Immunity,2000,12(2):121-127.
    [5]Murphy PM,Baggiolini M,Charo IF,et al.International Union of Pharmacology.ⅩⅫ.Nomenclature for chemokine receptors.Pharmacol Rev,2000,52(1):145-176.
    [6]Belperio JA,Keane MP,Arenberg DA,et al.CXC chemokines in angiogenesis.J Leukoc Biol,2000,68(1):1-8.
    [7]Strieter RM,Polverini PJ,Kunkel SL,et al.The functional role of the ELR motif in CXC chemokine-mediated angiogenesis.J.Biol Chem,1995,270(45):27348-27357.
    [8]Proudfoot AE,Power CA,Wells TN.The strategy of blocking the chemokine system to combat disease.Immunol Rev,2000,177:246-256.
    [9]Kulbe H,Levinson NR,Balkwill F,et al.The chemokine network in cancermuch more than directing cell movement.Int J Dev Biol,2004,48(5-6):489-496.
    [10] Balabanian K, Lagane B, Infantino S, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem, 2005,280(42):35760-35766.
    [11] Devalaraja MN, Richmond A. Multiple chemotactic factors: fine control or redundancy? Trends Pharmacol Sci, 1999, 20(4): 151-156.
    [12] Adriano LS Souza, Silvio R Sousa-Pereira, Mauro M Teixeira, et al. The role of chemokines in Schistosoma mansoni infection: insights from human disease and murine models. Mem Inst Oswaldo Cruz. Rio de Janeiro, 2006, lOl(Suppl.I):333-338.
    [13] Christopherson K W, Coper S, Broxmeyer H E. Cell surface eptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood, 2003,101(12):4680-4686.
    [14] Schier AF. Chemokine signaling:rules of attraction. Curr Biol, 2003, 13(5):R192-194.
    [15] Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood, 2000, 95(10):3032-3043.
    [16] Murphy PM. Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev, 1996, 7(1):47-64.
    [17] Kuang Y, Wu Y, Jiang H, et al. Selective G protein coupling by C-C chemokine receptors. J Biol Chem, 1996, 271(8):3975-3978.
    [18] Huang R, Lian JP, Robinson D, et al. Neutrophils stimulated with a variety of chemoattractants exhibit rapid activation of p21-activated kinases (Paks):separate signals are required for activation and inactivation of paks. Mol Cell Biol, 1998, 18(12):7130-7138.
    [19] Ganju RK, Dutt P, Wu L, et al. Beta-chemokine receptor CCR5 signals via the novel tyrosine kinase RAFTK. Blood, 1998, 91(3):791-797.
    [20] Li H, Nord EP. IL-8 amplifies CD40/CD154 mediated icam-1 production via the cxcr-1 receptor and p38-mapk pathway in human renal proximal tubule cells.Am J Physiol Renal Physiol, 2009, 296(2):F438-445.
    [21] Park EJ, Yi J, Chung KH, et al. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured 'BEAS-2B cells. Toxicol Lett, 2008,
    ??183(3):222-229.
    [22] Turner SJ, Domin J, Waterfield MD, et al. The CC chemokine monocyte chemotactic peptide-1 activates both the class I p85/p110 phosphatidylinositol 3-kinase and the class II PI3K-C2alpha. J Biol Chem, 1998, 273(40): 25987-25995.
    [23] Kassmer SH, Niggemann B, Punzel M, et al. Cytokine combinations differentially influence the SDF-1 alpha-dependent migratory activity ofcultivated murine hematopoietic stem and progenitor cells. Biol Chem, 2008,389(7): 863-872.
    [24] Proost P, Mortier A, Loos T, et al. Proteolytic processing of CXCL11 by CD13/aminopeptidase N impairs CXCR3 and CXCR7 binding and signaling and reduces lymphocyte and endothelial cell migration. Blood, 2007, 110(1):37-44.
    [25] Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med, 2006, 203:2201-2213.
    [26] Wysoczynski M, Reca R, Ratajczak J, et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem / progenitor cells to an SDF-1 gradient. Blood, 2005, 105(1):40-48.
    [27] Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci, 2008,13:2400-2407.
    [28] Saijo Y, Tanaka M, Miki M, et al. Proinflammatory cytokine IL-1 beta promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors:in vivo analysis of tumor-stromal interaction. J Immunol, 2002,169(1):469-475.
    [29] ]Gasperini S, Marchi M, Calzetti F, et al. Gene expression and production of the monokine induced by IFN-gamma(mig), IFN-inducible T cell alpha chemoattractant(I-TAC) , and IFN-gamma-inducible protein-10 (IP-10) chemokines by human neutrophils. Journal of Immunology, 1999, 162(8):4928-4937.
    [30] K(?)nig JE, Senge T, Allhoff EP, et al. Analysis of the inflammatory network in benign prostate hyperplasia and prostate cancer. Prostate, 2004, 58(2):121-129.
    [31] Kundu JK, Surh YJ. Inflammation:Gearing the journey to cancer. Mutat Res,2008,659(1-2):15-30.
    [32] Hofman VJ, Moreilhon C, Brest PD, et al. Gene expression profiling in human gastric mucosa infected with Helicobacter pylori. Mod Pathol, 2007, 20(9): 974-989.
    [33] Sieveking D, Mitchell HM, Day AS. Gastric epithelial cell CXC chemokine secretion following Helicobacter pylori infection in vitro. J Gastroenterol Hepatol, 2004,19(9):982-987.
    [34] Kuzuhara T, Suganuma M, Kurusu M, et al. Helicobacter pylori-secreting protein Tipalpha is a potent inducer of chemokine gene expressions in stomach cancer cells. J Cancer Res Clin Oncol, 2007, 133(5):287-296.
    [35] Galamb O, Gyorffy B, Sipos F, et al. Helicobacter pylori and antrum erosion-specific gene expression patterns: the discriminative role of CXCL13 and VCAM1 transcripts. Helicobacter, 2008, 13(2):112-126.
    [36] Beswick EJ, Reyes VE. Macrophage migration inhibitory factor and interleukin-8 produced by gastric epithelial cells during Helicobacter pylori exposure induce expression and activation of the epidermal growth factor receptor. Infect Immun, 2008, 76(7):3233-3240.
    [37] Joh T, Kataoka H, Tanida S, et al. Helicobacter pylori-stimulated interleukin-8 (IL-8) promotes cell proliferation through transactivation of epidermal growth factor receptor (EGFR) by disintegrin and metalloproteinase (ADAM) activation. Dig Dis Sci, 2005, 50(ll):2081-2089.
    [38] Raman D, Baugher PJ, Thu YM, et al. Role of chemokines in tumor growth.Cancer Lett, 2007, 256(2): 137-165.
    [39] Lee YC, Lin JT, Chen TH, et al. Is eradication of helicobacter pylori the feasible way to prevent gastric cancer? New evidence and progress, but still a long way to go. J Formos Med Assoc, 2008, 107(8):591-599.
    [40] Raggo C, Ruhl R, McAllister S, et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus.
    ??Cancer Res, 2005, 65(12):5084-5095.
    [41] Wald O, Weiss ID, Galun E, et al. Chemokines in hepatitis C virus infection:pathogenesis, prognosis and therapeutics. Cytokine, 2007, 39(1):50-62.
    [42] Claudia Rubie, Vilma Oliveira Frick, Mathias Wagner, et al. ELR+ CXC chemokine expression in benign and malignant colorectal conditions. BMC Cancer, 2008, 8:178.
    [43] Jin C, Fu WX, Xie LP, et al. SDF-1 alpha production is negatively regulated by mouse estrogen enhanced transcript in a mouse thymus epithelial cell line. Cell Immunol, 2003, 223(1):26-34.
    [44] Wright N, de Lera TL, Garcia-Moruja C, et al. Transforming growth factor-beta 1 down-regulates expression of chemokine stromal cell-derived factor-1:functional consequences in cell migration and adhesion. Blood, 2003,102(6):1978-1784.
    [45] Hachet-Haas M, Balabanian K, Rohmer F, et al. Small neutralizing molecules to inhibit actions of the chemokine CXCL12. J Biol Chem, 2008, 283(34): 23189-23199.
    [46] Sehgal A, Keener C, Boynton AL, et al. CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. J Surg Oncol, 1998, 69(2):99-104.
    [47] Barbero S, Bonavia R, Bajetto A, et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res, 2003, 63(8):1969-1974.
    [48] Schrader AJ, Lechner O, Templin M, et al. CXCR4/CXCL12 expression and signalling in kidney cancer. Br J Cancer, 2002, 86(8): 1250-1256.
    [49] Zhou Y, Larsen PH, Hao C, et al. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem, 2002, 277(51): 49481-49487.
    [50] Sun YX, Wang J, Shelburne CE, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem, 2003,89(3):462-473.
    [51] Hartmann TN, Burger JA, Glodek A, et al. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene, 2005, 24(7):4462-4471.
    [52] Hazlehurst LA, Damiano JS, Buyuksal I, et al. Adhesion to fibronectin via β1 integrins regulates p27kipl levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene, 2000,19(38): 4319-4327.
    [53] Uhm JH, Dooley NP, Kyritsis AP, et al. Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin Cancer Res,1999,5(6):1587-1594.
    [54] Muller A, Sonkoly E, Eulert C, et al. Chemokine receptors in head and neck cancer: association with metastatic spread and regulation during chemotherapy.Int J Cancer, 2006,118(9):2147-2157.
    [55] Lapteva N, Yang AG, Sanders DE, et al. CXCR4 knock-down by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther, 2005, 12(1):84-89.
    [56] Varney ML, Johansson SL, Singh RK. Distinct expression of CXCL8 and its receptors CXCR1 and CXCR2 and their association with vessel density and aggressiveness in malignant melanoma. Am J Clin Pathol, 2006, 125(2):209-216.
    [57] Schadendorf D, Moller A, Algermissen B, et al. IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol, 1993, 151(5):2667-2675.
    [58] Takamori H, Oades ZG, Hoch OC, et al. Autocrine growth effect of IL-8 and GROalpha on a human pancreatic cancer cell line, Capan-1. Pancreas, 2000,21(1):52-56.
    [59] Marchesi F, Monti P, Leone BE, et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res, 2004, 64(22):8420-8427.
    [60] Strieter RM, Burdick MD, Gomperts BN, et al. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev, 2005, 16(6):593-609.
    [61] Addison CL, Daniel TO, Burdick MD, et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR(+) CXC chemokine-induced angiogenic activity. J Immunol, 2000, 165(9):5269-5277.
    [62] Murdoch C, Monk PN, Finn A. CXC chemokine receptor expression on human endothelial cells. Cytokine, 1999, 11(9):704-712.
    [63] Schraufstatter IU, Trieu K, Zhao M, et al. IL-8-mediated cell migration in endothelial cells depends on cathepsin B activity and transactivation of the epidermal growth factor receptor. J Immunol, 2003, 171 (12):6714-6722.
    [64] Heidemann J, Ogawa H, Dwinell MB, et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem, 2003, 278(10):8508-8515.
    [65] Keane MP, Belperio JA, Xue YY, et al. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol, 2004,172(5):2853-6280.
    [66] Mestas J, Burdick MD, Reckamp K, et al. The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. J Immunol, 2005, 175(8):5351-5357.
    [67] Belperio JA, Keane MP, Burdick MD, et al. Role of CXCR2/CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome. J Clin Invest,2005, 115(5):1150-1162.
    [68] Wislez M, Fujimoto N, Izzo JG, et al. High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras.Cancer Res, 2006, 66(8):4198-4207.
    [69] Li A, Varney ML, Singh RK. Constitutive expression of growth regulated oncogene(gro) in human colon carcinoma cells with different metastatic potential an its role in regulating their metastatic phenotype. Clin Exp Metastasis, 2004, 21(7):571-579.
    [70] Wente MN, Keane MP, Burdick MD, et al. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett, 2006, 241(2):221-227.
    [71] Sukkar A, Jenkins J, Sanchez J, et al. Inhibition of CXCR2 attenuates bronchial angiogenesis in the ischemic rat lung. J Appl Physiol, 2008, 104(5): 1470-1475.
    [72] Sanchez J, Moldobaeva A, McClintock J, et al. The role of CXCR2 in systemic neovascularization of the mouse lung.J Appl Physiol,2007,103(2):594-599.
    [73]Dingzhi Wang,Haibin Wang,Joanne Brown,et al.CXCL1 induced by prostaglandin E_2 promotes angiogenesis in colorectal cancer.J Exp Med,2006,203(4):941-951.
    [74]Liang Z,Brooks J,Willard M,CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway.Biochem Biophys Res Commun,2007,359(3):716-722.
    [75]Driessen WH,Fujii N,Tamamura H,et al.Development of peptide-targeted lipoplexes to CXCR4-expressing rat glioma cells and rat proliferating endothelial cells.Mol Ther,2008,16(3):516-524.
    [76]Maderna E,Salmaggi A,Calatozzolo C,et al.Nestin,PDGFRbeta,CXCL12and VEGF in Glioma Patients:Different Profiles of(Pro-Angiogenic) Molecule Expression Are Related with Tumor Grade and May Provide Prognostic Information.Cancer Biol Ther,2007,6(7):1018-1024.
    [77]Zagzag D,Lukyanov Y,Lan L,et al.Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma:implications for angiogenesis and glioma cell invasion.Lab Invest,2006,86(12):1221-1232.
    [78]Phillips RJ,Burdick MD,Lutz M,et al.The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases.Am J Respir Crit Care Med,2003,167(12):1676-1686.
    [79]Ma Q,Jones D,Borghesani PR,et al.Impaired B-lymphopoiesis,myelopoiesis,and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice.Proc Natl Acad Sci USA,1998,95(16):9448-9453.
    [80]Tachibana K,Hirota S,Iizasa H,et al.The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract.Nature,1998,393(6685):591-594.
    [81]彭亦良,梁后杰,陈渝等.CXCR4反义核酸对结肠癌细胞VEGF-C mRNA 表达的影响及体外侵袭的抑制作用.解放军医学杂志,2007,32(4):359-362.
    [82]Miao Z,Luker KE,Summers BC,et al.CXCR7(RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature.Proc Natl Acad Sci U S A,2007,104(40):15735-15740.
    [83] Thelen M, Thelen S. CXCR7, CXCR4 and CXCL12: An eccentric trio? J Neuroimmunol, 2008, 198(1-2):9-13.
    [84] Wang J, Shiozawa Y, Wang J, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem, 2008, 283(7):4283 -4294.
    [85] Green CJ, Charles RS, Edwards BF, et al. Identification and characterization of PF4varl, a human gene variant of platelet factor 4. Mol Cell Biol, 1989,9(4):1445-1451.
    [86] Eisman R, Surrey S, Ramachandran B, et al. Structural and functional comparison of the genes for human platelet factor 4 and PF4alt. Blood, 1990,76(2):336-344.
    [87] Loetscher M, Loetscher P, Brass N, et al. Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol, 1998, 28(11):3696-3705.
    [88] Ehlert JE, Addison CA, Burdick MD, et al. Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. J Immunol, 2004. 173(10):6234-6240.
    [89] Lasagni L, Francalanci M, Annunziato F, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10,Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med,2003,197(11):1537-1549.
    [90] Lazzeri E, Romagnani P. CXCR3-binding chemokines:novel muhifunctional therapeutic targets. Curr Drug Targets Immune Endocr Metabol Disord, 2005,5(1):109-118.
    [91] Feldman ED, Weinreich DM, Carroll NM, et al. Interferon gamma-inducible protein 10 selectively inhibits proliferation and induces apoptosis in endothelial cells. Ann Surg oncol, 2006,13(1):125-133.
    [92] Burdick MD, Murray LA, Keane MP, et al. CXCL11 attenuates bleomycin- induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med, 2005, 171(3):261-268.
    [93] Mark O. Aksoy, Yi Yang, Rong Ji, et al. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.. Am J Physiol Lung Cell Mol Physiol, 2006, 290(5):L909-918.
    [94] M(?)ller A, Homey B, Soto H,et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001,410(6824):50-56.
    [95] Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl JMed, 2001, 345(11):833-835.
    [96] Sidhu SS, Blaveri E, et al. The significance of cancer cell expression of the chemokine receptor CXCR4. Int J Cancer, 2005, 114(2): 182-189.
    [97] Magda Kucia, Ryan Reca, Katarzyna Miekus, et al. Trafficking of Normal Stem Cells and Metastasis of Cancer Stem Cells Involve Similar Mechanisms: Pivotal Role of the SDF-1-CXCR4 Axis. Stem Cells, 2005,23(7):879-8794.
    [98] Albert Zlotnik. Chemokines in neoplastic progression. Semin Cancer Biol,2004, 14(3):181-185
    [99] Phillips RJ, Mestas J, Gharaee-Kermani M, et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1 alpha. J Biol Chem, 2005, 280(23):22473-22481.
    [100] Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth inosseous sites in vivo. J Bone Miner Res, 2005, 20(2):318-329.
    [101] Kryczek I, Wei S, Keller E, et al. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol, 2007, 292(3):C987-995.
    [102]Dontu G, Al-Hajj M, Abdallah WM, et al. Stem cells in normal breast development and breast cancer. Cell Prolif, 2003, 36(suppl 1):59-72.
    [103] Geminder H, Sagi-Assif O, Goldberg L, et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol, 2001,167(8):4747-4757.
    [104]Porcile C, Bajetto A, Barbero S, et al. CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Ann N Y AcadSci, 2004, 1030:162-169.
    [105] Hall JM, Korach KS. Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol, 2003, 17(5):792-803.
    [106]Libura J, Drukala J, Majka M, et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 2002, 100(7):2597-2606.
    [107] Jankowski K, Kucia M, Wysoczynski M, et al. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res, 2003, 63(22):7926-7935.
    [108]Kang YB, Siegel PM, Shu WP, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cells, 2003, 3(6): 537-549.
    [109] Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 2005,20(2):318-329.
    [110] Scotton CJ, Wilson JL, Milliken D, et al. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res, 2001, 61(13):4961-4965.
    [111]Basile J, Thiers B, Maize J Sr, et al. Chemokine receptor expression in non-melanoma skin cancer. J Cutan Pathol, 2008, 35(7):623-629.
    [112] Balkwill F. The significance of cancer cell expression of the ehemokine receptor CXCR4. Semin Cancer Biol, 2004, 14(3): 171-179.
    [113]Darash-Yahana M, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis.FASEB J, 2004, 8(11):1240-1242.
    [114] Kim J, Takeuchi H, Lam ST, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol, 2005, 23(12):2744-2753.
    [115] Ottaiano A, di Palma A, Napolitano M, et al. Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunol Immunother, 2005, 54(8):781-791.
    [116]Koshiba T,Hosotani R,Miyamoto Y,et al.Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer:a possible role for tumor progression.Clin Cancer Res,2000,6(9):3530-3535.
    [117]Saur D,Seidler B,Schneider G,et al.CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer.Gastroenterology,2005,129(4):1237-1250.
    [118]Serrati S,Margheri F,Fibbi G,et al.Endothelial cells and normal breast epithelial Cells enhance invasion of breast carcinoma cells by CXCR-4-dependent up-regulation of urokinase-type plasminogen activator receptor(uPAR,CD87) expression.J Pathol,2008,214(5):545-554.
    [119]Marchesi F,Monti P,Leone BE,et al.Increased survival,proliferation,and migration in metastatic human pancreatic tumor cells expressing functional CXCR4.Cancer Res,2004,64(22):8420-8427.
    [120]Chu H,Zhou H,Liu Y.el al.Functional expression of CXC chemokine receptor-4 mediates the secretion of matrix metalloproteinases from mouse hepatocarcinoma cell lines with different lymphatic metastasis ability.Int J Biochem Cell Biol,2007,39(1):197-205.
    [121]张孟贤,韩娜,冷彦.趋化性细胞因子受体C×CR4基因沉默对大肠癌细胞体外侵袭及增殖能力的影响.世界华人消化杂志,2007,15(12):1331-1337.
    [122]P(?)rez EC,Machado J Jr,Aliperti F,et al.B-1 lymphocytes increase metastatic behavior of melanoma cells through the extracellular signal-regulated kinase pathway.Cancer Sci,2008,99(5):920-928.
    [123]Mori T,Doi R,Koizumi M,et al.CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer.Mol Cancer Ther,2004,3(1):29-37.
    [124]Murakami T,Maki W,Cardones AR,et al.Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16melanoma cells.Cancer Res,2002,62(24):7328-7334.
    [125]Rolli M,Fransvea E,Pilch J,et al.CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin.Cancer Res, 2003, 63(20):6751-6757.
    [126]Rolli M, Fransvea E, Pilch J, et al. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100(16):9482-9487.
    [127] Engl T, Relja B, Marian D, et al. CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia, 2006,8(4):290-301.
    [128]Helbig G, Christopherson KW 2nd, Bhat-Nakshatri ?,et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem, 2003, 278(24):21631-21638.
    [129] Sato N, Matsubayashi H, Fukushima N, et al. The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther, 2005,4(1), 70-76.
    [130] Lee BC, Lee TH, Zagozdzon R, et al. Carboxyl-termina Src kinase homologous kinase negatively regulates the chemokine receptor CXCR4 through YY1 and impairs CXCR4/CXCL12(SDF-lalpha)-mediated breast cancer cell migration.Cancer Res, 2005, 65(7):2840-2845.
    [131] Matteucci E, Locati M, Desiderio MA. Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness. Exp Cell Res, 2005,310(1):176-185.
    [132] Ottaiano A, Franco R, Aiello TA, et al. Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage Ⅱ -Ⅲ colorectal cancer patients. Clin Cancer Res,2006,12(9):2795-2803.
    [133] Li JK, Yu L, Shen Y, et al. Inhibition of CXCR4 activity with AMD3100 decreases invasion of human colorectal cancer cells in vitro. World J Gastroenterol, 2008,14(15):2308-2313.
    [134] Schutyser E, Su Y, Yu Y, et al. Hypoxia enhances CXCR4 expression in human microvascular endothelial cells and human melanoma cells. Eur Cytokine Netw, 2007, 18(2):59-70.
    [135]Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med, 2003, 198(9):1391-1402.
    [136]Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 2003,425(6955): 307-311.
    [137] Kimura T, Boehmler AM, Seitz G, et al. The sphingosine 1-phosphate recepor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34 progenitor cells. Blood, 2004, 103(12):4478-4486.
    [138] Avigdor A, Goichberg P, Shivtiel S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34~+stem/progenitor cells to bone marrow. Blood, 2004, 103(8):2981-2989.
    [139] [Hecht I, Cahalon L, Hershkoviz R, et al. Heterologous desensitization of T cell functions by CCR5 and CXCR4 ligands: inhibition of cellular signaling,adhesion and chemotaxis. Int Immunol, 2003, 15(1):29-38.
    [140] Honczarenko M, Le Y, Glodek AM, et al. CCR5-binding chemokines modulate CXCL12 (SDF-1 )-induced responses of progenitor B cells in human bone marrow through heterologous desensitization of the CXCR4 chemokine receptor. Blood, 2002,100(7):2321-2329.
    [141]Velders GA, van Os R, Hagoort H, et al. Reduced stem cell mobilization in mice receiving antibiotic modulation of the intestinal flora: involvement of endotoxins as cofactors in mobilization. Blood, 2004, 103(1):340-346.
    [142]Kishore SP, Bungum MK, Platt JL, et al. Selective suppression of Toll-like receptor 4 activation by chemokine receptor 4. FEBS Lett, 2005,579(9):699-704.
    [143] Warner KA, Miyazawa M, Cordeiro MM, et al. Endothelial cells enhance tumor cell invasion through a crosstalk mediated by CXC chemokine signaling.Neoplasia, 2008, 10(2):131-139.
    [144]Reiland J, Furcht LT, McCarthy JB. CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate,1999,41(2):78-88.
    [145] Youngs SJ, Ali SA, Taub DD, et al. Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer, 1997, 71(2):257-266.
    [146]Zipin-Roitman A,Meshel T,Sagi-Assif O,et al.CXCL10 promotes invasion-related properties in human colorectal carcinoma cells.Cancer Res,2007,67(7):3396-3405.
    [147]张忠国,牛瑞芳,孙宝存,等.CXCR1/CXCL8在结肠癌归巢性肝转移中作用的研究.实用癌症杂志,2007,22(3):243-248.
    [148]Kawada K,Sonoshita M,Sakashita H,et al.Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes.Cancer Research,2004,64(11):4010-4017.
    [149]Lu Y,Wang J,Xu Y,et al.CXCL16 functions as a novel chemotactic factor for prostate cancer cells in vitro.Mol Cancer Res,2008,6(4):546-554.
    [150]Liang Z,Wu T,Lou H,et al.Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4.Cancer Res,2004,64(12):4302-4308.
    [151]Oelschlaegel U,Bornhauser M,Boxberger S,et al.Kinetics of CXCR-4 and adhesion molecule expression during autologous stem cell mobilisation with G-CSF plus AMD3100 in patients with multiple myeloma.Ann Hematol,2007,86(8):569-573.
    [152]Wu M,Chen Q,Li D,et al.LRRC4 inhibits human glioblastoma cells proliferation,invasion,and proMMP-2 activation by reducing SDF-1alpha/CXCR4-mediated ERK1/2 and Akt signaling pathways.J Cell Biochem,2008,103(1):245-255.
    [153]Raghuwanshi SK,Nasser MW,Chen X,et al.Depletion of beta-arrestin-2promotes tumor growth and angiogenesis in a murine model of lung cancer.J Immunol,2008,180(8):5699-5706.
    [154]Zeelenberg 1 S,Ruuls V,Stalle L,et al.The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases.Cancer Res,2003,63(13):3833-3839.
    [155]Toshina K,Hirata I,Maemura K,et al.Enprostil,a prostaglandin-E(2) analogue,inhibits interleukin-8 production of human colonic epithelial cell lines.Scand.J Immunol,2000,52(6):570-575.
    [156]Fujisawa N,Hayashi S,Miller EJ.A synthetic peptide inhibitor for alpha-chemokines inhibits the tumour growth and pulmonary metastasis of human melanoma cells in nude mice. Melanoma Res, 1999, 9(2): 105-114.
    [157]Fujisawa N, Sakao Y, Hayashi S, et al. alpha-Chemokine growth factors for adenocarcinomas; a synthetic peptide inhibitor for alpha-chemokines inhibits the growth of adenocarcinoma cell lines. J Cancer Res Clin Oncol, 2000, 126(1):19-26.
    [158] Galffy G, Mohammed KA, Nasreen N, et al. Inhibition of interleukin-8 reduces human malignant pleural mesothelioma propagation in nude mouse model.Oncol Res, 1999, 11(4):187-194.
    [159] Liang Z, Yoon Y, Votaw J, et al. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res, 2005, 65(3):967-971.
    [160] Hong JS, Pai HK, Hong KO, et al. CXCR-4 knockdown by small interfering RNA inhibits cell proliferation and invasion of oral squamous cell carcinoma cells. J Oral Pathol Med, 2008, 38(2):214-219.
    [161] Flanagan K, Kaufman HI. Chemokines in tumor immunotherapy. Front Biosci,2006,11:1024-1030.
    [162] Zhang T, Somasundaram R, Berking C, et al. Preferential involvement of CX chemokine receptor 4 and CX chemokine ligand 12 in T-cell migration toward melanoma cells. Cancer Biol Ther, 2006, 5(10):1304-1312.
    [163] Matsuyoshi H, Hiram S, Yoshitake Y, et al. Therapeutic efect of α-galactosylceramide-loaded dendritic cells genetically engineered to express SLC/CCL21 along with tumor antigen against peritoneally disseminated tumor cells. Cancer Science, 2005, 96(12): 889-896.
    [164]Cabioglu N, Gong Y, Islam R, et al. Expression of growth factor and chemokine receptors: new insights in the biology of inflammatory breast cancer.Ann Oncol, 2007, 18(6):1021-1029.
    [165]Akashi T, Koizumi K, Tsuneyama K, et al. Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci,2008, 99(3):539-542.
    [166] Kaifi J T, Yekebas E F, Schurr P, et al. Tumor-cell homing to lymph nedes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst,2005, 97(24):1840-1847.
    [167] Salvucci O, Bouchard A, Baccarelli A, et al. The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat, 2006, 97(3):275-283.
    [168] Blot E, Laberge-Le Couteulx S, Jamali H, et al. CXCR4 membrane expression in node-negative breast cancer. Breast J, 2008, 14(3):268-274.
    [169]Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1.Nature, 1996, 382(6592):635-638.
    [170] Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 1998,393(6685):595-599.
    [171] Boldajipour B, Mahabaleshwar H, Kardash E, et al. Control of chemokine-guided cell migration by ligand sequestration. Cell, 2008, 132(3):337-339.
    [1]高坤,欧阳晓辉.胃癌微转移检测的研究进展.内蒙古医学杂志,2006,38(3):250-253.
    [2]Iinuma H,Qkinaga K,Egami H,et al.Usefulness and clinical significance of quantitative real-time RT-PCR to detect isolated tumor cells in the peripheral blood and tumor drainage blood of patients with colorectal cancer.Int J Oncol,2006,28(2):297-306.
    [3]刘同华.组织芯片技术及其在肿瘤研究中的应用.激光杂志,2006,27(5):97-98.
    [4]Yoo PS,Sullivan CA,Kiang S,et al.Tissue Microarray Analysis of 560 Patients with Colorectal Adenocarcinoma:High Expression of HuR Predicts Poor Survival.Ann Surg Oncol,2009,16(1):200-207.
    [5]S.Shiono,G.Ishii,K.Nagai,et al.Immunohistochemical prognostic factors in resected colorectal lung metastases using tissue microarray analysis.Eur J Surg Oncol,2006,32(3):308-309.
    [6]Watanabe T,Kobunai T,Toda E,et al.Gene Expression Signature and the Prediction of Ulcerative Colitis-Associated Colorectal Cancer by DNA Microarray.Clin Cancer Res,2007,13(2 Pt 1):415-420.
    [7]郜恒骏.大肠癌基因诊断研究的新思路.现代消化及介入诊疗,2006,11(3):156-157.
    [8]Alfonso P,Nunez A,Madoz-Gurpide,et al.Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresi.Proteomics,2005,5(10):2602.
    [9]Krafft C,Shapoval L,Sobottka SB,et al.Identification of primary tumors of brain metastases by SIMCA classification of IR spectroscopic images.Biochim Biophys Acta,2006,1758(7):883-891.
    [10]Krafft C,Shapoval L,Sobottka SB,et al.Identification of primary rumors of brain metastases by infrared spectroscopic imaging and linear discriminant analysis.Technol Cancer Res Treat,2006,5(3):291-298.
    [1]刘洁,马洁.抗独特型抗体在肿瘤免疫治疗中的研究进展.中国免疫学杂志,2006,22(8):776-779.
    [2]李志奎,樊代明.肿瘤抗独特型抗体疫苗.国外医学 预防、诊断、治疗用生物制品分册,2002,25(2):68-72.
    [3]Wagner U,Schlebush H,Kohler S,et al.Immunological response to the tumor-associated antigen CA125 in patients with advanced ovarian cancer induced by the murine monoclonal anti-idiotype vaccine ACA125.Hybridoma,1997,16(1):33-40.
    [4]祝洪澜,李艺,昌晓红,等.卵巢上皮性癌6B11抗独特型微抗体疫苗免疫方案的探讨.中华妇产科杂志,2006,41(1):54-56.
    [5]Reinartz S,Hombach A,Kohler S,et al.Inter leukin-6 fused to an anti-idiotype antibody in a vaccine increases the specific humoral immune response against CA125~+(MUC-16) ovarian cancer.CancerResearch,2003,63(12):3234-3240.
    [6]Baral R N,Saha A,Chatterjee SK,et al.Immunostimulatory CpG oligonucleotides enhance the immune response of anti-idiotype vaccine that mimics carcinoembryonic antigen.Cancer Immunol Immunother,2003,52(5):317-327.
    [7]Wang X,Ko EC,Peng L,et al.Human high molecular weight melanoma-associated antigen mimicry by mouse anti-idiotypic monoclonal anti-idiotypic momoclonal antibody MK2-23 by fusion with interleukin 2.Cancer Res,2005,65(15):6976-6983.
    [8]Chapman PB,Williams L,Salibi N,et al.A phase Ⅱ trial comparing five dose levels of BEC_2 anti-idiotypic monoclonal antibody vaccine that mimics GD_3gangliosidde.Vaccine,2004,22(21-22):2904-2909.
    [9]Giaccone G,Debruyne C,Felip E.Phase Ⅲ study of adjuvant vaccination with Bec2/bacilli Calmette-Guerin in responding patients with limited-disease small-cell lung cancer(Europpean Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study). Clin Oncol, 2005, 23(28):6854-6864.
    [10] Cesco-Gaspere M, Benvenuti F, Burrone O R. BCL1 lymphoma protection induced by idiotype DNA vaccination is entirely dependent on anti-idiotypic antibodies. Cancer Immunol Immunother, 2005, 54(4):351-358.
    [11] Pritchard-Jones K, Spendlove I, Wilton C, et al. Immune responses to the 105AD7 human ant-idiotypic vaccine after intensive chemotherapy, for osteosarcoma. Br J Cancer, 2005, 92(8):1358-1365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700