用户名: 密码: 验证码:
氨基多羧酸—多金属氧酸盐无机—有机杂化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以经典Keggin型和Anderson多金属氧酸盐为主要基本建筑单元,相继以主族金属元素、过渡金属和稀土离子与多氨基多羧酸螯合配体形成的配合物或以共价键或以氢键作用于多金属氧酸盐,合成具有新颖结构的无机-有机杂化化合物。并且研究这些化合物的合成条件及规律,探讨三类金属阳离子、相同类型的有机配体对整个结构的影响,以及新物质结构和性能间的关系。拓宽现有的认知范围,为多金属氧酸盐衍生物的定向合成提供理论和实验数据。
     利用常规水溶液合成方法,合成了23个新型多氨基多羧酸类多金属氧酸盐基无机-有机杂化化合物。通过元素分析,IR,TG,和单晶X–射线衍射对晶体结构进行了表征,并对部分化合物的荧光性质和磁学性质进行了初步研究。主要研究结果如下:
     1.在常规水溶液条件下,以主族元素与多氨基多羧酸类配体(环己二胺四乙酸,Diaminocyclohexanetetraacetic acid = DCTA)螯合物和Keggin型多金属氧酸盐为基础单元,合成并表征了9个未见文献报道的多金属氧酸盐基无机-有机杂化化合物。
     (NH_4)_4(H_3O)[Ca_2Na_2(H_2O)_(14)(HDCTA)_2( BW_(12)O_(40))]·3H_2O (1)
     (NH_4)_4(H_3O)[Sr_2Na_2(H_2O)_4(μ-H_2O)_2(HDCTA)_2( BW_(12)O_(40))]·7H_2O (2)
     (NH_4)_4(H_3O)[Sr_2K (HDCTA)_2(H_2O)_(14)][SiW_(12)O_(40)]·H_2O (3)
     (NH_4)_4[Na_2(H_2O)_(12)][Al(DCTA)]2[SiW_(12)O_(40)]·9H_2O (4)
     (NH_4)_6[Pb_3(H_2O)_2(DCTA)_2][SiW_(12)O_(40)]·8H_2O (5)
     [Na_6Bi_2(H_2O)_22(DCTA)_2][SiW_(12)O_(40)]·2H_2O (6)
     (NH_4)_4[Ba(DCTA)_2(OH)_2SiW_(12)O_(40)]·8H_2O (7)
     [Ca_4(H_2O)_24(H_2DCTA)_2][SiW_(12)O_(40)]·8H_2O (8)
     (NH_4)_5[Ca_3(H_2O)_(10)(HEGTA)_2( BW_(12)O_(40))]·3H_2O (9)
     在化合物中,主族元素金属可以同时接受POM和配体DCTA提供的电子对,在一定条件下形成配位聚合物链POM-M-DCTA。BW_(12)O_(40)~(5-)的表面电荷比SiW_(12)O_(40)~(4-)的多导致它对金属离子具有更强的配位能力。
     2.在常规水溶液条件下,以过渡金属离子与多氨基多羧酸类配体螯合物和Keggin和Anderson型多金属氧酸盐为基础单元,合成并表征了9个未见文献报道的多金属氧酸盐基无机-有机杂化化合物。
     [{Cu_4(EGTA)_2(H_2O)_4}{Cu_2(H_2O)_8(SiW_(12)O_(40))}]·14H_2O (10)
     (NH_4)_5[Cu_4(EGTA)_2(H_2O)_4(BW_(12)O_(40))]·4H_2O (11)
     (NH_4)_6[Cu_2K_2Na(H_2O)_2(DCTA)_2(BW_(12)O_(40))]·5H_2O (12)
     (NH_4)_7[Cu_2(H_2O)_2(HDCTA)_2][β-Mo_8O_(26)]·14H_2O (13)
     [K_3(H_2O)_(12){Cu_2(EGTA)(H_2O)_4Cu(H_2O)_6Cu_4(GeW_9O_(33))_2}]·16H_2O (14)
     (NH_4)_2[Zn_5(DCTA)_2(H_2O)16][SiW_(12)O_(40)]·8H_2O (15)
     (NH_4)_4[Cd_4(DCTA)_2(H_2O)_8][SiW_(12)O_(40)]·6H_2O (16)
     (NH_4)3[Ni_4Na(H_2O)_8(DCTA)_2][SiW_(12)O_(40)]·15H_2O (17)
     Na_3[Zr(EDTA)(H_2O)_2]_2[Cr(OH)_6Mo_6O_(18)]·10H_2O (18)
     EGTA =Ethyleneglycol-bis-(2-aminoethylether)-tetraacetic acid,乙二醇二乙醚二胺四乙酸;EDTA= Ethylenediaminetetraacetic acid乙二胺四乙酸
     在这一组化合物中,充分显示了过渡金属与多氨基多羧酸类配体配位的多样性。与主族元素相比,过渡金属离子有更强的形成多核配合物的倾向。化合物18是到目前为止第一例Zr(Ⅳ)修饰型多酸化合物的例子。化合物10的变温磁化率测定结果显示Cu~(2+)之间存在弱的反铁磁性相互作用,其发射光谱可归属于配体金属之间的电荷转移(LMCT)。
     3.在常规水溶液条件下,以稀土金属离子与多氨基多羧酸类配体(EDTA, DCTA)螯合物和Keggin、Anderson型多金属氧酸盐为基础单元,合成并表征了5个未见文献报道的多金属氧酸盐基无机-有机杂化化合物。
     [Ce_3(HEDTA)_2(H_2O)9][Cr(OH)_6Mo_6O_(18)]·13H_2O (19)
     (NH_4)_2[Y_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·10H_2O (20)
     (NH_4)_2[Sm_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·8H_2O (21)
     (NH_4)_2[Er_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·8H_2O (22)
     (NH_4)_2[Eu_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·10H_2O (23)
     研究发现Ce(Ⅲ)离子具有高配位数(CN.=10),与多氨基多羧酸配体EDTA结合,形成二维配位聚合物层;而在化合物20-23中,Sm、Er、Eu和Y却都是八配位的,而且只与一个配体DCTA上的一个羧基氧原子配位,不与氨基氮原子配位。产生此现象的原因可能有:1)稀土离子的半径的区别。Ce是轻稀土元素,Sm,Eu是中稀土元素,而Y和Er是重稀土元素,它们的半径依次减小。半径的减小带来配位数的降低。2)POM的结构不同。Anderson型多金属氧酸阴离子是扁平型,与Keggin阴离子比较体积较小,在与DCTA共同配位时产生较小的空间位阻;Anderson型多金属氧酸阴离子中每个MoO6八面体有两个端氧原子,配位能力较强。
The aim of this thesis is to synthesize inorganic-organic hybrid compounds with novelty structure by using main group, transition-metal, rare-earth element and Keggin and Anderson polyoxometalates, and multicarboxylate ligands, to study the synthetic conditions and rules for these compounds, to analysis the relationship between structures and properties and then to enrich polyoxometalate chemistry.
     In this paper, 23 new inorganic-organic hybrid compounds based on polyoxometalate building blocks have been synthesized under aqueous synthesis technique, and characterized structurally by elemental analyses, IR, TG and single crystal X-ray diffractions. The magnetic and fluorescence properties of some compounds have been studied.
     1. Under aqueous synthesis condition, nine new inorganic-organic hybrid compounds based on [BW_(12)O_(40)]~(5-) and [SiW_(12)O_(40)]~(4-) clusters and main group- multicarboxylate coordination complexes have been synthesized and characterized:
     (NH_4)_4(H_3O)[Ca_2Na_2(H_2O)_(14)(HDCTA)_2( BW_(12)O_(40))]·3H_2O (1)
     (NH_4)_4(H_3O)[Sr_2Na_2(H_2O)_4(μ-H_2O)_2(HDCTA)_2( BW_(12)O_(40))]·7H_2O (2)
     (NH_4)_4(H_3O)[Sr_2K (HDCTA)_2(H_2O)_(14)][SiW_(12)O_(40)]·H_2O (3)
     (NH_4)_4[Na_2(H_2O)_(12)][Al(DCTA)]_2[SiW_(12)O_(40)]·9H_2O (4)
     (NH_4)_6[Pb_3(H_2O)_2(DCTA)_2][SiW_(12)O_(40)]·8H_2O (5)
     [Na_6Bi_2(H_2O)_22(DCTA)_2][SiW_(12)O_(40)]·2H_2O (6)
     (NH_4)_4[Ba(DCTA)_2(OH)_2SiW_(12)O_(40)]·8H_2O (7)
     [Ca_4(H_2O)_24(H_2DCTA)_2][SiW_(12)O_(40)]·8H_2O (8)
     (NH_4)_5[Ca3(H_2O)_(10)(HEGTA)_2( BW_(12)O_(40))]·3H_2O (9) DCTA= Diaminocyclohexanetetraacetic acid
     In the compounds, main group elements may accept electron pairs provided by POM and DCTA, forming coordination polymer chain POM-M-DCTA。More surface charges of BW_(12)O_(40)~(5-) than that of SiW_(12)O_(40)~(4-) gives BW_(12)O_(40)~(5-) stronger coordination ability.
     2. Under aqueous synthesis condition, ten new inorganic-organic hybrid compounds based on [BW_(12)O_(40)]~(5-) and[Cr(OH)_6Mo_6O_(18)] ~(3-) cluster with transition-metal multicarboxylate bridging ligands have been synthesized and characterized:
     [{Cu_4(EGTA)_2(H_2O)_4}{Cu_2(H_2O)_8(SiW_(12)O_(40))}]·14H_2O (10)
     (NH_4)_5[Cu_4(EGTA)_2(H_2O)_4(BW_(12)O_(40))]·4H_2O (11)
     (NH_4)_6[Cu_2K2Na(H_2O)_2(DCTA)_2(BW_(12)O_(40))]·5H_2O (12)
     (NH_4)_7[Cu_2(H_2O)_2(HDCTA)_2][β-Mo_8O_(26)]·14H_2O (13)
     [K_3(H_2O)_(12){Cu_2(EGTA)(H_2O)_4Cu(H_2O)_6Cu_4(GeW_9O_(33))_2}]·16 H_2O (14)
     (NH_4)_2[Zn_5(DCTA)_2(H_2O)16][SiW_(12)O_(40)]·8H_2O (15)
     (NH_4)_4[Cd_4(DCTA)_2(H_2O)_8][SiW_(12)O_(40)]·6H_2O (16)
     (NH_4)3[Ni_4Na(H_2O)_8(DCTA)_2][SiW_(12)O_(40)]·15H_2O (17)
     Na_3[Zr(EDTA)(H_2O)_2]_2[Cr(OH)_6Mo_6O_(18)]·10H_2O (18) EGTA = Ethyleneglycol-bis-(2-aminoethylether)-tetraacetic acid, EDTA = Ethylenediaminetetraacetic acid
     In these compounds transition metal ions and multicarboxylates exhibit a coordination versatility. Compared with main group elements, transition metal ions have more tendency of forming multinuclear complex. The compound 18 is the first example of Zr(Ⅳ) complex-polyoxometalate compounds. The variable temperature susceptibility of 10 shows a weak antiferromagnetic interaction between Cu~(2+) ions and its emission spectrum attributed to the charge transfer between metal and ligand (LMCT)。
     3. Under aqueous synthesis condition, five new inorganic-organic hybrid compounds based on [SiW_(12)O_(40)]~(4-) and [Cr(OH)_6Mo_6O_(18)] ~(3-) cluster with rare-earth element and multiamino-multicarboxylate EDTA and DCTA have been synthesized and characterized:
     [Ce_3(HEDTA)_2(H_2O)9][Cr(OH)_6Mo_6O_(18)]·13H_2O (19)
     (NH_4)_2[Y_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·6H_2O (20)
     (NH_4)_2[Sm_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·8H_2O (21)
     (NH_4)_2[Er_2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·4H_2O (22)
     (NH_4)_2[Eu2(H_2DCTA)_2(H_2O)_(12)][SiW_(12)O_(40)]·10H_2O (23)
     In compound 19, Ce(Ⅲ) ion is ten-coordinated and connects with Anderson anion and EDTA, forming a layer structure. In compounds 20-23, Sm、Er、Eu and Y are eight-coordinated and accept only oxygen atoms of one carboxyl group of DCTA, forming isolated dinuclear complexes. The reason for this phenomenon may be 1)different ionic radii of rare earth elements. From Ce to Er the ionic radii decrease and then the coordination number of RE ionsdecrease. 2) different shape and size of POM. Anderson-type POM has a flat shape and a small size compared with Keggin anion, producing a limitted spacial encumbrance when coordinating to RE with DCTA; on the other hand, in Anderson-type POM the MoO6 octahedron has two terminal oxygen atoms and then a stronger coordination ability。
引文
[1] Pope M T. Heteropoly and Isopoly Oxometalates[M]. Springer-Verlag: Berlin, 1983, 1-10.
    [2] Pope M T, Müller A. Polyoxometalate Chemistry[M]. Kluwer, Dordrecht, 2001, 1-10.
    [3] Pope M T.杂多和同多多金属氧酸盐[M].王恩波等译,长春:吉林大学出版社, 1991.
    [4] Wang E B, Hu C W, Xu L. Concise of Polyoxometalate Chemistry[M]. Beijing: Chemical Industrial Publishing Company, 1998, 4.
    [5] Berzelius [J]. J Pogg Ann, 1826, 6: 369.
    [6] Keggin J F. Proc. R. Soc. 1934, 144A: 75
    [7] Anderson J S. Nature. 1937, 140: 850
    [8] Dawson B. Acta Crystallogr. 1953, 6: 113
    [9] Waugh J C T, Schoemaker D P. Acta Crystallogr. 1954, 7: 438
    [10] Tsay Y H, Silverton J V. Z. Krist. 1973, 137: 256
    [11] Khtsoutis,D.E.A Survey of Applications of Polyoxometalates[J]. ChemRev. 1998, 98:359-387.
    [12] Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines[J]. Angew Chem Int Ed Engl, 1991, 30 (1): 34-48.
    [13] Mizumo N, Misono M. Heterogeneous catalysis[J]. Chem Rev, 1998, 98 (1): 199-218.
    [14] Hu C W, He Q L, Wang E B. Synthesis, stability and oxidative activity of polyoxometalates pillared anionic clays ZnAl-SiW11 and ZnAl-SiW11Z[J]. Catl Today, 1996, 30: 141-145.
    [15] Harrup M, Hill C L. Triniobium polytungstophosphates, suntheses, structures, clarification of isomerism and reactivity in the presence of H_2O2_[J]. Inorg Chem, 1998, 37 (21): 5550-5556.
    [16] Baker L C W, Glick D C. Present general status of understanding of heteropoly electrolytes and traeing of some major highlights in the history of their elucidations[J]. Chem Rev, 1998, 98 (1): 3-50.
    [17] Carrier X, Caillerie J B, Lambert J F. The support as a chemical reagent in the preparation of Wo_(x/y)-Al_2O_3 catalysts formation and deposition of aluminotungstic heteropolyanions[J]. J Am Chem Soc, 1999, 121 (14): 3377-3378.
    [18] Chen X, Xu Z, Okuhara T. Liquid-phase esterification of acrylic acid with 1-butanol catalyzed by solid acid catalysts[J]. Appl Catal, A, 1999, 180 (1-2): 261-269.
    [19] Anne G, Pascal B, Edmond P. Preparation of hydrodesulfurization catalysts by impregnation of alumina with new heteropoly compounds[J]. Chem Lett, 1997, 12: 1259-1260.
    [20] Hu C W, He Q L, Zhang Y H, et al. Synthesis of new types of polyoxometalate pillared anionic clays: 31P and 27Al NMR study of the orientation of intercalated PW11VO40[J]. J ChemSoc, Chem Commun, 1996 (2): 121.
    [21] Fugita H, Fugita T, Skurai T. A new type of antiumor substances, polyoxomolybdates[J]. Chemotherapy, 1992, 40 (2): 173-178.
    [22]刘术侠,刘彦勇,王恩波等. Keggin结构钨磷酸稀土镨盐杂多蓝的合成及抗艾滋病毒(HIV-1)活性的研究[J].高等学校化学学报,1996,17 (8): 1188-1190.
    [23]刘术侠,刘彦勇,王恩波. 13-钼镍(锰)杂多酸稀土盐的合成及其镨盐抗肿瘤活性研究(I)[J].化学学报,1996, 54:673-678.
    [24]刘术侠,刘彦勇,王恩波等. Keggin结构钨磷酸稀土镨盐杂多蓝的合成及抗艾滋病毒(HIV-1)活性的研究[J].高等学校化学学报,1996,17 (8):1188-1190.
    [25]刘术侠,李白涛,王恩波等.新型穴状结构阴离子NaSb_9W_(21)O_(86)~(18-)杂多蓝合成及抗艾滋病毒(HIV-1)活性[J].科学通报,1997, 42 (15):1622-1626.
    [26] Yamase T, Fujita H, Fukushima K. Medical chemistry of polyoxometalates part 1. potent antitumor activity of polyoxomolybdates on animal transplantable tumors and human cancer xenograft[J]. Inorg Chim Acta, 1988, 152 (1): 9-15.
    [27] Wang X H, Hill C L. Synthesis and anti-HIV activity of bis(methanofullerene) polyoxometalates [J]. Proc-Electrochem. Soc., 1998, 98: 1222-1226.
    [28] Liu J F, Chen Y G, Meng L. Synthesis and characterization of novel heteropolytungstatoarsenates containing lanthanides {LnAs_4W_(40)O_(140)}~(25-) and their biological activity[J]. Polyhedron, 1998, 17: 1541-1546.
    [29] Wang X H, Dai H C, Liu J F. Synthesis and characterization of organotin-substituted heteropolytungstosilicates and their biological activity I[J]. Polyhedron, 1999, 18: 2293-2300.
    [30] Wang X H, Liu J F, Pope M T. Synthesis, characterization and biological activity of organotitanium substituted heteropolytungstates[J]. J Chem Soc Dalton Trans, 2000, 1139-1142.
    [31] Pope M T, Muller A. Chemistry of polyoxometalates, Actual variation on an old theme with interdisciplinary references[J]. Angew Chem Int Ed Engl, 1991, 103: 56-70.
    [32] Katsoulis D E. A survey of applications of polyoxometalates[J]. Chem Rev, 1998, 98: 359-388.
    [33]周云山.多酸型超分子功能化合物表征与三阶非线性光学性质研究[D]:[东北师大博士论文].长春:东北师范大学化学系,1998.
    [34] Cassan-Pastor N, Baker L C W. Magnetic properties of mixed-valence heteropoly blues interactions with complexes containing paramagnetic atoms in obvious sites as well as‘blue’electrodes delocalized over polytungstate frameworks[J]. J Am Chem Soc, 1992, 114: 10384-10386.
    [35] Borshch S A, Bigot B. Magnetic properties of the mixed-valence heteropoly blues with a Keggin structure[J]. Chem Phys Lett, 1993, 212 (3-4): 398-403.
    [36]余新武,刘术侠,王戈等.三取代过渡技术钨镓杂多配合物的磁性及导电性能研究[J].化学学报, 1996, 54: 864-868.
    [37]王力,刘宗瑞,周云山等.取代型钨镓杂多配合物导电性及磁性研[J].高等学校化学学报,1997, 18: 846-848.
    [38]胡长文,许林,王恩波.杂多金属氧酸盐的磁性[J].科学通报,1998,43 (12):1234-1236.
    [39] Xu L, Hu C W, Wang E B. Magnetic properties of heteropolyoxometalates[J]. Chin Sci Bull, 1999, 44 (6): 481-488.
    [40] Clemente-Juan J M, Coronado E, Gomez-Garcia C J. Increasing the nuclearity of magnetic polyoxometalates. Syntheses, structure, and magnetic properties of salts of the heteropolycomplexes [Ni_3(H_2O)(PW_(10)O_(39))H_2O]~(n-), [Ni_4(H_2O)_2(PW_(10)O_(34))_2]~(10-), [Ni_9(OH)_3(H_2O)_6(HPO_4)_2(PW_(10)O_(34))_2]~(16-)[J]. Inorg Chem, 1999, 38: 55-63.
    [41] An H Y, Wang E B, Xiao D R, et al. Chiral 3D Architectures with Helical Channels Constructed from Polyoxometalate Clusters and Copper-Amino Acid Complexes[J]. Angew Chem Int Ed, 2006, 45: 904-908.
    [42]李豹.基于多金属氧簇的晶体工程[D] :长春:吉林大学博士毕业论文.2008.
    [43] Fang, X. K. , Anderson,T. M. ;Hill,C.L. Angew Chem Int Ed, 2005, 44, 3540.
    [44] Fang, X. K. , Anderson,T. M. , Hill, C. L. et al. Stereoisomerism in polyoxometalates: Struetural and speetroseopie studies of bis(malate)- funetionalized cluster systems[J].Chem.Commun.,2005,5044-5046.
    [45] Hu M X, Chen Y G, Zhang C J, et al. High-dimensional frameworks dependent on coordination mode of ligand controlled by acidity of reaction solution. Syntheses, structures, magnetic and fluorescence properties of eight new compounds[J]. CrystEngComm, 2010, 12: 1454-1460.
    [46] Cao R G, Liu S X, Xie L H, et al. Organic-Inorganic Hybrids Constructed of Anderson-Type Polyoxoanions and Oxalato-Bridged Dinuclear Copper Complexes [J]. Inorg. Chem, 2007, 46(9): 3541-3547.
    [47] Li C H, Huang K L, Chi Y N, et al. Lanthanide-Organic Cation Frameworks with Zeolite Gismondine Topology and Large Cavities from Intersected Channels Templated by Polyoxometalate Counterions[J]. Inorg Chem, 2009, 48: 2010-2017.
    [48]李素芝.稀土金属构筑的有机-无机多金属氧酸盐及过渡金属取代的夹心型锗钼酸盐的合成结构及性质研究[D] :郑州:河南大学博士毕业论文.2010.
    [49] F. J. Ma, S. X. Liu, C. Y. Sun, D. D. Liang, G. J. Ren, F. Wei, Y. G. Chen, Z. M. Su, A Sodalite-Type Porous Metal-Organic Framework with Polyoxometalate Templates: Adsorption and Decomposition of Dimethyl Methylphosphonate[J]. J. Am. Chem. Soc. 2011, 133, 4178–4181.
    [50] hongliu, Xu L ,Gao G G, et al. Two-dimensional layer architecture assembled by Keggin polyoxotungstate, Cu(Ⅱ)–EDTA complex and sodium linker:Synthesis, crystal structures, and magnetic properties[J]. Journal of Solid State Chemistry 180 (2007) 1664–1671
    [51] Gao G G, Xu L, Qu X S, et al. New approach to the synthesis of an organopolymolybdate polymer in aqueous media by linkage of multicarboxylic ligands[J]. Inorg Chem, 2008, 47 (6): 3402-3407.
    [52] Xu Y, Xu J Q, Zhang K L, et al. Keggin Unit Supported Transition Metal Complexes: Hydrothermal Synthesis and Characterization of [Ni_(2,2'-bipy)_3]1.5[PW_(12)O_(40)Ni_(2,2'-bipy)_2-(H_2O)]·0.5H_2O and [Co(1,10-phen)3]1.5[PMo_(12)O_(40)Co(1,10-phen)2(H_2O)]·0.5H_2O[J]. Chem Commun, 2000, 153-154.
    [53] Lan Y Q, Li S L, Su Z M, et al. Spontaneous resolution of a 3D chiralpolyoxometalate-based polythreaded framework consisting of an achiral ligand[J]. Chem Commun, 2008, 58-60.
    [54] Zhang C J,Chen Y G, Hu M X , et al. Synthesis and characterization of the highest connected 3D a-metatungstate POM/TMC hybrid with AgI···AgI interactions[J]. Inorg. Chem.Commun,2008, 11765-768
    [55] C. J. Zhang, H. J. Pang, Q. Tang, H. Y. Wang, Y. G. Chen, Three 3D hybrid networks based on octamolybdates and different CuI/CuII-bis(triazole) motifs, J. Solid State Chem. 183 (2010) 2945-2950.
    [56] Pang H J, Peng J, Zhang C J, et al. A polyoxometalate-encapsulated 3D porous metal-organic pseudo-rotaxane framework[J]. Chem Commun, 2010, 46: 5097-5099.
    [57]黄春辉等稀土配位化学[M].北京:科学出版社, 1997.
    [58]王恩波,李阳光,鹿颖等多酸化学概论[M].长春:东北师范大学出版社, 2009.
    [59] Mialane P, Dolbecq A, Riviere E, et al. Functionalization of polyoxometalates by a negatively charged bridging ligand: thedimeric [(SiW_(11)O_(39)Ln)_2(μ-CH_3COO)_2]~(12-) (Ln=GdIII,YbIII) complexes[J]. Eur. J. Inorg. Chem, 2004, (1): 33-36.
    [60] Sadakane M, Dickman M H, Pope M T, Controlled assembly of polyoxometalate chains from lacunary building blocks and lanthanide-cation linkers[J]. Angew Chem Int Ed, 2000, 39: 2914-2916.
    [61] An H Y, Xiao D R, Wang E B, et al. A series of new polyoxoanion-based inorganic-organic hybrids: (C_6NO_2H_5)[(H_2O)_4(C_6NO_2H_5)Ln(CrMo_6O_(24))]·4H_2O (Ln=La, Pr, Ce and Nd) with a chiral layer structure [J]. New J Chem 2005, 29: 667-672.
    [62] H. Y. An, Z. B. Han, T. Q. Xu, Three-Dimensional Architectures Based on Lanthanide-Substituted Double-Keggin-Type Polyoxometalates and Lanthanide Cations or Lanthanide-Organic Complexes[J]. Inorg. Chem. 2010, 49, 11403–11414
    [63] Ishii Y, Takenaka Y, Konishi K. Porous Organic–Inorganic Assemblies Constructed from Keggin Polyoxometalate Anions and Calix[4]arene–Na+ Complexes: Structures and Guest-Sorption Profiles[J]. Angew Chem Int Ed, 2004, 43: 2702-2705.
    [64] Lu X M, Qiao C B, Liu S C. Synthesis and Characterization of [Na(DB_(18)C_6)Xn]2Mo6O19 [J], J.Capital Normal Unvi. (Natural Science edition), 1998, 19: 44-48.
    [65] You W S, Wang E B, Xu Y, et al. An Alkali Metal-Crown Ether Complex Supported by a Keggin Anion through the Three Terminal Oxygen Atoms in a Single M_3O_(13) Triplet: Synthesis and Characterization of [{Na(dibenzo-18-crown-6)(MeCN)}_3{PMo_(12)O_(40)}] [J]. Inorg Chem, 2001, 40:5468-5471.
    [66] Yuan L, Wang E B. Transition of Classic Decatungstate to Paratungstate: Synthesis, Structure and Luminescence Properties of Two Paratungstate-based 3-D Compounds [J]. Verlag der Zeitschrift f?r Naturforschung, 2008年63b 1175-1180
    [67] Xu Z H,A novel bi smuth ion—bridged chainlike assembly from paradodecatungstate [H_2W_(12)0_(42)]10-anions(NH_4)_7[Bi(H_2W_(12)0_(42))] .20H_20.[J].Inorg.Chem.Commun.2007,10,276
    [68] J. Y. Niu, J. C. Ma, J. W. Zhao, P. T. Ma, J. P. Wang, A new 2D network polyoxometalate constructed from Strandberg-type phosphomolybdates linked through binuclear Ca(II) clusters[J]. Inorg Chem Commun 14 (2011) 474–477.
    [69] Niu J Y, Wu Q, Wang J P. 1D and 2D polyoxometalate-based composite compounds. Synthesis and crystal structure of [{Ba(DMSO)_5(H_2O)}_2(SiMo_(12)O_(40))] and [{Ba(DMSO)_3(H_2O)_3}{Ba(DMSO)_5(H_2O)}(GeMo_(12)O_(40))] [J]. J Chem Soc Dalton Trans, 2002, 2512–2516.
    [1] D. A. Atwood. [J].Coord. Chem. Rev, 1997, 165:267-296.
    [2] D. J. Otway, W. S. Rees Jr. [J]. Coord. Chem. Rev, 2000, 210:279–328.
    [3] W. Fu, L. Wang, Z. Shi, et al. Cryst. Growth & Des, 2004 ,4:297-300.
    [4] S. Harder, Chem. Rev. 2010, 110:3852–3876.
    [5] J. Wu, T.-L. Yu, C.-T. Chen, et al.Coord. Chem. Rev, 2006,250:602–626.
    [6] L. E. T, M. G. Davidson, M. D. Jones, et al.Inorg. Chem. 2006, 45(16): 6123-6125.
    [7] Y.-H. Zhao, H.-B. Xu, K.-Z. Shao, et al. Cryst. Growth Des, 2007,7(3):513-520.
    [8] M. A. Pitt ,D. W. Johnson. Chem. Soc. Rev, 2007, 36:1441-1453.
    [9] W.-Y. Huang, S.-J. Chuang, N.-T. Chunag, et al.Dalton Trans. 2011,10:1039-10442j.
    [10] H. Sheng, Y. Feng, Y.Zhang, et al. Eur. J. Inorg. Chem. 2010, 5579–5586.
    [11] W.-z. Zhang, T.-y. Lv, D.-z. Wei, et al.Inorg. Chem. Commun, 2011,14: 1245–1249.
    [12] G.-B. Che, J. Chen, X.-C. Wang, et al.Inorg. Chem. Commun ,2011,14: 1086–1088.
    [13] D.-J. Li, L.-Q. Mo, Q.-M. Wang. Inorg. Chem. Commun ,2011,14: 1128–1131.
    [14] H. Kunkely and A. Vogler, Inorg. Chem. Commun ,2011,14: 1153–1155.
    [15] Q.-Y. Li, F. Zhou, C. Zhai , et al.Inorg. Chem. Commun ,2011,14: 843–847.
    [16] L. Chen, L. Jia, F. Cheng , et al.Inorg. Chem. Commun ,2011,14: 26–30.
    [17] Z.-H. Lei, X. Li, L.-N. Dong.Inorg. Chem. Commun. ,2010,13: 1383–1386.
    [18] K. E. Chrysomallidou, S. P. Perlepes, A. Terzis , et al. Inorg. Chim. Acta ,2011, 373: 262–265.
    [19] (a) A. Dolbecq, P. Mialane, L. Lisnard, et al.Chem.–Eur. J, 2003, 9, 2914; (b) A. Dolbecq, C. Mellot-Draznieks, P. Mialane , et al.Eur. J. Inorg. Chem, 2005, 3009. (c) H. An, Y. Li, E. Wang , et al. Inorg. Chem, 2005, 44 (17): 6062–6070; (d) R. Cao, S. Liu, L. Xie, et al. Inorg. Chem, 2007, 46 (9): 3541–3547; (e) H. Liu, C. Qin, Y.-G. Wei, , et al. Inorg. Chem., 2008, 47 (10): 4166–4172; (f) J.-W. Zhao, J. Zhang, S.-T. Zheng, et al.Chem. Commun., 2008, 570–572; (g) C.-J. Zhang, H.-J. Pang, Q. Tang, , et al.New J. Chem., 2011, 35:190–196; (h) C.-J. Zhang, H.-J. Pang, Q. Tang, et al.Dalton Trans., 2010, 39: 7993–7999.
    [20] (a) C.-Y. Sun, S.-X. Liu, D.-D. Liang,, et al. J. Am. Chem. Soc.,2009,131(5):1883–1888; (b) F.-J. Ma, S.-X. Liu, C.-Y. Sun , et al. J. Am. Chem. Soc., 2011, 133 (12): 4178–4181; (c) F.-X. Meng, Y.-G. Chen, H.-B. Liu, et al. J. Mol. Struct,2007,837: 224–230; (d) G. Hou, L. Bi, B. Li , et al. Inorg. Chem. 2010, 49:6474–6483.
    [21] H. Chiba, A. Wada, T. Ozeki. Dalton Trans, 2006, 1213–1217.
    [22] J. Niu, J. Ma, J. Zhao , et al. Inorg. Chem. Commun,2011, 14: 474–477.
    [23] Z.-H. Xu, X.-L. Wang, Y.-G. Li, E.-B. Wang, C. Q., Y.-L. Si, Inorg. Chem. Commun.2007,10, 276-278.
    [24] L. Yuan, C. Qin, X. Wang , et al.Solid State Sci. 2008, 10: 967-975.
    [25] J. Liu, Y. Li, E. Wang , et al.J. Mol. Struct,2007, 837: 237–244.
    [26] J. Wang, X. Duan, J. Niu J. Mol. Struct, 2004, 693: 187-191.
    [27] J. Wang, X. Duan, J. Niu J. Mol. Struct, 2004, 692: 17-21.
    [28] T. Akutagawa, D. Endo, F. Kudo , et al.Cryst. Growth Des, 2008, 8:812-816.
    [29] H. Liu., L. Xu, G.-G. Gao , et al. J. Solid State Chem,2007, 180 :1664–1671
    [30] G. M. Sheldrick, SHELXS97, Program for Crystal Structure Solution, University of G?ttingen, G?ttingen, 1997 .
    [31] (a) H.T. Evans Jr, M.T. Pope. Inorg. Chem, 1984,23, 501; (b) D. Attanasio, M. Bonamico, V. Fares, , et al. Dalton Trans, 1990,3221.
    [32] D.- M. Shi, Y.-G. Chen, H.-J. Pang, et al. Z. Naturforsch. 2007, 62b, 195– 199.
    [33] A. Kobayashi, Y. Sasaki. The crystal structure ofα-barium 12-tungstosilicate,α-Ba2SiW_(12)O_(40)·16H_2O, Bull. Chem. Soc. Jap,1975, 48: 885-888.
    [34] F.-X. Meng, Y.-G. Chen, H.-B. Liu, et al. Assembly of two novelcoordinationpolymersconstructed from metal-organic framework and Keggin-template, J. Mol.Struct,2007, 837: 224–230.
    [35] C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, et al. Inorg. Chem, 1983, 22, 207 .
    [1] Pope M T. Heteropoly and Isopoly Oxometalates[M]. Springer-Verlag: Berlin, 1983, 1-10.
    [2] J. J. Borrys-Almener, E. Coronado, A. Müller,et al. Polyoxometalate Molecular Science, Kluwer, Dordrecht[M].The Netherlands, 2003,.20-45.
    [3] Long L. S. PH effect on the assembly of metal–organic architectures[J].CrystEng Comm , ,2010,12: 1354-1365.
    [4] Long D. L., R. Tsunashima, L. Cronin. Polyoxometalates Building Blocks for FunctionalNanoscale Systems[J].Angew. Chem. Int. Ed, 2010,49: 1736-1758.
    [5] Gall R. D., C. L. Hill, J. E. Walker. Carbon Powder and Fiber-Supported Polyoxometalate Catalytic Materials. Preparation, Characterization, and Catalytic Oxidation of Dialkyl Sulfides as Mustard (HD) Analogues[J].Chem. Mater,1996, 8 :2523-2527.
    [6] Guo Y. H., Hu C. W. Heterogeneous photocatalysis by solid polyoxometalates[J]. J. Mol.Catal. A,2007,262: 136-148.
    [7] K. Kamata, Y. Nakagawa, K. Yamaguchi,et al. 1,3-Dipolar Cycloaddition of Organic Azides to Alkynes by a Dicopper-Substituted Silicotungstate[J]. J. Am. Chem. Soc,2008,130: 15304-15310.
    [8] Sun C. Y., Liu S. X., Liang D. D. ,et al. Highly Stable Crystalline Catalysts Based on a Microporous Metal?Organic Framework and Polyoxometalates[J].J. Am. Chem. Soc. ,2009,131: 1883-1888.
    [9] Dang D. B., Y. Bai, C. He, J. Wang,et al. Structural and Catalytic Performance of a Polyoxometalate-Based Metal?Organic Framework Having a Lanthanide Nanocage as a Secondary Building Block[J]. Inorg. Chem,2010,49 : 1280-1282.
    [10] T. Yamase. Photochemical studies of the alkylammonium molybdates. Part 7. Octahedral sites for multi-electron reduction of [Mo8O26(MoO4)2]8–[J].Dalton Trans ,1985, 2585-2590.
    [11] P. K?gerler, L. Cronin.Polyoxometalate Nanostructures, Superclusters, and Colloids: From Functional Clusters to Chemical Aesthetics[J]. Angew. Chem. Int. Ed. Engl,2005, 44 : 844-846.
    [12] M. T. Pope, A. Müller. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines[J]. Angew. Chem. Int. Ed. Engl,1991, 30 :34-48.
    [13] E. Coronado, C. J. Gómez-García. Polyoxometalate-Based Molecular Materials[J].Chem. Rev,1998,98 : 273-296.
    [14] L. Lisnard, P. Mialane, A. Dolbecq, J. Marrot, J.M. Clemente-Juan, E. Coronado, B. Keita, P. Oliveira, L. Nadjo, F. Secheresse, Effect of Cyanato, Azido, Carboxylato, and Carbonato Ligands on the Formation of Cobalt(II) Polyoxometalates: Characterization, Magnetic, and Electrochemical Studies of Multinuclear Cobalt Clusters[J].Chem. Eur. J,2007, 13:3525-3536.
    [15] A. Proust, R. Thouvenot, P. Gouzerh. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science[J].Chem. Commun.,2008, 1837-1852.
    [16] J. Zhang, J. Hao, Y. G. Wei,et al. Nanoscale Chiral Rod-like Molecular Triads Assembled from Achiral Polyoxometalates[J]. J. Am. Chem. Soc,2010,132 : 14-15.
    [17] P. Mialane, A. Dolbecq, F. Sécheresse. Functionalization of polyoxometalates by carboxylato and azido ligands: macromolecular complexes and extended compounds[J]. Chem. Commun,2006,3477-3485.
    [18] B. S. Bassil, S. S. Mal, M. H. Dickman,et al.6-Peroxo-6-Zirconium Crown and Its Hafnium Analogue Embedded in a Triangular Polyanion: [M6(O2)6(OH)6(γ-SiW10O36)3]18? (M = Zr, Hf) [J]. J. Am. Chem. Soc,2008,130 : 6696-6697.
    [19] X. Fang, P. K?gerler, L. Isaacs,et al. Cucurbit[n]uril-Polyoxoanion Hybrids[J]. J. Am. Chem. Soc ,2009,131: 432-433.
    [20] Y. Wang, L. Ye, T. G. Wang,et al. Hydrothermal syntheses and characterizations of two novel frameworks constructed from polyoxometalates, metals and organic units[J]. Dalton Trans,2010, 8 : 1916-1919.
    [21] Y. H. Du, A. L. Rheingold, E. A. Maatta. A polyoxometalate incorporating an organoimido ligand: preparation and structure of [Mo_5O_(18)(MoNC_6H_4CH_3)]2-[J].J. Am. Chem. Soc. ,1992, 114 : 345-346.
    [22] D. Hagrman, C. Zubieta, D. J. Rose,et al. Haushalter, Composite Solids Constructed From One-Dimensional Coordination Polymer Matrices and Molybdenum Oxide Subunits: Polyoxomolybdate Clusters within [{Cu(4,4′-bpy)}4Mo_8O_(26)] and [{Ni(H_2O)_2(4,4′-bpy)_2}_2Mo_8O_(26)] and One-Dimensional Oxide Chains in [{Cu(4,4′-bpy)}_4Mo_(15)O_(47)]·8H_2O[J].Angew. Chem. Int. Ed,1997,36 : 873-876.
    [23] Wei Y, B. Xu, C. L. Barnes,et al. An Efficient and Convenient Reaction Protocol to Organoimido Derivatives of Polyoxometalates[J].J. Am. Chem. Soc,2001,123: 4083-4084.
    [24] Lu J, E.-H. Shen, Y.-G. Li,et al. A Novel Pillar-Layered Organic?Inorganic Hybrid Based on Lanthanide Polymer and Polyomolybdate Clusters:New Opportunity toward the Design and Synthesis of Porous Framework[J].Cryst. Growth Des,2005,5: 65-67.
    [25] Zhang J.-P., Y.-Y. Lin, X.-C. Huang,et al.Copper(I) 1,2,4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties[J].J. Am. Chem. Soc,2005, 127:5495-5506.
    [26] Y.-P. Ren, X.-J. Kong, X.-Y. Hu,et al.Influence of Steric Hindrance of Organic Ligand on the Structure of Keggin-Based Coordination Polymer[J].Inorg. Chem,2006,45 : 4016-4023.
    [27] Y. Xu, L.-B. Nie, D.-R. Zhu,et al.Two New Three-Dimensional Porous Polyoxometalates with Typical ACO Topological Open Frameworks: {[Cu_4V_(13)IVV_5VO_(42)(NO_3)(C_3H_(10)N_2)_8]·10H_2O}n and {[Cu_4V_(12)IVV_6VO_(42) (SO_4)(C_3H_(10)N_2)_8]·10H_2O}n[J]. Cryst. Growth Des,2007,7:925-929.
    [28] X.-M. Chen, M.-L. Tong. Solvothermal in Situ Metal/Ligand Reactions: A New Bridge between Coordination Chemistry and Organic Synthetic Chemistry[J].Acc. Chem. Res. ,2007, 40: 162-170.
    [29] Lan Y.-Q., S.-L. Li, Z.-M. Su,et al.Spontaneous resolution of a 3D chiral polyoxometalate-based polythreaded framework consisting of an achiral ligand[J].Chem. Commun ,2008,58-60.
    [30] Pang H.-J., J. Peng, C.-J. Zhang,et al. A polyoxometalate-encapsulated 3D porous metal-organic pseudo-rotaxane frameworkw[J]. Chem. Commun ,2010,46: 5097-5099.
    [31] C. Inman, J. M. Knaust, S. W. Keller. A polyoxometallate-templated coordination polymer: synthesis and crystal structure of [Cu_3(4,4′-bipy)5(MeCN)_2] PW_(12)O_(40)·2C6H5CN[J]. Chem. Commun,2002,156-157.
    [32] Y. Ishii, Y. Takenaka, K. Konishi.Porous Organic–Inorganic Assemblies Constructed from Keggin Polyoxometalate Anions and Calix[4]arene–Na~+ Complexes: Structures and Guest-Sorption Profiles[J].Angew. Chem., Int. Ed,2004, 43: 2702-2705.
    [33] A. Dolbecq, E. Dumas, C. R. Mayer, et al., Hybrid Organic-Inorganic PolyoxometalateCompounds: From Structural Diversity to Applications[J] Chem.Rev.2010,110(10):6009-6048.
    [34] H. T. Evans Jr., M. T. Pope, Reinterpretation of five recent crystal structures of heteropoly and isopoly complexes: divanadodecamolybdophosphate, trivanadoenneamolybdophosphate, "gamma.-dodecatungstophosphate", the dodecamolybdate-dodecamolybdomolybdate blue complex, and dihydrogen decavanadate[J]. Inorg. Chem,1984,23:501-504.
    [35] Meng F.-X, Y.-G. Chen, H.-B. Liu,et al. Assembly of two novel coordination polymers constructed from metal-organic framework and Keggin-template[J]. J. Mol. Struct,2007, 837 : 224–230.
    [36] A. Kobayashi, Y. Sasaki.The crystal structure ofα-barium 12-tungstosilicate,α-Ba_2SiW_(12)O_(40)·16H_2O[J]. Bull. Chem. Soc. Jap,1975, 48: 885-888.
    [37] H. Abbas, C. Streb, A. L. Pickering,et al.Molecular Growth of Polyoxometalate Architectures Based on [-Ag{Mo_8}Ag-] Synthons: Toward Designed Cluster Assemblies[J]. Crystal Growth & Design, 2008, 8(2):635-642.
    [38] C.-L. Wang, S.-X. Liu, C.-Y. Sun,et al. Bimetals substituted germanotungstate complexes with open Wells-Dawson structure: Synthesis, structure, and electrochemical behavior of [{M(H_2O)}(μ-H_2O)_2K{M(H_2O)_4}(Ge_2W_(18)O_(66))]~(11-)(M = Co, Ni, Mn)[J]. J. Mol. Struct ,2007,841: 85-95.
    [39] I. D. Brown, D. Altermatt. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database[J]. Acta Crystallogr., Sect. B,1985, 41: 244-247.
    [40] X.K. Fang, T.M. Anderson, C.L. Hill[J]. Angew. Chem. Int. Ed,2005,44 :3540-3544.
    [41] S. Yamaguchi, Y. Kikukawa, K. Tsuchida, Y. Nakagawa, K. Uehara, K. Yamaguchi, N. Mizuno[J]. Inorg. Chem. ,2007,46 :8205-8209.
    [42] Y. J. Niu, B. Liu, G.L. Xue, H.M. Hu, F. Fu, J.W. Wang[J]. Inorg. Chem. Commun,2009,128:53-57.
    [43] S.S. Mal, N.H. Nsouli, M. Carraro, A. Sartorel, G. Scorrano, H. Oelrich, L. Walder, M. Bonchio, U. Kortz[J].Inorg. Chem,2010, 49:7-11.
    [44] C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot[J]. Inorg. Chem., 1983, 22, 207-212 .
    [1] V. Artero, A. Proust, P. Herson,et al. J. Am. Chem.Soc,2003,125, 11156.
    [2] Long D.-L., R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed,2010,49 :1736-1742.
    [3] A. Dolbecq, E. Dumas, C.R. Mayer,et al.Chem. Rev,2010,110: 6009-6025.
    [4] A. Dossing, Eur. J. Inorg. Chem,2005,1425-1431.
    [5] C. Benelli, D. Gatteschi, Chem. Rev ,2002,102: 2369.
    [6] S. Kobayashi, M. Sugiura, H. Kitagawa, W.W.L. Lam, Chem. Rev.,2002,102, 2227.
    [7] Y.-K. Lu, X.-B. Cui, Y.-B. Liu, et al. J. Solid State Chem,2009,182, 690.
    [8] Gao B, Liu S X, et al. Hydrothermal assembly of (3,6)-connected networks with classical structures constructed from Anderson-type heteropolymolybdate and metal cations[J]. J Solid State Chem. 2006, 179, 1681–1689;
    [9] Dossing A. Luminescence from Lanthanide(3+) ions in solution[J]. Eur J Inorg Chem, 2005,1425-1434.
    [10] Wassermann K, Dickman M H, Pope M T. Self-Assembly of Supramolecular Polyoxometalates: The Compact, Water-Soluble Heteropolytungstate Anion [As_(12)IIICe_(16) III(H_2O)_(36)W_(148)O_(524)]~(76-)[J]. Angew Chem Int Ed Engl, 1997, 36, 1445-1448.
    [11] Cao R G, Liu S X, et al, Influence of different site symmetries of Eu3+ centers on the luminescence properties of Anderson-based compounds[J]. Inorg Chim Acta. 2008, 361, 2013-2017.
    [12] Howell R C, Perez F G, Jain S, et al. A New Type of Heteropolyoxometalates formed from Lacunary Polyoxotungstate Ions and Europium or Yttrium Cations[J]. Angew Chem Int Ed, 2001, 40, 4031-4034.
    [13] Wu C D, Lu C Z, Zhuang H H, et al. Hydrothermal Assembly of a Novel Three-Dimensional Framework Formed by [GdMo_(12)O_(420]~(9-) Anions and Nine Coordinated GdIII Cations[J]. J Am Chem Soc, 2002, 124, 3836-3817.
    [14] Wang X L, Wang E B, et al. Novel Polyoxometalate-Templated,3-D Supramolecular Networks Based on Lanthanide Dimers:Synthesis,Structure,and Fluorescent Properties of [Ln_2(DNBA)_4(DMF)_8][Mo_6O_(19)] (DNBA=3,5-Dinitrobenzoate)[J]. Inorg Chem, 2003, 42, 4135-4140.
    [15] Shi D M, Chen Y G, et al. Self-Assembly of Polyoxometalate-Supported Ln-H nydroxo/Oxo Clusters with 1D Extended Structure: [LnIII(H_2O)_7Cr(OH)6Mo_6O_(18)]n·4nH_2O (Ln = Ce, Sm, Eu)[J]. Z Anorg Allg Chem. 2008, 634, 758-763.
    [16] Shi D M, Chen Y G, et al. Synthesis and Structure of a Novel PolyoxomolybdateLanthanide Complex: [Er_2(H_2O)_(14)Cr(OH)_6Mo_6O_(18)][Cr(OH)_6Mo_6O_(18)]·14H_2O[J]. J Chem Crystallogr. 2008, 38, 695–700.
    [17] Drewes D, Krebs B. Synthesis and Structure of a Novel Type of Polyoxomolybdate Lanthanide Complex: [(Ln(H_2O)_6)_2(TeMo_6O_(24))] (Ln = Ho, Yb)[J]. Z Anorg Allg Chem, 2005, 631, 2591-2594.
    [18] Drewes D, Limanski E M, Krebs B. The Anderson-Type Anion (TeMo_6O_(24))~(6-): A Multidentate Ligand for Trivalent Rare Earth Cations[J]. Eur J Inorg Chem, 2004, 4849-4853.
    [19] Mialane P, Lisnard L, A. Mallard, et al. Solid-State and Solution Studies of {Lnn(SiW_(11)O_(39)} Polyoxoanions: An Example of Building Block Condensation Dependent on the Nature of the Rare Earth[J]. Inorg Chem, 2003, 42, 2102-2108.
    [20] Shivaish V, Narasimha Reddy P V, Cronin L, et al. A novel polyoxometalate chain formed from heteropolyanion building blocks and rare earth metal ion linkers: [La(H_2O)_7Al(OH)_6Mo_6O_(18)]_n·4nH_2O[J]. J Chem Soc Dalton Trans. 2002, 3781-3782.
    [21] Drewes D, Limanski E M, Krebs B. A series of novel lanthanide polyoxometalates: condensation of building blocks dependent on the nature of rare earth cations[J]. Dalton Trans, 2004, 2087-2091.
    [22] Wassermann K, Dickman M H, Pope M T. Self-Assembly of Supramolecular Polyoxometalates: The Compact, Water-Soluble Heteropolytungstate Anion [As_(12)IIICe_(16)III(H_2O)_(36)W_(148)O_(524)]~(76-)[J]. Angew Chem Int Ed Engl, 1997, 36, 1445-1448.
    [23] Dossing A. Luminescence from Lanthanide(3+) ions in solution[J]. Eur J Inorg Chem, 2005, 1425-1434.
    [24] D. Drewes, E.M. Limanski, B. Krebs [J].J. Chem. Soc., Dalton Trans,2004, 2087.
    [25] An H.Y., Xiao D.R., Wang E.B.. [J]. Eur. J. Inorg. Chem,2005,854.
    [26] Ma H.-Y., Wu L.-Z., Pang H.-J[J]. J. Mol. Struct,2010,15, 967

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700