用户名: 密码: 验证码:
肽的定量构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从分子结构表征和定量构效关系(quantitative structure-activity relationship, QSAR)建模方法与技术这两个关键内容出发,对48 个苦味二肽、58 个血管收缩素转化酶抑制剂、31 个血管舒缓激肽促进剂、21 个后叶催产素、152 个HLA-A*0201限制性CTL表位和34个抗菌肽进行了定量构效关系研究以及建模方法与技术的比较研究。
    分子结构表征是定量构效关系研究的一个关键环节。结构描述子能否反映分子与生物活性相关的结构信息,决定了定量构效关系研究的成败。文中提出的两种氨基酸结构描述子矢量VSTV 和VHSE 均来源于主成分特征提取的思路。其中VSTV(principal component score vector of structural and topological variables)来源于20 种天然氨基酸的25 种拓扑结构信息,并通过主成分分析而产生。由于VSTV 是基于氨基酸的结构和拓扑性质,因此具有计算方法简便,不依赖实验数据以及拓展性能好等优点。VHSE(principal component score vector of hydrophilicity, steric, and electronic properties)则是来源于20 种天然氨基酸的50 种物理化学性质,通过对其中18 个疏水性质,17 个立体性质和15 个电性性质分别进行主成分分析而产生。其中VHSE1、VHSE2代表氨基酸的疏水性特征;VHSE3、VHSE4代表氨基酸的立体特征;VHSE5~VHSE8则代表氨基酸的电性特征。与z 标度以及其它氨基酸描述子相比,VHSE 具有物化意义明确、信息量大和结果更易解释等特点。从上述的6个肽体系的构效关系研究结果看,VSTV 和VHSE 能较好地表征肽分子与生物活性相关的结构信息,并取得了与已有文献结果相当或更优的结果。
    建模方法与技术是定量构效关系研究的一个重要内容。在进行定量构效关系研究的同时,详细地比较分析了多元线性回归(multiple linear regression, MLR)、主成分回归(principal component regression, PCR)、偏最小二乘回归(partial least squares, PLS)、人工神经网络(artificial neural network, ANN)和支持向量机(support vector machine, SVM)在线性或非线性体系的应用,其间包含了变量筛选和模型验证方法的研究和讨论。研究结果显示:经典的MLR 在满足相关条件的前提下,通常可以取得较好的结果。PCR 和PLS 可以较好地解决变量数较多且存在多重共线性的情况,并且在大多数情况下PLS 结果要优于PCR。当结构描述子与生物活性存在非线性的关系时,BP-ANN 是一种较好的选择。文中由于采用了验证集对过拟合现象进行了适当控制,使得BP-ANN 的预测能力有了较大幅度的提高。SVM 作为一种新的机器学习方法,在本文的构效关系研究中亦取得了较优的结果,尤其是SVM能较好的解决小样本、非线性、高维数和局部最小等实际问题,并且从原理上解
Structural description and modeling techniques are two essential contents of the quantitative structure-activity relationship (QSAR) studies. Based on the intense researches on these two points, the QSAR studies related to 48 bitter tasting dipeptides, 58 angiotensin-converting enzyme inhibitors, 31 bradykinin-potentiating pentapeptides, 21 oxytocin analogues, 152 HLA-A*0201 restrictive CTL epitopes, and 34 antimicrobial peptides were dwelled on in detail.
    Structural description is a key step in the QSAR studies. Whether the structural descriptors can reflect the structural variations determines the success of QSAR studies. Two kinds of amino acid descriptors, i.e. VSTV and VHSE, were derived from the ideal of principal components extraction. VSTV was derived from principal component analysis (PCA) on 25 structural and topological variables of 20 coded amino acids. So, the VSTV descriptors are of easy computation, experiment independent and can be easily expanded to other non-coded amino acids. VHSE was derived from the principal component analysis on independent families of 18 hydrophobic properties, 17 steric properties, and 15 electronic properties, respectively, which were included in total 50 physicochemical properties of 20 coded amino acids. For amino acids, VHSE1 and VHSE2 are related to hydrophobic properties, VHSE3 and VHSE4 related to steric properties, and VHSE5~VHSE8 related to electronic properties. As a new set of amino acid descriptors, VHSE is of relatively definite physicochemical meaning, easy interpretation and more information contained in comparison with z-scales and other amino acid descriptors. When VSTV and VHSE were applied in the QSAR studies of 6 peptide datasets mentioned above, equivalent or better results were obtained in comparison with those obtained with z-scales and other 2-D or 3-D descriptors.
    The modeling methods and related techniques are also important for the success of QSAR studies. The modeling methods such as multiple linear regression (MLR), principal component regression (PCR), partial least squares (PLS), back-propagation artificial neural network (BP-ANN), and support vector machine (SVM) were systematically studied in this paper. In addition, the techniques related to variables screening and model validations were also discussed. The results showed that MLR, as a classic modeling method, behaved as well as other modeling methods if the application conditions were met. When the ratio of samples to variables was less than 3
    or when multiple collinear among variables was encountered, PCR and PLS were better alternative to MLR. In the most situations, PLS performed better than PCR. When the structural descriptors had nonlinear relationship with response variable, BP-ANN was then a better choice. In BP-ANN modeling, validation dataset was used to control over-fitting, find the optimal topological network structure and train network weights. The predictive power of BP-ANN was efficiently enhanced with the proper use of validation dataset. As a new modeling method, SVM is based on the structural risk minimization principle, which incorporates capacity control to prevent over-fitting. So SVM is of better generalization performance than PLS and ANN, and thus is especially suitable for QSAR modeling on small dataset. In this paper, SVM achieved good performance in QSAR modeling. However, there are many issues, i.e. selection of kernel functions and corresponding parameters, leaving to be studied in detailed. For a QSAR dataset, not all variables are relevant to biological activity. So those redundant variables should be deleted from model in order to promote predictive capability especially when the number of variables is very large. In this paper, stepwise multiple regression (SMR) and GA-PLS were used to find an optimal variable subset. When the number of variables was less than 50, SMR, the classic variable selection method, was recommended. When the number of variables was more than 50, GA-PLS was then an alternative choice. However, the over-fitting should be avoided by proper validation methods especially in GA-PLS modeling. Model validation is an absolutely necessary step in QSAR modeling. In this paper, all samples were firstly divided into training dataset and predictive dataset according to D-optimal design technique. The training dataset was used to establish QSAR models and perform internal validation such as leave one out (LOO), leave 1/n out (LNO), leave many out (LMO) and Y random permutations test. On the base of internal validation, external validation was also performed using the predictive dataset. Several evaluation functions were used to evaluate predictive power of the resulting QSAR models.
引文
[1] [美]马丁原著, 王尔华编译. 定量药物设计. 北京: 人民卫生出版社, 1983: 1-39.
    [2] 李志良. 定量构效关系研究进展. 化学通报, 1995, 9: 5-10.
    [3] 王连生, 韩朔睽. 分子结构、性质与活性. 北京: 化学工业出版社, 1997: 177-178.
    [4] Katritzky AR, Maran U, Lobanov VS et al. Perspective: Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. J. Chem. Inf. Comput. Sci., 2000, 40: 1-18.
    [5] Ekins S. Predicting undesirable drug interactions with promiscuous proteins in silico. Drug Discovery Today, 2004, 9: 276-285.
    [6] Stone M, Jonathan P. Statistical thinking and technique for QSAR and related studies. 1. General theory. J. Chemom., 1993,7: 455-475.
    [7] Oprea TI, Waller CL. Rational drug design: Novel methodology and practical applications, Oxford University Press: New York, 1999: 256-257.
    [8] Klebe G, Abraham U, Mietzner T. Molecular similarity indexes in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological-activity. J. Med. Chem., 1994, 37: 4130-4146.
    [9] Zlotos DP, Buller S, Stiefl N et al. Probing the pharmacophore for allosteric ligands of muscarinic M2 receptors: SAR and QSAR studies in a series of bisquaternary salts of caracurine V and related ring systems. J. Med. Chem., 2004, 47: 3561-3571.
    [10] Klebe G, Abraham U. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput.-Aided Mol. Des., 1999, 13: 1-10.
    [11] Ferguson AM, Heritage T, Jonathon P et al. EVA: A new theoretically based molecular descriptor for use in QSAR/QSPR analysis. J. Comput.-Aided Mol. Des., 1997, 11: 143-152.
    [12] Rogers D, Hopfinger AJ. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci., 1994, 34: 854-866.
    [13] King RD, Hirst JD, Sternberg MJ. New approaches to QSAR: neural networks and machine learning. Perspect. Drug Discovery Des., 1993, 1: 279-290.
    [14] Selwood DL, Livingston DJ, Comley JC et al. Structure-activity relationships of antifilarial antimycin analogs: A multivariate pattern recognition study. J. Med. Chem., 1990, 33: 136-142.
    [15] Nielsen SF, Nielsen EO, Olsen GM et al. Novel potent ligands for the central nicotinic acetylcholine receptor: Synthesis, receptor binding, and 3D-QSAR analysis. J. Med. Chem., 2000, 43: 2217-2226.
    [16] Hansch C, Li R, Blaney JM et al. Comparison of the inhibition of Escherichia coli and Lactobacillus casei dihydrofolate reductase by 2,4-diamino-5-(substituted-benzyl)-pyrimidines: Quantitative structure-activity relationships, Xray crystallography, and computer graphics in structure-activity analysis. J. Med. Chem., 1982, 25: 777-784.
    [17] Cramer RD. Topomer CoMFA: A design methodology for rapid lead optimization. J. Med. Chem., 2003, 46: 374-388.
    [18] Pastor M., Cruciani G, McLay I et al. GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors. J.Med. Chem., 2000, 43: 3233-3243.
    [19] Kunick C, Lauenroth K, Wieking K et al. Evaluation and comparison of 3D-QSAR CoMSIA models for CDK1, CDK5, and GSK-3 inhibition by paullones. J. Med. Chem., 2004, 47: 22-36.
    [20] Senese CL, Duca J, Pan D. 4D-fingerprints, universal QSAR and QSPR descriptors. J. Chem. Inf. Comput. Sci., 2004, 44: 1526-1539.
    [21] Meyer H. Zur Theorie der Alkolnarkose I. Welche eigenschaft der anaextheticabedingt ihre narkotische wirkung?, archiv für experimentell pathlolgie und pharmakologie, 1899, 42: 109-118.
    [22] Overton E. Osmotic properties of cells in the bearing on toxicology and pharmacy, Zeitxdhrigt für Physikalisch Chemie, 1897, 22: 189-209.
    [23] Ferguson J. The use of chemical potentials as indices of toxicity, Proceedings of the Roval Sociity. Ser. B., 1939, 127: 487-503.
    [24] Hansch C, Muir M, Fujita T et al. The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J. Am.Chem. Soc., 1963, 85: 2817-2824.
    [25] Free SM, Wilson JW. A mathematical contribution to structure-activity studies. J. Med. Chem., 1964, 7: 395-399.
    [26] Randic M. On characterization of molecular branching. J. Am. Chem. Soc., 1975, 1997, 23: 6609-6615.
    [27] Kier LB, Hall LH, Murray WJ et al. Molecular connectivity 1: relationship to nonspecific local anesthesia. J. Pharm. Sci., 1975, 64: 1974-1977.
    [28] Kier LB, Murray WJ, Hall LH. Molecular connectivity 4: relationship to biological activity. J. Med. Chem., 1975, 18: 1272-1274.
    [29] Kier LB, Hall LH. Molecular connectivity in chemistry and drug research. Academic Press, New York, 1976: 123-128.
    [30] Petitjean M. Applications of the radius-diameter diagram to the classification of topological and geometric shapes of chemical compounds. J. Chem. Inf. Comput. Sci., 1992, 32: 331-337.
    [31] Randic M. On characterization of three-dimensional structures. Int. J. Quantum Chem.: Quantum Biol. Symp., 1988, 15: 201-208.
    [32] Randic M, Jerman-Blazi? B, Trinajsti? N. Development of 3-dimensional molecular descriptors. Comput. Chem., 1990, 14: 237-246.
    [33] Estrada E, Montero LA. Bond order weighted graphs in molecules as structure-property indices. Mol. Eng., 1993, 2: 363-373.
    [34] Kier LB, Hall LH. An electrotopological state for atoms in molecules. Pharm. Res., 1990, 7: 801-807.
    [35] Kier LB, Hall LH. An atom-centered index for drug QSAR models. In Advances in Drug Design. Testa B(Ed), Academic Press. 1992: 1235-1242.
    [36] Kier LB, Hall LH. An index of electrotopological state for atoms in molecules. J. Math. Chem., 1991, 7: 229-241.
    [37] Hall LH, Kier LB. Electrotopological state indices for atom types: a novel combination of electronic, topological and valence state information. J. Chem. Inf. Comput. Sci., 1995, 35: 1039-1045.
    [38] Crippen GM. Distance geometry approach to rationalizing binding data. J. Med. Chem., 1979,22: 988.
    [39] Marshall GR. In: Olson EC, Clustoffersert R(ed). Computer-assisted drug design. ACS Symp. 1979, Series 112, 201979.
    [40] Hopfinger AJ. A QSAR investigation of dihydrofolate reductase inhibition by baker trizaines based upon molecular shape analysis, J AmChem Soc., 1980, 102: 7196-7206.
    [41] Cramer RD, Milne M. Abstracts of the ACS meeting, April 1979, COMP 44.
    [42] Cramer RD, Patterson DE, Bunce J. Comparative molecular field analysis (CoMFA). 1. effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110: 5959-5967.
    [43] Muresan S, Sulea T, Ciubotariu D et al. Van der Waals intersection envelope volumes as a possible basis for steric interactions in CoMFA. Quant.Struc-Act.Relat., 1995, 15: 31.
    [44] Gaillard P, Carrupt PA, Testa B et al. Binding of arylpiperazines, aryloxypropanolamines and tetrahydropyridyl-indoles to the 5-HT1A receptor: contribution of the molecular lipophilicity potential (MLP) to 3D-QSAR models. J. Med. Chem., 1996, 39: 126-134.
    [45] Kneubuhler S, Thull U, Altomare C et al. Inhibition of monoamine oxidase by 5H-indeno[1,2-c]pyridazines: biological activities, quantitative structure-activity relationships (QSARs) and 3D-QSARs. J. Med. Chem., 1995, 38: 3874-3883.
    [46] Thull U, Kneubuhler S, Gaillard P et al. Inhibition of monoamine oxidase by isoquinoline derivatives: qualitative and 3D-quantitative structure-activity relationships. Biochemical Pharmacology, 1995, 50: 869-877.
    [47] Kellogg GE, Semus SF, Abraham DJ. HINT-a new method of empirical hydrophobic field calculation for CoMFA. J. Computer Aided Mol. Design, 1991, 5: 545-552.
    [48] Collantes ER, Tong WD, Welsh WJ et al. Use of moment of inertia in comparative molecular field analysis to model chromatographic retention of nonpolar solutes. J. Chem. Inf. Comput. Sci., 1996, 36: 2038-2043.
    [49] Klebe G., Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem., 1994, 37: 4130-4146.
    [50] Hou TJ, Li ZM, Li Z, et al. Three-dimensional quantitative structure-activity relationship analysis of the new potent sulfonylureas using comparative molecular similarity indices analysis. J. Chem. Inf. Comput. Sci., 2000, 40: 1002-1009.
    [51] Klebe G, Abraham U. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput-Aides Mol. Des., 1999, 13: 1-10.
    [52] Doweyko AM. The hypothetical active site lattice: an approach to modelling active sites from data on inhibitor molecules. J. Med. Chem., 1988,31: 1396-1406.
    [53] Jain AN,Koile K, Chapman D. COMPASS-predicting biological-activities from molecular-surface properties performance comparisom on a steroid benchmark. J. Med. Chem., 1994a, 37: 2315.
    [54] Walters DE, Hinds RM. Genetically evolved receptor models-a computational approach to constuction of receptor models. J. Med. Chem., 1994, 37: 2527-2532.
    [55] Hahn M. Receptor surface models. 1. definition and construction. J. Med. Chem., 1995a, 38: 2080-2088.
    [56] Hopfinger AJ, Wang S, Tokarski JS et al. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc., 1997, 119: 10509-10524.
    [57] Vedani A, Dobler M. 5D-QSAR: the key for simulating induced fit. J. Med. Chem., 2002, 45: 2139-2149.
    [58] Vedani A, Dobler M. Multidimensional QSAR: moving from three to five dimensional concepts. Quant. Strut. Act. Relat., 2002, 21: 382-390.
    [59] Kamlet MJ, Doherty RM, Abbound J et al. Linear solvation energy relationships: Molecular properties governing solubility of organic nonelectrolytes in water. J. Pharm. Sci., 1986, 75: 339.
    [60] Lipkowitz KB, Boyd DB. Reviews in computational chemistry, Vol. 2. VCH, N. Y., 1991, 81-97.
    [61] 李志良, 曾鸽鸣, 胡芳等. 多维定量构效关系及药物分子设计研究进展. 化学研究与应用, 1997, 9: 7-14.
    [62] Neath PHA. Relations between chemical structure and biological activity in peptides. J. Theor. Biol., 1966, 12: 157-195.
    [63] Nadasdi L, Medzihradszky K. A study of the applicability of QSAR calculation for peptide hormones. Biochem. Biophys. Res. Commun., 1981, 99: 451-457.
    [64] Borea PA, Santo GP, Salvadori S et al. Opioid peptides pharmacological activity and lipophilic character of dermorphin oligopeptides. Sci. 1983, 38: 521-526.
    [65] Asao M, Iwamura H, Akamatsu M et al. Quantitative structure-activity relationships of the bitter thresholds of amino acids, peptides, and their derivatives. J. Med. Chem., 1987, 30: 1873-1879.
    [66] Fauchere J, Charton M, Kier LB et al. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Protein Res., 1988, 32: 269-278.
    [67] Charton M. The quantitative description of amino acid, peptide, and protein properties and bioactivities. Prop. Phys. Org. Chem., 1990, 18: 163-284.
    [68] Depriest SA, Mayer D, Naylor CD et al. 3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors: A comparision of CoMFA models based on deduced and experimentally determined active site geometries. J. Am. Chem. Soc., 1993, 115: 5372-5384.
    [69] Waller CL, Oprea TL, Giolitti A. et al. Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules. J. Med. Chem., 1993, 36: 4152-4160.
    [70] Waller CL, Marshall G.R. Three dimensional quantitative structure-activity relationship of angiotension-converting enzyme and thermolysin inhibitors. II. A comparision of CoMFA models incorporating molecular orbital fields and desolvation free energies based on active-analog and complementary-receptor field alignment. J. Med. Chem., 1993, 36: 2390-2403.
    [71] Cocchi M, Johansson E. Amino acids characterization by GRID and multivariate data analysis. Quant. Struct. Act. Relat., 1993, 12: 1-8.
    [72] Kidera A, Konishi Y, Oka M et al. A statistical analysis of the physical properties of the 20 naturally occuring amino acids. J. Protein Chem., 1985, 4: 23-55.
    [73] Hellberg S, Sj?str?m M, Wold S. The prediction of bradykinin potentiating potency of pentapeptides: An example of a peptide quantitative structure-activity relationship. Acta Chem. Scand. B., 1986, 40: 135-140.
    [74] Hellberg S, Sj?str?m M, Skagerberg B et al. Peptide quantitative structure-activity relationships, a multivariate approach. J. Med. Chem., 1987, 30: 1126-1135.
    [75] Hellberg S, Eriksson L, Jonsson J et al. Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships. Int. J. Pept. Protein Res., 1991, 37: 414-424.
    [76] Wold S, Eriksson L, Hellberg S et al. Principal property values for six non-natural amino acids and their application to a structure-activity relationship for oxytocin peptide analogues. Can. J. Chem., 1987, 65: 1814-1820.
    [77] Jonsson J, Eriksson L, Hellberg S et al. Multivariate parameterization of 55 coded and non-coded amino acids. Quant. Strut. Act. Relat., 1989, 8: 204-209.
    [78] Sandberg M, Eriksson L, Jonsson J et al. New chemical descriptors for the design of biologically active peptides. A multivariate charaterrization of 87 amino acids. J. Med.Chem., 1998, 41: 2481-2491.
    [79] Collantes ER, Dunn WJ. Amino acid side chain descriptors for quantitative structure activity relationship studies of peptide analogues. J. Med. Chem., 1995, 38: 2705-2713.
    [80] Zaliani A, Gancia E. MS-WHIM scores for amino acids: A new 3D-description for peptide QSAR and QSPR studies. J. Chem. Inf. Compt. Sci., 1999, 39: 525-533.
    [81] Raychaudhury C, Banerjee A, Bag P et al. Topological shape and size of peptides: identification of potential allele specific helper T cell antigenic sites. J. Chem. Inf. Comput. Sci., 1999, 39: 248-254.
    [82] Andersson PM, Sj?strom M, Lundstedt T. Preprocessing peptide sequences for multivariate sequence-property analysis. Chemometrics and intelligent laboratory systems. 1998, 42: 41-50.
    [83] Patel S, Stott IP, Bhakko M et al. Patenting computer-designed peptides. Journal of Computer-Aided Molecular Design. 1998, 12: 543-556.
    [84] Sotomatsu-Niwa T, Ogino A. Evaluation of the hydrophobic of the amino acids side chains of peptides and their application in QSAR and conformational studies. Journal of Molecular Structure (Theochem). 1997, 392: 43-54.
    [85] Casal V, Martin-Alvarez PJ, Herrainz T. Comparative prediction of the retention behaviour of small peptides in several reversed-phase high-performance liquid chromatography columns by using partial least squares and multiple linear regression. Analytical Chimica Acta,
    1996,326:77-84
    [86] Li SZ, Fu B, Wang Y et al. On structural parameterization and molecular modeling of peptide analogues by molecular electronegativity edge vector (VMEE): Estimation and prediction for biological activity of pentapeptides. J.Chin. Chem.Soc., 2001, 48: 937-944.
    [87] Guttman I.. Linear models: An introduction. New York: Wiley. 1982: 578-579.
    [88] Hocking RR. The analysis and selection of variables in linear regression. Biometrics, 1976, 32: 1-51.
    [89] Jobson JD. Applied multivariate data analysis. New York: Springer-Verlag. 1992: 314-316.
    [90] Kabe DG. On some multivariate statistical methodology with applications to statistics, psychology, and mathematical programming. Journal of the Industrial Mathematics Society, 1985, 35: 1-18.
    [91] Khattree R, Naik DN. Applied multivariate statistics with SAS software. 2nd ed, New York: Wiley. 1999: 89-92.
    [92] Morrison DF. Multivariate statistical methods. 3rd ed, New York: McGraw-Hill. 1990: 234-238.
    [93] Rencher AC, Pun FC. Inflation of R2 in best subset regression. Technometrics, 1980, 22: 49-53.
    [94] 俞汝勤. 化学计量学导论. 长沙: 湖南教育出版社, 1991: 78-89.
    [95] Smith DW, Gill DS, Hammond JJ. Variable selection in multivariate multiple regression. Journal of Statistical Computation and Simulation. 1985, 22: 217-227.
    [96] Critchley F. Influence in principal components analysis. Biometrika, 1985, 72:627-636.
    [97] Jackson JE. Principal components and factor analysis: Part I—principal components. Journal of Quality Technology, 1980, 12: 201–213.
    [98] Khattree R, Naik DN. Multivariate data reduction and discrimination with SAS software. New York: Wiley. 2000: 95-97.
    [99] Ruymgaart FH. A robust principal component analysis. Journal of Multivariate Analysis, 1981, 11: 485-497.
    [100] Chambers JM, Kleine B. Graphical techniques for multivariate data and for clustering. New York: North-Holland, 1982: 489-492.
    [101] Nomikos P, MacGregor JF. Monitoring of batch processes using multi-way principal components analysis. Am. Inst.. Chem. Eng. J., 1994, 40: 1361-1375.
    [102] Wold H. Estimation of principal components and related models by iterative least squares. in: Multivariate analysis, Krishnaiah PR (ed). New York:Academic Press, 1966: 259-261.
    [103] De Jong S. SIMPLS: An alternative approach to partial least squares regression. Chemometrics Intell. Lab. Syst., 1993, 18: 251-263.
    [104] Ergon R. PLS score–loading correspondence and a biorthogonal factorization. J. Chemometrics, 2002, 16: 368-373.
    [105] Wold S, Ruhe A, H. Wold et al. The collinearity problem in linear regression, the partial least squares approach to generalized inverses, SIAM J. Sci. Stat. Comput., 1984, 5:735-743.
    [106] Hoskuldsson P. PLS regression methods. J. Chemom., 1988, 2: 211-228.
    [107] Wold S, Johansson E, Cocchi M. PLS—partial least squares. projections to latent structures, in: 3D QSAR in drug design, theory, methods, and applications, H. Kubinyi(ed). Leiden: ESCOM Science Publishers, 1993: 523-550.
    [108] Tenenhaus M. La regression PLS: Theorie et pratique. Paris: Technip, 1998: 102-107.
    [109] Gerlach RW, Kowalski BR, Wold H. Partial least squares modelling with latent variables, Anal. Chim. Acta., 1979, 112: 417-421.
    [110] Wold S, Hellberg S, Lundstedt T et al. PLS modeling with latent variables in two or more dimensions, PLS meeting, Frankfurt, September 1987: 84-85.
    [111] Nomikos P, MacGregor JF. Multi-way partial least squares in monitoring batch processes. Chemometrics Intell. Lab. Syst., 1995, 30: 97-108.
    [112] Kourti T, Nomikos P, MacGregor JF. Analysis, monitoring and fault diagnosis of batch processes using multi-block multi-way PLS. J. Proc. Control, 1995, 5: 277-284.
    [113] Wold S, Trygg J, Berglund A et al. Some recent developments in PLS modeling. Chemom. Intell. Lab. Syst., 2001, 58: 131-150.
    [114] Wold S, Sj?str?m M, Eriksson L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst., 2001, 58: 109-130.
    [115] 张立明. 人工神经网络的模型及其应用. 上海: 复旦大学出版社, 1991: 34-36.
    [116] 袁曾任. 人工神经元网络及其应用. 北京: 清华大学出版社, 1999: 125-127.
    [117] 徐勇, 荆涛. 神经网络模式识别及其实现. 北京: 电子工业出版社, 1999: 65-68.
    [118] Ripley BD. Pattern Recognition and Neural Networks, Cambridge: Cambridge University Press, 1996: 235-237.
    [119] Haykin S. Neural networks: a comprehensive foundation. New York: Macmillan College Publishing Company, 1994: 56-58.
    [120] Zupan J, Gasteiger J. Neural networks in chemistry and drug design, 2nd ed. Weinheim: Wiley-VCH, 1999: 456-459.
    [121] Wu CH. Artificial neural networks for molecular sequence analysis. Comput. Chem., 1997, 214: 237-256.
    [122] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating error. Nature, 1986, 323: 533-536.
    [123] Stormo GD, Schneider TD, Gold LM et al. Use of the "perceptron" algorithms to distinguish translational initiation sites in E.coli. Nucl. Acids Res., 1982, 10: 2997-23011.
    [124] Erb RJ. Neural network computation of nonlinear pharmacological effects from concentration of drug in the central compartment independent of equilibrium status. Pharm. Res., 1992, 9: 293.
    [125] Leardi R, Gonzáles AL. Genetic algorithms applied to feature selection in PLS regression: How and when to use them. Chemometr. Intell. Lab. Syst., 1998, 41: 195-207.
    [126] Hibbert DB. Genetic algorithms in chemistry. Chemometr. Intell. Lab. Syst., 1993, 19: 277-293.
    [127] Davis L. Handbook of genetic algorithms. 1st Edition, New York: Van Nostrand Reinhold, 1991: 23-26.
    [128] Back T. Evolutionary algorithms in theory and practice: evolution stratgies, evolutionary programming, genetic algorithms. 1st Edition, New York: Oxford University Press, 1996: 412-416.
    [129] Holland JH. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press, 1975: 156-159.
    [130] Goldberg D. Genetic algorithms in search, optimization, and machine learning. New York: Addison-Wesley Publishing Company, Inc., 1989: 49-53.
    [131] Forrest S. Genetic algorithms: principles of natural selection applied to computation. Science 1993, 261: 872-878.
    [132] Maddox J. Genetics helping molecular dynamics. Nature, 1995, 376: 209.
    [133] Lucasius CB, Kateman G. Understanding and using genetic algorithms. Part 1. Concepts, properties and context. Chemometrics Intell. Lab. Syst., 1993, 19: 1-33.
    [134] Lucasius CB, Kateman G. Understanding and using genetic algorithms. Part 2. Representation, configuration and hybridization. Chemometrics Intell. Lab. Syst., 1994, 25: 99-145.
    [135] Lucasius CB, Kateman G. Gates towards evolutionary large-scale optimization: A software-oriented approach to genetic algorithms—I. general perspective. Comput. Chem., 1994, 18: 127-136.
    [136] Lucasius CB, Kateman G. Gates towards evolutionary large-scale optimization: A software-oriented approach to genetic algorithms—II. toolbox description. Comput. Chem., 1994, 18: 137-156.
    [137] Shaffer RE, Small GW. Learning optimization from nature: Simulated annealing and genetic algorithms. Anal. Chem., 1997, 69: 236-242.
    [138] Luke BT. An overview of genetic methods in: Genetic algorithms in molecular modeling, New York: Academic Press, 1996: 189-193.
    [139] Wehrens R, Pretsch E, Buydens LMC. Quality criteria of genetic algorithms for structure optimization. J.Chem. Info. Comput. Sci., 1998, 38: 151-157.
    [140] Vapnik V, The nature of statistical learning theory. New York: Springer, 1995: 67-74.
    [141] Vapnik V, Statistical learning theory. New York: Wiley, 1998: 125-131.
    [142] Gunn S, Support vector machines for classification and regression. Technical report, ISIS, Department of Electronics and Computer Science, University of Southampton, 1998: 151-157.
    [143] Jaakkola T, Haussler D. Probabilistic kernel regression models. in: Proceedings of the seventh international workshop on artificial intelligence and statistics, 1998: 678-682.
    [144] Joachims T. Making large-scale SVM learning practical. in: Advances in kernel methods—support vector learning, SchSolkopf B, Burges C, Smola A(ed). Cambridge: MIT Press, 1999: 49-53.
    [145] Platt J. Fast training of support vector machines using sequential minimal optimization, in: Advances in kernel methods—support vector learning, SchSolkopf B, Burges C, Smola A(ed). Cambridge: MIT Press, 1999: 159-163.
    [146] Chaucharda F, Cogdillb R, Rousselc S, et al. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes. Chemom Intell Lab Syst., 2004, 71: 141-150.
    [147] Hua S, Sun, Z. A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach. J Mol Biol., 2001, 308: 397-407.
    [148] Burbidge R, Trotter M, Buxton B, et al. Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers and Chemistry, 2001, 26: 5-14.
    [149] Hong SJ, Weiss SM. Advances in predictive models for data mining. Pattern Recognition Letters, 2001, 22: 55-61.
    [150] Belousov AI, Verzakov SA, Frese JV. A flexible classification approach with optimal generalization performance: Support vector machines. Chemom Intell Lab Syst., 2002, 64: 15-25.
    [151] Cai YD, Feng KY, Li YX et al. Support vector machine for predicting α-turn types. Peptides, 2003, 24: 629-630.
    [152] Gaoa JB, Gunnb SR, Harrisb CJ. SVM regression through variational methods and its sequential implementation. Neurocomputing, 2003, 55: 151-167.
    [153] Golbraikh A.; Tropsha A. Beware of q2!. J. Mol. Graphics Mod., 2002, 20: 269-276.
    [154] Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: Validation is the absolute essential for successful application and inerpretation of QSPR models. QSAR Comb. Sci., 2003, 22: 69-77.
    [155] Gramatica P, Pilutti P, Papa E. Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training-test sets and consensus modeling. J. Chem. Inf. Comput. Sci., 2004, 44: 1794-1802.
    [156] 陈凯先, 蒋华良, 嵇汝运.计算机辅助药物设计——原理、方法及应用. 上海: 上海科学技术出版社, 2000: 34-35.
    [157] Kawashima S, Kanehisa M. AAindex: Amino acid index database. Nucleic Acids Res., 2000, 28: 374.
    [158] Tomii K, Kanehisa M. Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng., 1996, 9: 27-36.
    [159] Nakai K, Kidera A, Kanehisa M. Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Eng., 1988, 2: 93-100.
    [160] Armas RR, Díaz HG, Molina R et al.Stochastic-based descriptors studying peptides biological properties: Modeling the bitter tasting threshold of dipeptides. Bioorganic & Medicinal Chemistry, 2004, 12: 4815-4822.
    [161] Hasegawa K, Matsuoka S, Arakawa M et al. New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS. Computers & Chemistry, 2002, 26: 583-589.
    [162] Baroni M., Clement S., Cruciani G et al. D-optimal designs in QSAR. Quantitative Structure Activity Relationships, 1993, 12: 225-231.
    [163] Mee RP, Auton TR, Morgan PJ. Design of active analogues of a 15-residue peptide using D-optimal design, QSAR and a combinatorial search algorithm. J. Peptide Res., 1997, 49: 102-105.
    [164] Dumouchel W, Jones B. A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model. Technometrics, 1994, 36: 37-47.
    [165] De Aguiar PF, Bourguignon B, Khots MS et al. D-optimal designs. Chemometrics Intell. Lab. Syst., 1995, 30: 199-210.
    [166] Coates D. Molecules in focus, the angiotensin converting enzyme (ACE). The International Journal of Biochemistry & Cell Biology, 2003, 35: 769-773.
    [167] Crackower MA, Sarao R, Oudit GY et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, 2002, 417: 822-828.
    [168] Esther CR., Howard TE, Marino EM et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Laboratory Investigation, 1996, 74: 953-965.
    [169] Ianzer D, Konno K, Marques-Porto R et al. Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides, 2004, 25: 1085-1092.
    [170] Ufkes JGR, Visser RJ, Heuver G et al. Structure-activity relationships of bradykinin potentiating peptides. Eur. J. Pharmacol. 1978, 50: 119-122.
    [171] Ufkes JGR, Visser RJ, Heuver G et al. Further studies on the structure-activity relationships of bradykinin-potentiating peptides. Eur. J. Pharmacol., 1982, 79: 155-158.
    [172] Manninga M, Stoeva S, Chenga LL et al. Design of oxytocin antagonists, which are more selective than atosiban. J. Peptide Sci., 2001, 7: 449-465.
    [173] Fuchs AR, Fuchs F, Husslein P et al. Oxytocin receptors and human parturition:A dual role for oxytocin in the initiation of labor. Science, 1982, 215: 1396-1398.
    [174] Antonijevic IA, Douglas AJ, Dye S et al. Oxytocin antagonists delay the initiation of parturition and prolong its active phase in rats. J. Endocrinol., 1995, 145: 97-103.
    [175] Adenot M, Sarrauste de Menthiere C, Chavanieu A et al. Peptides quantitative structure-function relationships: an automated mutation strategy to design peptides and pseudopeptides from substitution matrices. Journal of Molecular Graphics and Modelling, 1999, 17: 292-309.
    [176] Falk K, Rotzschke O, Stefanovic S et al. Allele specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature, 1991, 351: 290-296.
    [177] Madden DR, Garboczi DN, Wiley DC. The antigenic identity of peptide-MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2. Cell, 1993, 75: 693-708.
    [178] Ruppert J, Sidney J, Celis E et al. A. prominent role of secondary anchor residues in peptide binding to HLA-A*0201 molecules. Cell, 1993, 74: 929-937.
    [179] Madden DR. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol., 1995, 13: 587-622.
    [180] Doytchinova IA, Flower DR. Toward the quantitative prediction of T-Cell epitopes: CoMFA and CoMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. J. Med. Chem., 2001, 44: 3572-3581.
    [181] Hancock REW. Cationic peptides: Effectors in innate immunity and novel antimicrobials. Lancet Infect Dis., 2001, 1: 156-164.
    [182] Boman HG. Antibacterial peptides: Key components needed in immunity. Cell, 1991, 65: 205-207.
    [183] Lehrer RI, Lichtenstein AK, Ganz T. Defensins: Antimicrobial and cytotoxic peptides of mammalian cells, Annu. Rev. Immunol., 1993, 11: 105-128.
    [184] Gennaro R, Skerlavaj B, Romeo D. Puri¢cation, composition,and activity of two bactenecins, antibacterial peptide of bovine neutrophils. Infect. Immun., 1989, 57: 3142-3146.
    [185] Zaslo M, Magainin S. A class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc.Natl. Acad. Sci. USA. 1987, 84: 5449-5453.
    [186] Boman HG, Hultmar D. Cell-free immunity in insects. Annu. Rev. Microbiol., 1987, 41: 103-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700