用户名: 密码: 验证码:
基于热力学原理的混凝土本构模型及其在大坝地震分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文构造了混凝土在塑性过程中的能量耗散增量函数形式,推导了基于热力学原理的混凝土弹塑性本构模型,并将之推广得到了率型一致粘塑性模型。模型能自动满足热力学定律,具有较为严密的理论基础,与试验结果符合良好。最后利用本文模型对Koyna重力坝和大岗山拱坝进行动力非线性地震反应分析,探讨了各模型以及应变率对大坝地震反应的影响。
     论文介绍了基于热力学原理建立本构模型的基本理论和一般过程,以能量耗散函数为基础讨论了耗散应力空间的屈服函数;尝试从宏观角度和细微角度分析了部分塑性功恢复的机理;从理论上证明了混凝土流动法则的相关性和非正交性;根据Ziegler正交假定确定了耗散应力空间的流动法则;通过迁移应力确定了真实应力空间中的屈服函数和流动法则,建立了完整的本构模型。
     修改Collins提出的耗散函数,构造了适用于混凝土的耗散函数,推导了混凝土材料的本构模型。根据部分模型参数的物理意义和屈服面的几何形状,确定了部分模型参数的取值范围。根据已有的试验资料,拟合了模型参数,计算结果与试验符合较好,验证了模型的正确性和有效性。
     构造了一个主应力空间中耗散增量函数以描述混凝土材料屈服函数在π平面上非圆形的轨迹。得到的模型能够反映混凝土材料对静水压力的敏感性以及拉压不等性,能够较好地描述出非正交的塑性流动和混凝土在单轴受压下的体积膨胀。拟合参数后,计算得到的单双轴拉压曲线与试验吻合情况良好,对比显示计算效果更好。
     根据一致率型粘塑性模型的概念,在基于能量耗散的混凝土静态模型中引入应变率的影响,建立了基于热力学的一致率型粘塑性模型,并与试验结果进行了比较,结果表明模型能够较好地反映混凝土试件的动力特性,同时计算混凝土结构的动力反应,考虑应变率的影响后,结构的响应发生了较大的变化,因此,应变率对混凝土结构响应的影响是一个不可忽视的因素。
     用线弹性模型和本文率无关、率相关共五个模型计算了Koyna重力坝和大岗山拱坝的地震反应,并初步探讨了不同模型以及应变率对大坝地震反应的影响,计算结果表明拉应力成为大坝震设计中的控制应力。考虑应变率对混凝土性能的影响后,混凝土的抗拉强度得到提高,坝体能承受的拉应力提高,拉坏区缩小,塑性应变也有所减小,塑性应变率也发生明显变化。相比受拉,应变率对坝体中压应力的分布没有明显影响。本文的计算结果为大岗山拱坝的设计和抗震安全评价提供了参考。
In the dissertation, a form of energy dissipation fuction in the plastic procedure of concrete is constructed, and thermodynamics-based elasto-plastic constitutive models of concrete are derived and generalized to rate-dependent consistent visco-plastic model. The models have strict theoretical basis and automatically satisfy the thermodynamic laws. The performance of models coincides with experiments. Finally nonlinear seismic responses of Koyna gravity dam and Dagangshan arch dam are analyzed, and the effects of models and strain rate are discussed.
     The fundamental theories and general procedure of establishing constitutive models based on thermodynamic laws are introduced. Proper energy dissipation function is studied and the yield function in dissipation stress space is deduced. The mechanism of recoverable plastic work is tried to be analyzed macroscopically and mesoscopically. The association and non-normality of plastic flow of concrete are proved. The flow rule in dissipation stress space is determined in terms of Ziegler orthogonality principle. The yield function and the flow rule in true stress space are deduced by the shift stress with the above procedures performed, a complete constitutive model is established.
     An incremental function of energy dissipation in principle stress is constructed to describe the non-circle loci of concrete yield function inπplane. The sensitivity to hydrostatic pressure and the unequal behavior of concrete subjected to tension and compression loading can be represented by the model. The non-normal plastic flow and the dilatancy of concrete under uniaxial compression are also well described. The stress-strain curves of concrete under uniaxial and biaxial tension and compression with parameters fitted are in good agreement with experiments.
     Based on the concept of consistent viscoplasticity constitutive model, consistent rate-dependent viscoplastic models are constructed with the effects of strain rate considered in the static models based on energy dissipation. Compared with experiments, the consistent rate-dependent viscoplastic models can well represent dynamic behavior of concrete specimens. The responses of concrete structures are calculated, the results show that the responses of concrete structures vary apparently with the effects of strain rate considered. Therefore, the influence of strain rate is inneglectable in the analysis of concrete structures.
     Seismic responses of Koyna gravity dam and Dagnagshan arch dam are analyzed with linear elastic model, rate-independent models and rate-dependent models presented respectvely, and the influence of different models and strain rate on seismic responses are discussed. It shows that tensile stress is the control stresses of seismic design of arch dam. With the influence of strain rate considered, the strength of concrete is enhanced, and the dam can sustain higher tensile stress, so the plastic strain decreases and the region of failure shrinks, and the plastic strain rate changes as well. Compared with tensile stress, compressive stress is not influenced much by strain rate. The calculations provide reference for seismic design and safety evaluation of Dagangshan arch dam.
引文
[1]王良琛.混凝土坝地震动力分析.北京:地震出版社,1981.
    [2]汝乃华,姜忠胜.大坝安全事故与安全—拱坝.北京:中国水利水电出版社,1995.
    [3]王光纶,张楚汉,郭志松,等.设上游底缝改善拱坝应力状态的研究.水利学报,1998,29(1):69-75.
    [4]陈厚群,李德玉,胡晓,等.有横缝拱坝的非线性动力模型试验和计算分析研究.地震工程和工程振动,1995,15(4):10-26.
    [5]杜成斌,任青文.底缝对拱坝工作性态的影响.河海大学学报(自然科学版),1999,27(5):49-53.
    [6]杜修力,涂劲,陈厚群,等.有缝拱坝-地基系统非线性地震波动反应分析方法.地震工程与工程振动,2000,20(1):11-20.
    [7]宋战平,李宁,陈飞熊,等.拱坝有缝坝体-坝基系统的非线性抗震分析.水利学报,2004,35(6):33-40.
    [8]杜修力,陈厚群,侯顺载,等.拱坝—地基系统的三维非线性地震反应分析.水利学报,1997,28(8):7-14.
    [9]林皋,陈健云,肖诗云,等.混凝土的动力特性与拱坝的非线性地震响应.2003,34(6):30-36.
    [10]林皋,陈健云.混凝土大坝的抗震安全评价.水利学报,2001,32(2):8-15.
    [11]涂劲.有缝界面的混凝土-高坝-地基系统非线性地震波动反应分析.北京:中国水利水电研究院,博士学位论文,1999.
    [12]徐艳杰.横缝配筋的拱坝地震非线性模型与无限地基影响研究.北京:清华大学,博士学位论文,1999.
    [13]常晓林,何蕴龙.地震情况下地基、库水、拱坝的相互作用.武汉水利电力大学学报,1998,31(4):1-5.
    [14]杜修力,王进廷.动水压力及其对坝体地震反应影响的研究进展.水利学报,2001,32(7):13-21.
    [15]杜修力,王进廷.拱坝—可压缩库水-地基地震波动反应分析方法.水利学报,2002,33(6):83-90.
    [16]李建波,林皋,陈健云,等.结构—地基动力相互作用时域数值计算模型研究.地震工程与工程振动,2005,25(2):169-176.
    [17]金峰,张楚汉,王光纶,等.拱坝—地基动力相互作用的时域模型.土木工程学报,1997,30(1):43-51
    [18]Tan H,Chopra A K.Dam-foundation rock interaction effects in frequency-response functions of arch dams.Earthquake Engineering and Structural Dynamics,1995,24(11):1475-1489.
    [19]Maeso O,Dominguez J.Earthquake analysis of arch dams.Ⅰ:Dam-foundation interaction.Journal of Engineering Mechanics,ASCE,1993,119(3):496-512.
    [20]Dominguez J,Maeso O.Earthquake analysis of arch dams.Ⅱ:Dam-water-foundation interaction.Journal Of Engineering Mechanics,ASCE,1993,119(3):513-530.
    [21]Tan H,Chopra A K.Dam-foundation rock interaction effects in earthquake response of arch dams.Journal of Structural Engineering,1996,122(5):528-538.
    [22]吴健,金峰,张楚汉,等.无限地基辐射阻尼对溪洛渡拱坝地震响应的影响.岩土工程学报,2002,24(6):716-719.
    [23]李建波,陈健云,林皋,等.求解非均匀无限地基相互作用力的有限元时域阻尼抽取法.岩土工程学报,2004,26(2):263-267.
    [24]李建波,陈健云,林皋,等.无限地基-结构动力相互作用分析的分区递归时域算法研究.工程力学,2005,22(3):88-96.
    [25]肖诗云,林皋,王哲,等.Drucker-Prager材料一致率型本构模型.工程力学,2003,20(4):147-151.
    [26]肖诗云,林皋,李宏男,等.混凝土WW三参数率相关动态本构模型.计算力学学报,2004,21(6):2-7.
    [27]陈健云,林皋,胡志强,等.考虑混凝土应变率变化的高拱坝非线性动力响应研究.计算力学学报,2004,21(1):45-49.
    [28]陈健云,李静,林皋,等.基于率性损伤模型的混凝土重力坝地震响应分析.哈尔滨工业大学学报,2005,37(6):786-789.
    [29]陈健云,李静,林皋,等.基于速率相关混凝土损伤模型的高拱坝地震响应分析.土木工程学报,2003,36(10):46-50.
    [30]李静,陈健云,白卫峰,等.基于应变率相关的非线性损伤模型在高拱坝横缝开度分析中的应用.水利学报,2005,36(7):870-875.
    [31]Winnicki A,Pearce C J,Bicanic N,et al.Viscoplastic Hoffman consistency model for concrete.Computers and Structures,2001,79(1):7-19.
    [32]Eibl J,Schmidt-hurtienne B.Strain-rate-sensitive constitutive law for concrete.Journal of Engineering Mechanics,1999,125(12):1411-1420.
    [33]肖诗云,林皋,李宏男,等.拱坝非线性地震反应分析.地震工程与工程振动,2002,22(4):36-40.
    [34]肖诗云,李宏男,杜荣强,等.应变率对拱坝地震反应的影响.土木工程学报,2005,38(8):5-9.
    [35]Sena-cruz J M,Barros J A,Azevedo A F,et al.Elasto-plastic multi-fixed smeared crack model for concrete,Report 04-DEC/E-05.Dep.Civil Eng.,University of Minho,2006.
    [36]蔡新,郭兴文.拱坝整体非线性稳定分析.河海大学学报(自然科学版),1999,27(2):74-80.
    [37]杨强,陈新,周维垣,等.拱坝的弹塑性局部化分析.水利学报,2002,33(3):20-25.
    [38]杜荣强,林皋,胡志强,等.混凝土重力坝动力弹塑性损伤安全评价.水利学报,2006,37(9):1056-1062.
    [39]Nard H L,Bailly P.Dynamic behaviour of concrete:the structural effects on compressive strength increase.Mechanics of Cohesive-frictional Materials,2000,5(6):491-510.
    [40]Raphael J M.Tensile Strength of Concrete.ACI Journal Proceedings,1984,81(2):158-165.
    [41]Harris D W,Mohorovic C E,Dolen T P,et al.Dynamic Properties of Mass Concrete Obtained from Dam Cores.ACI Materials Journal,2000,97(3):290-296.
    [42]Bischoff P H,Perry S H.Compressive behaviour of concrete at high strain rates.Materials and Structures,1991,24(6):425-450.
    [43]中华人民共和国国家经济贸易委员会.DL5073-2000.水工建筑物抗震设计规范.北京:中国电力出版社,2001.
    [44]Chen W F.Plasticity in reinforced concrete.New York:McGraw-Hill,1982.
    [45]Bouzaiene A,Massicotte B.Hypoelastic tridimensional model for nonproportional loading of plain concrete.Journal of Engineering Mechanics,ASCE,1997,123(11):1111-1120.
    [46]Cedolin L,Dei P S,Crutzen Y R,et al.Triaxial Stress-Strain Relationship for Concrete.Journal of the Engineering Mechanics Division,1977,103(3):423-439.
    [47]Kotsovos M D,Newman J B.Generalized Stress-Strain Relations for Concrete.Journal of the Engineering Mechanics Division,1978,104(4):845-856.
    [48]Ottosen N S.Constitutive Model for Short-Time Loading of Concrete.Journal of the Engineering Mechanics Division,1979,105(1):127-141.
    [49]Elwi A A,Murray D W.A 3D Hypoelastic Concrete Constitutive Relationship.Journal of the Engineering Mechanics Division,1979,105(4):623-641.
    [50]Darwin D,Pecknold D.A.Nonlinear Biaxial Stress-Strain Law for Concrete.Journal of the Engineering Mechanics Division.,1977,103(2):229-241.
    [51]Chen W F,Mizuno E.Non-linear Analysis in Soil Mechanics.Theory and Implementation.Amsterdam:Elsevier,1990.
    [52]Lourenco P B.Computational strategies for masonry structures.The Netherlands:Delft University of Technology,[Doctoral Dissertation],1996.
    [53]Wang C Z,Guo Z H,Zhang X Q,et al.Experimental investigation of biaxial and triaxial compressive concrete strength.ACI Material Journal,1987,84(2).
    [54]Domingo S,Ignacio C,Ravindra G,et al.Study of the behaviour of concrete under triaxiai compression.Journal of Engineering Mechanics,ASCE,2002,128(2):156-163.
    [55]Tsai W T.Uniaxial compressional stress-strain relation of concrete.Journal of Engineering Mechanics,ASCE,1988,114(5):2133-2136.
    [56]Pietruszczak S,Jiang J,Mirza F A,et al.An elastoplastic constitutive model for concrete.International Journal of Solids and Structures,1988,24(7):705-722.
    [57]Han D J,Chen W F.Constitutive Modeling in Analysis of Concrete Structures.Journal of Engineering Mechanics,1987,113(4):577-593.
    [58]Babu R R,Benipal G S,Singh A K,et al.Constitutive modeling of concrete:an overview.Asian Journal of Civil Engineering(Building and Housing),2005,6(4):211-246.
    [59]陈惠发.土木工程材料的本构方程.武汉:华中科技大学出版社,2001.
    [60]Chen W F,Han D J.Plasticity for Structural Engineers.New York:Springer-Verlag,New York Inc.,1988.
    [61]Lublinet J.The Plasticity Theory.New York:Macmillan Publishing Company,1990.
    [62]Ohtani Y,Chen W F.Multiple hardening plasticity for concrete materials.ASCE Journal of Engineering Mechanics,1988,114(11):1890-1910.
    [63]Simo J C,Ju J W.Strain-and stress-based continuum damage models.Ⅰ:Formulation.International journal of solids and structures,1987,23(7):821-840.
    [64]Simo J C,Ju J W.Strain-and stress-based continuum damage models.Ⅱ:Computational aspects.International journal of solids and structures,1987,23(7):841-869.
    [65]Sfer D,Asce I C,Gettu R,et al.Study of the Behavior of Concrete under Tdaxial Compression.Journal of Engineering Mechanics,2002,128(2):156-163.
    [66]Kang H D,William K J.Localization Characteristics of Triaxial Concrete Model.Journal of Engineering Mechanics,1999,125(8):941-950.
    [67]Imran I,Pantazopoulou S J.Plasticity Model for Concrete under Triaxial Compression.Journal of Engineering Mechanics,2001,127(3):281-290.
    [68]Bigoni D,Piccolroaz A.Yield criteria for quasibrittle and frictional materials.International Journal of Solids and Structures,2004,41(11-12):2855-2878.
    [69]Smith S S,Willam K J,Gerstle K H,et al.Concrete over the top,or is there life aider peak? ACI Material Journal,1989,86(5):491-497.
    [70]Prager W.A new method of analyzing stresses and strains in work-hardening plastic solids.Joumal of Applied Mechanics,1956,23:493-496.
    [71]Ziegler H A.A modification of Prager's hardening rule.Quarterly of Applied Mathematics,1959,17(1):55-65.
    [72]Voyiadjis G Z,Rashid K,Al-rub A,et al.Thermodynamic based model for the evolution equation of the backstress in cyclic plasticity.International Journal of Plasticity,2003,19(12):2121-2147.
    [73]Wang H,Barkey M E.A strain space nonlinear kinematic hardening/softening plasticity model.International Journal of Plasticity,1999,15(7):755-777.
    [74]Jiang W.General kinematic-isotropic hardening model.Journal of Engineering Mechanics,ASCE,1999,125(4):487-490.
    [75]Jiang W.Hardening models and their predictions of material response.Journal of Engineering Mechanics,ASCE,1999,125(4):382-391.
    [76]Lade P V,Kim M K.Single hardening constitutive model for soil,rock and concrete.International Journal of Solids and Structures,1995,32(14):1963-1978.
    [77]Murray D W,Wong C,Rijub-agha K Y,et al.Concrete Plasticity Theory for Biaxial Stress Analysis.Journal of the Engineering Mechanics Division,1979,105(6):989-1006.
    [78]Grassl P,Lundgren K,Gylltoft K,et al.Concrete in compression:a plasticity theory with a novel hardening law. International Journal of Solids and Structures, 2002, 39(20): 5205-5223.
    [79] Lin F B, Bazant Z P, Chern J C, et al. Concrete model with normality and sequential identification. Computers and Structures, 1987, 26(6): 1011-1025.
    [80] Frantziskonis G, Desai C S, Somasundaram S, et al. Constitutive Model for Nonassociative Behavior. Journal of Engineering Mechanics, 1986, 112(9): 932-946.
    [81] Vermeer P A, De B R. Non-associated Plasticity for Soils, Concrete and Rock. Heron, 1984, 29(1): 1-64.
    [82] Chen W F, Saleeb A F. Constitutive Equations for Engineering Materials. Amsterdam: Elsevier, 1994.
    [83] Han D J, Chen W F. Strain-space plasticity formulation for hardening-softening materials with elastoplastic coupling. International journal of solids and structures, 1986, 22 (8): 935-950.
    [84] Dvorkin E N, Cuitino A M, Gioia G, et al. A concrete material model based on non-associated plasticity and fracture. Engineering computations, 1989, 6(4): 281-294.
    [85] Dvorkin E N, Torrent R J, Alvaredo A M, et al. A constitutive relation for concrete. Barcelona: 1987.
    [86] Onate E, Oiler S, Oliver J, et al. A constitutive model for cracking of concrete based on the incremental theory of plasticity. Engineering computations, 1988, 5(4): 309-319.
    [87] Lee J, Fenves G L. A plastic-damage concrete model for earthquake analysis of dams. Earthquake Engineering & Structural Dynamics, 1998, 27 (9): 937-956.
    [88] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
    [89] Bazant Z P, Kim S S. Plastic-fracturing theory for concrete. Journal of Engineering of Mechanics Division, 1979, 105(3): 407-428.
    [90] Dougill J W. On stable progressively fracturing solids. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 1976, 27(4): 423-437.
    [91] Krajcinovic D, Fonseka G U. The continuous damage theory of brittle materials- Part I: General theory. ASME Journal of Applied Mechanics, 1981, 48(4): 809-815.
    [92] Simo J C, Ju J W. Strain- and stress-based continuum damage models - I. Formulation. International Journal of Solids Structure, 1987, 23(7): 821-840.
    [93] Simo J C, Ju J W. Strain- and stress-based continuum damage models - II. Computational aspects. International Journal of Solids Structures, 1987, 23 (7): 841-869.
    [94] Mazars J, Pijaudier-cabot G. Continuum damage theory- Application to concrete. ASCE Journal of Engineering Mechanics, 1989, 115(2): 345-365.
    [95] Peerling R H J. Enhanced damage modelling for fracture and fatigue. Eindhoven, The Netherlands: Eindhoven University of Technology, [PhD dissertation], 1999.
    [96] Geers M G D, De B R, Peerlings R H J, et al. Damage and crack modeling in single-edge and double-edge notched concrete beams. Engineering Fracture Mechanics, 2000, 65(2-3).
    [97]Jirasek M,Patzak B.Consistent tangent stiffness for nonlocal damage models.Computers and Structures,2002,80(14-15):1279-1293.
    [98]Burlion N,Gatuingt F,Pijaudier-cabot G,et al.Compaction and tensile damage in concrete:constitutive modelling and application to dynamics.Computer Methods in Applied Mechanics and Engineering,2000,183(3-4):291-308.
    [99]Lorrain M,Loland K E.Damage theory applied to concrete.New York:Elsevier,1983.
    [100]Mazars J.Mechanical damage and fracture of concrete structures.Advances in Fracture Research,New York:Pergamon Press,1982:4,1499-1506.
    [101]余天庆.混凝土的分段线性损伤模型.岩石,混凝土断裂与强度,1985,2(1):14-16.
    [102]钱济成,周建方.混凝土的两种损伤模型及其应用.河海大学学报(自然科学版),1989,17(3):40-47.
    [103]Supartono F,Sidoroff F.Anisotropic damage modeling for brittle elastic materials.Symposium of France-Poland,1984.
    [104]余天庆.损伤理论及其应用.北京:国防工业出版社,1993.
    [105]Faria R,Oliver J,Cervera M,et al.A strain-based plastic viscons-damage model for massive concrete structures.International Journal of Solids and Structures,1998,35(14):1533-1558.
    [106]Jirasek M,Rolshoven S,Grassl P,et al.Size effect on fracture energy induced by non-locality.International journal for numerical and analytical methods in geomechanics,2004,28(7-8):653-670.
    [107]Lemaitre J,Chaboche J L.Mechanics of Solid Materials.Cambridge:Cambridge University Press,1990.
    [108]Lemaitre J.A Course on Damage Mechanics.Vienna:Springer-Verlag(Austria),1992.
    [109]Comi C.A non-local model with tension and compression damage mechanisms.European Journal of Mechanics/A Solids,2001,20(1):1-22.
    [110]Comi C,Perego U.Fracture energy based hi-dissipative damage model for concrete.International Journal of Solids and Structures,2001,38(36-37):6427-6454.
    [111]Nguyen G D,Houlsby G T.A thermodynamic approach to constitutive modelling of concrete.Cardiff,U.K.:2004.
    [112]Salad M R,Saeb S,Willam K J,et al.A coupled elastoplastic damage model for geomaterials.Computer Methods in Applied Mechanics and Engineering,2004,193(27-29):2625-2643.
    [113]Luccioni B,Oiler S,Danesi R,et al.Coupled plastic-damaged model.Computer Methods in Applied Mechanics and Engineering,1996,129(1-2):81-89.
    [114]Hansen E,Willam K,Carol I,et al.A two-surface anisotropic damage/plasticity model for plain concrete.Pads:2001.
    [115]Addessi D,Marfia S,Sacco E,et al.A plastic nonlocal damage model.Computer Methods in Applied Mechanics and Engineering,2002,191(13-14):1291-1310.
    [116]Jefferson A D.Craft-a plastic-damage-contact model for concrete.Ⅰ.Model theory and thermodynamic considerations.International Journal of Solids and Structures,2003,40(22):5973-5999.
    [117]Jefferson A D.Craft-a plastic-damage-contact model for concrete.Ⅱ.Model implementation with implicit return-mapping algorithm and consistent tangent matrix.International Journal of Solids and Structures,2003,40(22):6001-6022.
    [118]Bazabt Z P,Bhat P D.Endochronic Theory of Inelasticity and Failure of Concrete.Journal of the Engineering Mechanics Division,1976,102(4):701-722.
    [119]Bazant Z P.Endochronie inelasticity and incremental plasticity.Intnational Journal of Solids and Structures,1978,14(9):691-714.
    [120]Bazant Z P,Shieh H.Endochronic model for non-linear triaxial behavior of concrete.Nuclear Engineering and Design,1978,47:305-315.
    [121]赵人达.内时理论及其在混凝土结构分析中的应用.西南交通大学学报,1990,25(2):94-103.
    [122]宋玉普,赵国藩.混凝土内时损伤本构模型.大连理工大学学报,1990,30(5):577-583.
    [123]彭军,宋玉普,赵国藩,等.碾压混凝土内时损伤本构模型.工程力学,1995,12(4):131-138.
    [124]宋玉普,王怀亮.全级配大体积混凝土的内时损伤本构模型.水利学报,2006,37(3):769-777.
    [125]Taylor G I.Plastic strain in metals.J.Inst.Metals,1938,62(1):307-324.
    [126]Batdorf S B,Budyanskii B.A mathematical theory of plasticity based on the concept of slip.Periodic Collection of Translations of Foreign Articles,1962,6(1):135-155.
    [127]Zienkiewicz O Z,Pande G N.Time-dependent multi-laminate model of rocks:a numerical study of deformation and failure of rock masses.The Journal of Numerical and analysis Methods in Geomechanics,1977,1(3):219-247.
    [128]Bazant Z P,Gambarora P G.Crack shear in concrete:crack band microplane model.Journal of Structural Engineering,1984,110(9):2015-2035.
    [129]Bazant Z P,Oh B H.Microplane model for progressive fracture of concrete and rock.Journal of Engineering Mechanics,ASCE,1985,114(4):559-582.
    [130]Bazant Z P,Prat P C.Microplane model for brittle-plastic material:Ⅰ.Theory.Journal of Engineering Mechanics,ASCE,1988,114(10):1672-1688.
    [131]Bazant Z P,Prat P C.Microplane model for brittle-plastic material:Ⅱ.Verification.Journal of Engineering Mechanics,ASCE,1988,114(10):1689-1699.
    [132]Bazant Z P.Microplane model for strain-controlled inelastic behavior.London U.K.:John Wiley,1984.
    [133]Bazant Z P,Xiang Y,Prat P C,et al.Microplane model for concrete:Ⅰ.Stress-strain boundaries and finite strain.Journal of Mechanics,ASCE,1996,122(3):245-254.
    [134]Bazant Z P,Xiang Y,Adley M D,et al.Microplane model for concrete:Ⅱ.Data delocalization and verification.Journal of Mechanics,ASCE,1996,122(3):255-262.
    [135]Bazant Z P,Caner F C,Carol I,et al.Microplane Model M4 for concrete:Ⅰ.Formulation with work-conjugate deviatoric stress.Journal of Engineering Mechanics,ASCE,2000,126(9):944-953.
    [136]Caner F C,Bazant Z P.Microplane model M4 for concrete:Ⅱ.Algorithm and calibration.Journal of Engineering Mechanics,ASCE,2000,126(9):954-961.
    [137]Carol I,Jirasek M,Bazant Z P,et al.A thermodynamically consistent approach to mieroplane theory.Part Ⅰ.Free energy and consistent mieroplane stresses.International Journal of Solids and Structures,2001,38(17):2921-2931.
    [138]Kuhl E,Steinmann P,Carol I,et al.A thermodynamically consistent approach to microplane theory.Part Ⅱ.Dissipation and inelastic constitutive modeling.International Journal of Solids and Structures,2001,38(17):2933-2952.
    [139]Kuhl E,Ramm E.Mieroplane modelling of cohesive frictional materials.Euro.J.Mech./A:Solids,2000,19(supplied):121-143.
    [140]Bazant Z P,Adley D,Carol I,et al.Large-strain generalization ofmieroplane model for concrete and application.Journal of Engineering Mechanics,ASCE,2000,126(9):971-980.
    [141]Carol I,Jir M,Ba Z P,et al.A framework for mieroplane models at large strain,with application to hyperelastieity.International Journal of Solids and Structures,2004,41(2):511-557.
    [142]Carol I,Bazant Z P.Damage and plasticity in microplane theory.Int.J.Solids Struct,1997,34(29):3807-3835.
    [143]Bazant Z P,Caner F C,Adley M D,et al.Fracturing Rate Effect and Creep in Microplane Model for Dynamics.Journal of Engineering Mechanics,2000,126(9):962-970.
    [144]张斌,王光纶,方修君,等.基于微平面模型的切口重力坝试验数值模拟.水力发电学报,2006,25(4):70-74.
    [145]Oritiz M.A constitutive theory for the inelastic behavior of concrete.Mechanics of Materials,1985,4(1):67-93.
    [146]Oritiz M.An analysis study of the localized failure models of concrete.Mechanics of Materials,1987,6(1):159-174.
    [147]杨延毅,周维垣.岩石与混凝土类材料断裂过程研究.水利学报,1992,23(11):69-74.
    [148]Bazant Z P,Tabbara M R,Kazemi M T,et al.Random particle model for fracture of aggregate or fiber composites.Journal of Engineering Mechanics,1990,116(8):1686-1705.
    [149]Zhong X,Chang C S.Micromechanical modeling for behavior of cementitious granular materials.Journal of Engineering Mechanics,1999,125(11):1280-1285.
    [150]Mohamed A R,Hansen W.Micromechanical modeling of concrete response under static loading-Part 1:Model development and validation.ACI Materials Journal,1999,96(2):196-205.
    [151]唐春安,朱万成.混凝土损伤与断裂—数值试验.北京:科学出版社,2003.
    [152]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂.清华大学学报(自然科学版),1996,36(1):84-89.
    [153]邢纪波,俞良群,王泳嘉,et al.三维梁-颗粒模型与岩石材料细观力学行为模拟.岩石力学与工程学报,1999,18(6):627-630.
    [154]白卫峰,陈健云,胡志强,等.准脆性材料单轴拉伸破坏全过程物理模型研究.岩石力学与工程学报,2007,26(4):670-681.
    [155]Abrams D A.Effect of rate of application of load on the compressive strength of concrete.ASTM Journal,1917,17:364-377.
    [156]Rossi P,Van M J,Toutlemonde F,et al.Effect of loading rate on the strength of concrete subjected to uniaxial tension.Materials and Structures,1994,27(5):260-264.
    [157]尚仁杰.混凝土动态本构行为研究.大连:大连理工大学,博士学位论文,1994.
    [158]Rossi P,Boulay C.Influence of flee water in concrete on the cracking process.Magazine of Concrete Research,1990,42:143-146.
    [159]Rossi P.Influence of cracking in the presence of free water on the mechanical behaviour of concrete.Magazine of Concrete Research,1991,43(154):53-57.
    [160]Rossi P,Van M J,Boulay C,et al.The dynamic behaviour of concrete:influence of free water.Materials and Structures,1992,25(9):509-514.
    [161]Rossi P,Toutlemonde F.Effect of loading rate on the tensile behaviour of concrete:description of the physical mechanisms.Materials and Structures,1996,29(2):116-118.
    [162]Grote D L,Park S W,Zhou M,et al.Dynamic behavior of concrete at high strain rates and pressures:Ⅰ.experimental characterization.International Journal of Impact Engineering,2001,25(9):869-886.
    [163]Li Q M,Meng H.About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test.International Journal of Solids and Structures,2003,40(2):343-360.
    [164]Gary G,Bailly P.Behaviour of quasi-brittle material at high strain rate.Experiment and modelling.European Journal of Mechanics,A Solids,1998,17(3):403-420.
    [165]Ragueneau F,Gatuingt F.Inelastic behavior modelling of concrete in low and high strain rate dynamics.Computers and Structures,2003,81(12):1287-1299.
    [166]宁建国,商霖,孙远翔,等.混凝土材料动态性能的经验公式、强度理论与唯象本构模型.力学进展,2006,36(3):389-405.
    [167]Jones P G,Richart F E.Effect of Testing Speed on Strength and Elastic Properties of Concrete.ASTM Journal,1936,37:380-392.
    [168]Glanville W H.An investigation of the stress in reinforced concrete piles during driving.Building Research Technical Paper 20,1938.
    [169]Watstein D.Effect of straining rate on the compressive strength and elastic properties of concrete.ACI Journal Proceedings,1953,49(4):729-744.
    [170]Norris C H.Structural Design for Dynamic Loads.New York:McGraw-Hill New York,1959.
    [171]Atchley B L,Furr H L.Strength and energy-absorption capabilities of plain concrete under dynamic and static loading. ACI Journal, 1967, 64:745-756.
    [172] Hughes B P, Gregory R. Concrete subjected to high rates of loading in compression. Magazine of Concrete Research, 1972, 24(78): 25-36.
    [173] Evans R H. Effect of Rate of Loading on the Mechanical Properties of Some Materials. J. Inst. Civil Engin, 1942, 18(7): 296-306.
    [174] Moore O L. Report of working commitee of commitee C-l on plastic motar tests for Porland cement. 1934.
    [175] Murdock J W. A critical review of research on fatigue of plain concrete. Urbana: University of Illinois, Office of Publications, 1965.
    [176]Dhir R K, Sangha C M. A study of relationships between time, strength, deformation and fracture of plain concrete. Magzine of Concrete Research, 1972, 24(81): 197-208.
    [177]Thaulow S. Rate of loading or compressive strength test Betong, 1953, 38 (1): 11-15.
    [178] Rusch H. Research towards a general flexural theory for structural concrete. ACI Journal, 1960, 57(1): 1-28.
    [179] Spooner D C. The stress-strain relationship for hardened cement pastes in compression. Magzine of Concrete Research, 1972, 24(79): 85-92.
    [180] Sparks P R, Menzies J B. The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression. Magzine of Concrete Reasearch, 1973, 25(83): 73-80.
    [181] Lu Y, Xu K. Modelling of dynamic behaviour of concrete materials under blast loading. International Journal of Solids and Structures, 2004, 41(1): 131-143.
    [182] Mellinger F M, Birkimer D R. Measurement of stress and strain on cylindrical test speciments of rock and concrete under impact loading, Report. U. S. Army corps of Engineers, Ohio River Division Laboratories, 1966.
    [183] Mcvay M K. Spall damage of concrete structures, Report SL-82-22. U.S. Army Corps of Engineers, Waterways Experiment Station, 1988.
    [184] Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength. ACI Materials Journal, 1996, 93(3): 293-300.
    [185] Ross C A, Tedesco J W, Kuennen S T, et al. Effects of strain rate on concrete strength. ACI Materials Journal, 1995, 92(1):37-47.
    [186] Tedesco J W, Ross C A, Mcgill P B, et al. Numerical analysis of high strain rate concrete direct tension tests. Computers and Structures, 1991, 40(2): 313-327.
    [187] John R, Antoun T, Rajendran A M, et al. Effect of strain rate and size on tensile strength of concrete. Williamsburg: 1991.
    [188] Antoun T H. Constitutive/failure Model for the Static and Dynamic Behaviors of Concrete Incorporating Effects of Damage and Anisotropy. Dayon, Ohio: University of Dayton, [PhD Dissertation], 1991.
    [189] Zielinski A J, Reinhardt H W, A K H, et al. Experiments on concrete under uniaxial impact tensile loading.Materials and Structures,1981,14(2):103-112.
    [190]Yon J H,Hawkins N M,Kobayashi A S,et al.Strain-rate sensitivity of concrete mechanical properties.ACI Materials Journal,1992,89(2):146-152.
    [191]Reinhardt H W,Rossi P,Van M J,et al.Joint investigation of concrete at high rates of loading.Materials and Structures,1990,23(3):213-216.
    [192]Bazant Z P,Oh B H.Strain-Rate Effect in Rapid Triaxial Loading of Concrete.Journal of the Engineering Mechanics Division,1982,108(5):764-782.
    [193]Oh B H.Behavior of conereteunder dynamic tensile loads.ACI Materials Journal,1987,84(1):8-13.
    [194]胡时胜,王道荣,刘剑飞,等.混凝土材料动态力学性能的实验研究.工程力学,2001,18(5):115-119.
    [195]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系.爆炸与冲击,2002,22(3):242-246.
    [196]吕培印.混凝土单轴、双轴动态强度和变形试验研究.大连理工大学,博士学位论文,2002.
    [197]肖诗云.混凝土率型本构模型及其在拱坝动力分析中的应用.大连:大连理工大学,博士学位论文,2002.
    [198]闫东明.混凝土动态力学性能试验与理论研究.大连:大连理工大学,博士学位论文,2006.
    [199]Yon J,Hawkins N M,Kobayashi A S,et al.Strain-rate sensitivity of concrete mechanical properties.ACI Materials Journal,1992,89(2):146-153.
    [200]Katsuta T.On the elastic and plastic properties of concrete in compression tests with high deformation-velocity.Trans Inst Jap Arch,1943,29:268-274.
    [201]Mchenry D,Shideler J J.Review of data on effect of speed in mechanical testing of concrete.Philadephia:Portland Cement Association,Research and Development Laboratories,1956.
    [202]Ban S,Muguruna H.Behavior of plain concrete under dynamic loading with straining rate comparable to earthquake loading.1960.
    [203]Hatano T,Tsutsumi H.Dynamical compressive deformation and failure of concrete under earthquake load.Tokyo:Science Council of Japan,1960.
    [204]Lundeen R L.Dynamic and static tests of plain concrete specimens,Report 1,Miscellancous Paper No.6-609.US army engineers waterways experiment station,1963.
    [205]Mahin S A,Bertero V V,Atalay M B,et al.Rate of loading effects on uncracked and repaired reinforced concrete members,Report No.UCB/EERC72-9.Earthquake Engineering Research Center,University of California,1972.
    [206]Weshce K,Krause K.The effect of loading rate on compressive strength and modulus of elasticity of concrete.Materialprufurng,1972,14(7):212-218.
    [207]Bresler,B,Bertero V V.Influence of high strain rate and cyclic loading of unconfined and confined concrete in compression.Ontario,Hamilton:McMaster University,1975.
    [208]Mainstone R J.Properties of materials at high rates of straining or loading.Materials and Structures, 1975,8(2):102-116.
    [209]Takeda J,Tachikawa H.Deformation and fracture of concrete subjected to dynamic load.Londom:1971.
    [210]Dilger W H,Koch R,Kowalczyk R,et al.Ductility of plain and confined concrete under different strain rates.ACI Journal Proceedings,1984,81(1):73-81.
    [211]Rostasy F S,Scheuermann J,Sprenger K H,et al.Mechanical behavior of some construction materials subjected to rapid loading and low temperature.Betanwerk,1984,50(6):393-401.
    [212]Ahmad S H,Shah S P.Behavior of hoop confined concrete under high strain rates.ACI Journal Proceedings,1985,82(5):634-647.
    [213]吴胜兴,周继凯.混凝土动态特性及其机理研究.徐州工程学院学报,2005,20(1):15-28.
    [214]Scott B D,Park R,Pfiestley M J N,et al.Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates.ACI Journal.Proceedings,1982,79(1):13-27.
    [215]Sargin M,Ghosh S K,Handa V K,et al.Effects of lateral reinforcement upon the strength and deformation properties of concrete.Magazine of Concrete Research,1971,23(75-76):99-110.
    [216]Mander J B,Pdestley M J N,Park R,et al.Theoretical stress-strain model for confined concrete.Journal of Structural Engineering,1988,114(8):1804-1826.
    [217]Popovics S.A numerical approach to the complete stress-strain curve of concrete.Cement and Concrete Research,1973,3(5):583-599,
    [218]Perzyna P.Fundamental problems in viscoplasticity.Rec.Adv.Appl.Mech.,1966,9:243-377.
    [219]杨绪灿,杨桂通,徐秉业,等.粘塑性力学概论.北京:中国铁道出版社,1985.
    [220]贾乃文.粘塑性力学及工程应用.北京:地震出版社,2000.
    [221]Hatada T,Kobori T,Ishida M,et al.Dynamic analysis of structures with Maxwell model.Earthquake Engineering and Structural Dynamics,2000,29(2):159-176.
    [222]Lopez C J.Analysis of reinforced concrete structures subjected to dynamic loads with a viscoplastic Drueker-Prager model.Applied Mathematical Modelling,1998,22(7):495-515.
    [223]Bicanic N,Zienkiewicz O C.Constitutive model for concrete under dynamic loading.Earthquake engineering and structural dynamics,1983,11(5):689-710.
    [224]Bazant Z P,Asghari A A.Constitutive law for nonlinear creep of concrete.Journal of the Engineering Mechanics Division,1977,103(1):113-124.
    [225]Bazant Z P,Osman E.Double power law for basic creep of concrete.Materials and Structures,1976,9(1):3-11.
    [226]Bazant Z P,Panula L.Practical prediction of time-dependent deformation of concrete:Part Ⅰ and Part Ⅱ.Materials and strucures,1978,11(65):307-328.
    [227]Bazant Z P,Panyla L.Practical prediction of time-dependent deformation of concrete:Part Ⅲ and Part Ⅳ.Materials and Strucures,1978,11(66):415-434.
    [228]Bazant Z P,Shieh C L.Endochronic model for nonlinear triaxial behavior of concrete.Nuclear Engineering and Design,1978,47(4):305-315.
    [229]Dube J F,Gilles P C,Christian L B,et al.Rate-dependent damage model for concrete in dynamics.Journal of Engineering Mechanics,1996,122(10):939-947.
    [230]Cervera M,Oliver J,Manzoli O,et al.Rate-dependent isotropic damage model for the seismic analysis of concrete dams.Earthquake Engineering \& Structural Dynamics,1996,25(9):987-1010.
    [231]Donze F V.Numerical study of compressive behavior of concrete at high strain rates.Journal of Engineering Mechanics,1999,125(10):1154-1163.
    [232]李庆斌,张楚汉,王光纶.单轴状态下混凝土的动力损伤本构模型.水利学报,1994,25(12):55-60.
    [233]Malvar L J,Ross C A.Review of stralnrate effects for concrete in tension.ACI Materials Jou.rnal,1998,95(6):735-739.
    [234]陈书宇.一种混凝土损伤模型和数值方法.爆炸与冲击,1998,18(4):349-357.
    [235]陈书宇.冲击荷载下的混凝土动态力学模型.力学学报,2002,34(增刊):260-263.
    [236]刘文彦.水泥复合材料在冲击载荷下的力学响应和纤维的桥联行为研究.合肥:中国科学技术大学,博士学位论文,1999.
    [237]王礼立,余同希,李永池,等.冲击动力学进展.合肥:中国科学技术大学出版社,1992.
    [238]姜锡权.水泥砂浆动态力学行为及短纤维增强性能研究.合肥:中国科学技术大学,博士学位论文,1996.
    [239]陈江瑛.水泥砂浆动态力学性能研究.杭州:浙江大学,硕士学位论文,1997.
    [240]Georgin J F,Reynouard J M.Modeling of structures subjected to impact:concrete behaviour under high strain rate.Cement and Concrete Composites,2003,25(1):131-143.
    [241]Wang W M.Stationary and Propagative Instabilities in Metals A Computational Point of View.Delft,Netherlands:Delft University of Technology,[1997.
    [242]Chern J C,Chen C H.The Multiaxial Constitutive Law for Concrete Structures Subjected to Impact Loading.Journal of Chinese Institute of Engineers,1987,10(6):625-638.
    [243]Schmidt M J,Cazacu O,Green M L,et al.A high-press high strain rate elstic-viscoplastic model for cementitious materials.Warsaw,Poland:Netherland,Kluwer Academic Publishers,2004.
    [244]李兆霞.一个综合模糊裂纹和损伤的混凝土应变软化本构模型.固体力学学报,1995,16(1):22-30.
    [245]王道荣.调整侵彻现象的工程分析方法和数值模拟研究.合肥:中国科学技术大学,博士学位论文,2002.
    [246]Coleman B D,Gurtin M E.Thermodynamics with internal state variables.The Journal of Chemical Physics,1967,47:597.
    [247]Lubliner J.On the thermodynamic foundations of non-linear solid mechanics.International Journal of Non-Linear Mechanics,1972,7(3):237-254.
    [248]Ziegler H.Non-linearity in thermomechanics.International Journal of Non-Linear Mechanics, 1975, 10: 145-154.
    [249] Ziegler H. An introduction to thermomechanics. Amsterdam: North-Holland Publishing Co., 1977.
    [250] Ortiz M. A Constitutive Theory for the Inelastic Behavior of Concrete. Mech. Mater, 1985, 4(1): 67-93.
    [251] Simo J C, Ju J W. Strain- and stress-based continuum damage models. I- Formulation. II- Computational aspects. International Journal of Solids and Structures, 1987, 23 (7): 821-869.
    [252] Simo J C, Miehe C. Coupled associative thermoplasticity at finite strains. Formulation, numerical analysis and implementation. Comp. Meth. Appl. Mech. Eng, 1992, 98(1): 41-104.
    [253] Hansen N R, Schreyer H L. Thermodynamically consistent framework for theories of elastoplasticity coupled with damage. International Journal of Solids and Structures, 1994, 31 (3): 359-389.
    
    [254] Lemaitre J. A Course on Damage Mechanics. Vienna: Springer-Verlag( Austria), 1996.
    [255] Houlsby G T. A derivation of the small-strain incremental theory of plasticity from thermomechanics. Delft: 1982.
    [256] Collins I F, Hilder T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(13): 1313-1347.
    
    [257] Dillon O W. A thermodynamic basis of plasticity. Acta Mechanica, 1967, 3(2): 182-195.
    [258] Valanis KC. On the thermodynamic foundation of classical plasticity. Acta Mechanica, 1970, 9(3): 278-291.
    [259] Lubliner J. Non-smooth dissipation functions and yield criteria. Acta Mechanica, 1975, 22(3): 289-293.
    [260] Lubliner J. A thermodynamic yield criterion in viscoplasticity. Acta Mechanica, 1978, 30(3): 165-174.
    [261] Schreyer H L, Maudlin P J. Thermodynamically consistent relations involving plasticity, internal energy and thermal effects. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1836): 2517-2541.
    [262] Van P. Internal thermodynamic variables and failure of microcracked materials. Journal of Non-Equilibrium Thermodynamics, 2001, 26(2): 167-189.
    [263] Polizzotto C. Thermodynamics and continuum fracture mechanics for nonlocal-elastic plastic materials. European Journal of Mechanics A: Mathematical, Physical and Engineering Sciences, 2002, 21(1): 85-103.
    [264] Nguyen G D. A thermodynamic approach to non-local damage modelling of concrete. International Journal of Solids and Structures, 2008, 45(7-8): 1918-1934.
    [265] Suiker A S J, De Borst R. Enhanced continua and discrete lattices for modelling granular assemblies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2005,363(1836):2543-2580.
    [266]Lemarchand E,Dormieux L,Ulm F J,et al.Micromechanics investigation of expansive reactions in ehemoelastic concrete.Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2005,363(1836):2581-2602.
    [267]Baker G,De Borst R.An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2005,363(1836):2603-2628.
    [268]Krishnan J M,Rajagopal K R.Thermodynamic framework for the constitutive modeling of asphalt concrete:theory and applications.Journal of Materials in Civil Engineering,2004,16(2):155-166.
    [269]Krishnan J M,Rajagopal K R,Masad E,et al.Thermomeehanieal framework for the constitutive modeling of asphalt concrete.International Journal of Geomeehanies,2006,6(1):36-45.
    [270]Vakili-tahami F,Hayhurst D R,Wong M T,et al.High-temperature creep rupture of low alloy ferritic steel butt-welded pipes subjected to combined internal pressure and end loadings.Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2005,363(1836):2629-2661.
    [271]Collins I F.Application of thermomechanical principles to the modelling of geotechnieal materials.Proceedings of Royal Society of London,Serials A:Mathematical,Physical and Engineering Sciences,1997,453(1964):1975-2001.
    [272]Collins I F,Kelly P.A thermomechanical analysis of a family of soil models.Geoteehnique,2002,52(7):507-518.
    [273]Collins I F,Hilder T.A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests.International JOurnal for Numerical and Analytical Methods in Geomechanics,2002,26(13):1313-1347.
    [274]Collins I F.A systematic procedure for constructing critical state models in three dimensions.International Journal of Solids and Structures,2003,40(17):4379-4397.
    [275]Collins I F,Tai A.What has Thermo-mechanics to offer Geo-mechanics? Torino:2005.
    [276]秦理曼,迟世春,林皋,等.基于能量耗散的土体本构关系及其参数确定.岩石力学与工程学报,2005,24(Supp.2):5625-5634.
    [277]秦理曼,迟世春,林皋,等.基于能量耗散的应力引起的土体各向异性模型.大连理工大学学报,2005,45(5):700-706.
    [278]秦理曼,迟世春,林皋,等.基于热力学的砂土统一模型.水利学报,2006,37(4):403-410.
    [279]秦理曼,迟世春,林皋,等.基于热力学的砂土不排水统一模型.岩石力学与工程学报,2006,25(7):1316-1322.
    [280]秦理曼,迟世春,林皋,等.一种基于热力学原理的密砂模型.岩土力学,2007,28(5):871-876.
    [281]龚晓南.土塑性力学.杭州:浙江大学出版社,1999.
    [282]王哲,林皋.混凝土的单轴率型本构模型.大连理工大学学报,2000,27(3):807-819.
    [283]Sidorroff F.On the formulation of plasticity and viscoplasticity with internal variable.Appl.Mech.Warsaw,1975,27(5-6):807-819.
    [284]Chaboehe J L.Cyclic viseoplastie constitutive equations.Part Ⅰ:A thermodynamically consistent formulation.Journal of Applied Mechanics,1993,60(4):813-828.
    [285]Freed A D,Chaboehe J L,Walker K P,et al.A viscoplastic theory with thermodynamic considerations.Acta Meehaniea,1991,90(1):155-174.
    [286]Rubin M B.A Thermoelastie-Viseoplastic Model With a Rate-Dependent Yield Strength.Journal of Applied Mechanics(Transactions of the ASME),1982,49(2):305-311.
    [287]Freed A D,Chaboche J L,Walker K P,et al.On the thermodynamics of stress rate in the evolution of back stress in viscoplastieity,Report.NASA,1991.
    [288]Sercornbe J.Viscous hardening plasticity for concrete in high-rate dynamics.Journal of Engineering Mechanics,1998,124(9):1050-1057.
    [289]Rubin M B,Elata D,Atria A V,et al.Modeling added compressibility of porosity and the thermomeehanical response of wet porous rock with application to Mt.Helen tuff.International Journal of Solids and Structures,1996,33(6):761-793.
    [290]Rubin M B,Vorobiev O Y,Glenn L A,et al.Mechanical and numerical modeling of a porous elastic—viscoplastic material with tensile failure.International Journal of Solids and Structures,2000,37(13):1841-1871.
    [291]戚承志,王明洋,钱七虎,等.弹粘塑性空隙介质在冲击荷载作用下的一本构关系.岩石力学与工程学报,2003,22(9):1405-1410.
    [292]冯明辉,吕和祥.一种弹粘塑性统一本构模型.固体力学学报,2001,22(4):403-408.
    [293]冯明辉,吕和祥,林皋,等.粘弹塑性理论在混凝土变形中的应用.工程力学,2002,19(2):1-6.
    [294]Germain P,Suquet P,Nguyen Q S,et al.Continuum thermodynamics.ASME,Transactions,Journal of Applied Mechanics,1983,50(4b):1010-1020.
    [295]Ziegler H,Wehrli C.The derivation of constitutive relations from the free energy and the dissipation function.Advances in applied mechanics.,1987,25(3):183-238.
    [296]Maugin G A.The Thermodynamics of Plasticity and Fracture.Cambridge:Cambridge University Press,1992.
    [297]Reddy B D,Martin J B.Internal variable formulations of problems in elastoplasticity:constitutive and algorithmic aspects.Applied Mechanics Reviews,1994,47(5):429-456.
    [298]Lubliner J.Plasticity Theory.New York:MacMillan,1990.
    [299]Maier G,Hueckel T.Non-associated and coupled flow rules of elastoplasticity for geotechnical media.Tokyo:1977.
    [300]Hill R.A variational principle of maximum plastic work in classical plasticity.Quart.J.Mech.Appl.Math.,1948(1):18-28.
    [301]Collins I F,Muhunthan B.On the relationship between stress-dilatancy,anisotropy,and plastic dissipations for granular materials.Geotechnique,2003,53(7):611-618.
    [302]秦理曼.基于能量耗散的土的本构关系研究.大连:大连理工大学,博士学位论文,2006.
    [303]Hoffman,O,Sachs G.Introduction to the Theory of Plasticity for Engineering.New York:McGraw-Hill Book Company,1953.
    [304]Hill R.The Mathematical Theory of Plasticity.Oxford:Clarendon Press,1956.
    [305]Pearce C J.Computational plasticity in concrete failure mechanics.Swansea:University of Wales,[PhD Dissertation],1996.
    [306]Ansad F,Li Q B.High-strength concrete subjected to tdaxial compression.ACI Material Journal,1998,95(6):747-755.
    [307]Kupfer H B,HilsdorfH K,Ruseh H,et al.Behavior of concrete under biaxial stresses.Journal of American Concrete Institute,1969,66(8):656-666.
    [308]Jiang L,Huang D,Xie N,et al.Behavior of concrete under triaxial compressive-compressive-tensile stresses.ACI Materials Journal,1991,88(2):181-185.
    [309]Chem J,Yang H,Chen H,et al.Behavior of steel fiber reinforced concrete in multiaxial loading.ACI Materials Journal,1992,89(1):32-40.
    [310]Mills L L,Zimmerman R M.Compressive strength of plain concrete under multiaxial loading condition.ACI Journal,1970,67(I0):802-807.
    [311]Imran I,Pantazopoulou J.Experimental study of plain concrete under triaxial stress.ACI Materials Journal,1996,93(6):589-601.
    [312]Xie J,Elwi A E,Macgregor J G,et al.Mechanical properties of three high-strength concretes containing silica fume.ACI Materials Journal,1995,92(2):135-145.
    [313]Attard M M,Setunge S.Stress-strain relationship of condition and unconfined concrete.ACI Materials Journal,1996,93(5):432-442.
    [314]Sfer D,Carol I,Gettu R,et al.Study of the behavior of concrete under triaxial compression.Journal of Engineering Mechanics,2002,128(2):156-163.
    [315]Setunge S,Attard M M,Darvall P L,et al.Ultimate strength of comfined very high-strength concretes.ACI Structural Journal,1993,90(6):632-641.
    [316]Soroushian P,Choi K B,Alhamad A,et al.Dynamic constitutive behavior of concrete.ACI Journal,1986,83(2):251-259.
    [317]Mander J B,Priestley M J,Park R,et al.Theoretical stress-strain model for confined concrete.Journal of Structural Engineering,1988,114(8):1804-1826.
    [318]Cela J J L.Analysis of reinforced concrete structures subjected to dynamic loads with a viscoplastic Drucker—Prager model.Applied Mathematical Modelling,1998,22(7):495-515.
    [319]蒋昭镳,陈江瑛.混凝土结构动态安全分析的重要基础-混凝士动态力学性能.宁波大学学报,1997,10(2):50-57.
    [320]Carosio A,Willam K,Etse G,et al.On the consistency of viscoplastic formulations.International Journal of Solids and Structures,2000,37(48-50):7349-7369.
    [321]Montans F J.Implicit algorithms for multilayer J2-plasticity.Computer Methods in Applied Mechanics and Engineering,2000,189(2):673-700.
    [322]Cruz J S,Barros J,Azevedo A,et al.Elasto-plastic multi-fixed smeared crack model for concrete,Report 04-DEC/E-05.Department of Civil Engineering,University of Minho,2004.
    [323]Ceb-fib.CEB-FIP Model Code 1990- Design Code.UK:Redwood Books,1993.
    [324]Reinhardt H W.Fracture mechanics of an elastic softening material like concrete.Heron,1984,29(2):1-42.
    [325]Suaris W,Shah S P.Constitutive model for dynamic loading of concrete.Journal of Structural Engineering,ASCE,1985,111(3):563-576.
    [326]Bazant Z P.Creep and thermal effects in concrete structures:a conspectus of some new developments.Swansea:Pineridge,1994.
    [327]徐艳杰,张楚汉,金峰,等.非线性拱坝一地基动力相互作用的FE-BE-IBE模型.清华大学学报(自然科学版),1998,38(11):99-103.
    [328]陈厚群,侯载顺,张力飞,等.拱坝多点输入动力反应的试验研究.水利学报,1995,26(8).
    [329]陈健云,林皋.多点输入随机地震动拱坝地震体系反应分析.世界地震工程,2000,16(3).
    [330]林皋,胡志强.拱坝横缝影响用其有效抗震措施的研究.世界地震工程,2004,20(3).
    [331]闫晓荣.正交各向异性损伤模型在混凝土坝抗震安全评价中的应用.大连理工大学,硕士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700