用户名: 密码: 验证码:
双Bt基因对杨树的遗传转化及外源基因表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为鉴定并筛选出转双Bt基因741杨对鳞翅目和鞘翅目害虫同时具有较强抗性的株系,明确联合使用两种或两种以上的抗虫基因的抗虫效果。以8个转三基因双Bt (Cry3Aa+Cry1Ac+API)741杨株系、1个转双抗虫基因(Cry1Ac+API)741杨株系和3个转单抗虫基因(Cry3Aa)741杨株系为实验材料,未转基因741杨为对照,进行了外源基因表达测定和抗虫性对比试验。同时借助农杆菌介导,采用共转化法,用构建在同一表达载体pCAMBIA1305-Cry1Ac-Cry3Aa上的双Bt基因对巨霸杨进行遗传转化,获得了4株潮霉素抗性植株。经过PCR初步检测,表明双Bt基因已经整合进了巨霸杨基因组中。主要研究结果如下:
     1.转抗虫基因741杨分别为:单转Bt Cry3Aa基因741杨pCC系列3个株系pCC11、pCC53、pCC84;转双抗虫基因(Cry1Ac+API)741杨1个株系pB29;在pB29基础上通过二次转化法将Cry3Aa基因转入获得的转三基因双Bt(Cry3Aa+Cry1Ac+API)741杨pCCA系列8个株系pCCA1、pCCA2、pCCA3、pCCA4、pCCA5、pCCA6、pCCA7和pCCA9。对各转基因株系及对照进行组培快繁,筛选确立了诱导741杨分化和生根的适宜培养基。分化培养基为:MS+6BA1.0mg·L~(-1)+NAA0.1mg·L~(-1);生根培养基为:1/2MS+IBA0.3mg·L~(-1)。
     2.转双Bt基因741杨等13个参试材料经特异引物PCR扩增Cry1Ac基因和Cry3Aa基因: pB29和转双Bt基因pCCA系列均扩增得到了Cry1Ac基因特异条带,对照741和pCC系列基因组未出现扩增条带。pCC系列和转双Bt基因pCCA系列均得到了Cry3Aa基因特异条带,对照741和pB29基因组未出现扩增条带。说明pB29中Cry1Ac基因和pCC系列中的Cry3Aa基因稳定存在。在pB29基础上,通过二次介导法外源Cry3Aa基因已整合到pCCA各无性系基因组中。
     3.通过RT-PCR和荧光定量PCR结合,在转录水平对外源基因的表达进行了检测。实时荧光监测表明:8个双Bt株系即检测到了Cry1Ac荧光扩增信号又检测到了Cry3Aa基因的荧光扩增信号。pCC~(-1)1、53、84只有Cry3Aa基因的荧光信号表达,而pB29只有Cry1Ac基因的荧光信号表达,对照741没有显现双Bt基因的荧光扩增信号。根据测得的Ct值,计算出了各样品中Cry1Ac基因和Cry3Aa基因在mRNA转录本中的表达量。双Bt株系pCCA系列及pB29中Cry1Ac基因的起始表达量在3.26×104~7.50×105之间;双Bt株系pCCA系列及pCC系列Cry3Aa基因的起始表达量在1.79×108~6.05×109之间。数据显示Cry3Aa基因的起始表达量在108~109数量级,比Cry1Ac的起始表达量(104~105数量级)高出了一万倍。
     4.用Bt-Cry1Ab/1Ac和Bt-Cry3A ELISA蛋白检测试剂盒,检测Cry1Ac蛋白:双Bt741杨pCCA系列的8个系号和pB29呈现蓝色阳性反应,蛋白含量在16.44~60.32ng·g~(-1)(FW);pCC系列和对照741无显色反应。检测Cry3Aa蛋白:双Bt741杨8个系号及pCC系列呈现黄色阳性反应,蛋白含量在2.24~13.30μg·g~(-1)(FW);pB29和对照741无显色反应。检测结果表明,双Bt株系能同时表达两种Bt毒蛋白,单Bt株系也表达了与各自所含基因相应的蛋白。从毒蛋白表达量看Cry3Aa蛋白表达量远远高于Cry1Ac蛋白表达量。Cry3Aa蛋白表达量在微克级,Cry1Ac蛋白表达量在纳克级。
     5.用转基因株系新鲜叶片进行柳蓝叶甲(Plagiodera versicolora)1~3龄幼虫和成虫及美国白蛾(Hyphantria cunea)1龄和4龄幼虫室内饲虫实验表明:转入不同抗虫基因的杨树对昆虫的抗性具有选择性,对非靶标昆虫没有毒杀作用。转双Bt基因741杨对鳞翅目的美国白蛾和鞘翅目的柳蓝叶甲具有双抗性,不同转基因株系表现出高中低的抗性水平。pCCA~(-1)、2、5、6、9对柳蓝叶甲表现高抗,pCCA-3、4、7表现中低抗性。5个高抗株系的抗性水平明显比单Bt Cry3Aa基因的3个高抗株系(pCC~(-1)1、53、84)的抗虫性高,用这5个系号饲喂的柳蓝叶甲成虫3天时60%以上死亡,5天时死亡率达到85%~100%;而pCC的3个系号3天时死亡率在50%以下,5天时也只有60%~70%。在对美国白蛾的抗性上,有7个双Bt株系(pCCA2-7和pCCA9)的抗性水平与pB29表现一致,4龄幼虫在第7~9天时死亡率达100%;只有1个系号pCCA1对美国白蛾表现出了极低的抗性,4龄幼虫在第7天和第9天时的死亡率分别只有7%和23%。pCC系列不含抗鳞翅目的Bt Cry1Ac基因,对美国白蛾未表现抗虫性。
     6.饲虫结果还表明无论是柳蓝叶甲还是美国白蛾,1龄幼虫对Bt毒蛋白的耐受性比较差,取食2~3天全部死亡;柳蓝叶甲成虫及美国白蛾4龄幼虫耐受性明显增强,取食可延长到7~11天。通过对取食叶片实时拍照记录的取食危害面积来看,转基因株系同对照比,即使中低抗株系也能对叶片起到很好的保护作用。
     7.对美国白蛾4龄幼虫的总排粪量和体长调查表明:低抗株系pCCA1的总排粪量是高抗株系pCCA2-7、pCCA9和pB29的7~23倍,但跟对照的总排粪量比,只有对照的25%。从体长来看,未转基因741杨上的美国白蛾幼虫体长达到了19mm,pCCA2-7、pCCA9和pB29的体长在10~12mm之间,而取食低抗株系pCCA1的最后体长也只有13mm(为对照的68%)。从虫粪和体长这两个指标分析来看,充分说明了转基因植株对昆虫的生长发育起到了明显的抑制作用。
     8.采用农杆菌介导法,以潮霉素做筛选标记,用构建在同一表达载体上的双Bt基因(Cry3Aa+Cry1Ac)对巨霸杨进行遗传转化。实验对诱导叶片分化适宜培养基和适宜潮霉素浓度这两个影响转化的关键因素进行了深入研究。确定诱导叶片分化不定芽的最佳培养基为MS+6BA0.25mg·L~(-1)+IBA0.1mg·L~(-1)。通过潮霉素在0mg·L~(-1)~15mg·L~(-1)范围内不同浓度梯度对叶片分化和茎尖生长影响的实验,确定诱导抗性芽分化的潮霉素临界筛选浓度为5mg·L~(-1)。经过对再生抗性芽的多次潮霉素筛选,获得抗性稳定的转双Bt基因巨霸杨无性系4个,编号为JB1、JB2、JB3和JB4。
     9.用特异引物分别对获得的转双Bt基因巨霸杨无性系进行PCR检测,结果显示:JB1、JB2、JB3和JB4均扩增得到一条与阳性质粒作模板PCR扩增条带大小相同的749bp(Cry1Ac基因)和612bp(Cry3Aa基因)的特异条带,而对照未转化巨霸杨基因组未出现PCR扩增特异条带。初步证明双Bt基因已经整合进了巨霸杨基因组中。
With the aim of identifying and selecting double Bt transgenic741poplar lines with high resistance against to both Coleoptera and Lepidopterainsects, studying the effects of combining two or more insect-resistance genesin plants, eight741poplar lines with three insect resistance genes(Cry3Aa+Cry1Ac+API), one741poplar with two insect resistance genes(Cry1Ac+API), three741poplar lines with one insect resistance genes(Cry3Aa) were selected as materials and non-transgenic741poplar as control.Comparative studies were conducted on exogenous gene expression and theassessment of insect resistant ability. At the same time, double Bt genes invector pCAMBIA1305-Cry1Ac-Cry3Aa were genetically transformed intoJuBa poplar using Agrobacterium mediated co-transformation method. Fourlines showed hygromycin resistance. PCR detection preliminary proved that double Bt sequneces have successfully recombined into the genome of JuBapoplar. The main results are as follows:
     1. The insect-resistance transgenic741poplars were the following series:pCC series with single Bt gene (Cry3Aa): pCC11, pCC53and pCC84; pB29with double insect resistance genes (Cry1Ac+API); pCCA series with threeinsect resistance genes (Cry3Aa+Cry1Ac+API): pCCA1, pCCA2, pCCA3,pCCA4, pCCA5, pCCA6, pCCA7, pCCA9. All transgenic lines and thecontrol were propagated through tissue culture. The suitable differentiation(MS+6BA1.0mg·L~(-1)+NAA0.1mg·L~(-1)) and rooting (1/2MS+IBA0.3mg·L~(-1))medium were selected and established.
     2. The presence of the Cry1Ac gene and the Cry3Aa gene in these741plants were detected by PCR analyses with special primers. The target bandsof Cry1Ac gene in pB29and pCCA series appeared as the plasmid positivetemplate. No target bands showed in the control and pCC series. The targetbands of Cry3Aa gene in pCC series and pCCA series appeared as the plasmidpositive template. No target bands were detected in the control and pB29genome. The results indicated that Cry1Ac gene stably existed in pB29andCry3Aa gene stably existed in pCC series. Cry3Aa gene had been integratedinto the genome of pCCA series on base of pB29.
     3. The exogenous gene expression was analyzed at the transcription levelby the combination of RT-PCR and real-time quantitative PCR. Real-timePCR showed that both Cry1Ac gene and Cry3Aa gene presented in theamplification fluorescence signal of eight double Bt lines. pCC~(-1)1,53,84only had Cry3Aa gene amplification signal and pB29only had Cry1Ac genesignal expression. No any amplification signal was detected in control741.The primary transcript of Bt genes in mRNA were calculated according to themeasured Ct value. The primary transcript of Cry1Ac gene of pB29andpCCA series were ranged from3.26×10~4to7.50×10~5. The primary transcriptof Cry3Aa gene of pCC series and pCCA series were ranged from1.79×10~8to6.05×10~9. The results showed that the primary transcript of Cry3Aa gene(108~109order of magnitude) was ten thousand times higher than that ofCry1Ac gene (104~105order of magnitude).
     4. Bt-Cry1Ab/1Ac and Bt-Cry3A ELISA kit were used to detected theexpressions of insecticidal proteins in each transgenic lines. pB29and eightdouble Bt pCCA series showed blue positive reaction of Cry1Ac protein. Theprotein contents ranged from16.44ng·g~(-1)(FW) to60.32ng·g~(-1)(FW). pCC~(-1)1,53,84and the CK741showed no color reaction. As to Cry3Aa protein, eightdouble Bt pCCA series and pCC~(-1)1,53,84showed yellow positive reaction. The protein contents ranged from2.24μg·g~(-1)(FW) to13.30μg·g~(-1)(FW). pB29and the CK741showed no color reaction. Test results indicated that doubleBt lines could express double Bt protein (Cry1Ac and Cry3Aa protein), singleBt lines also expressed corresponding proteins. The content of Cry3Aa(microgram order of magnitude) was much higher than that of Cry1Ac protein(nanogram order of magnitude).
     5. Toxicity evaluation tests were performed in the laboratory withPlagiodera versicolora (L1~L3larvae and adult) and Hyphantria cunea (L1and L4larvae) on fresh detached leaves. Transgenic741poplar lines carryingdifferent insect-resistance genes demonstrated selective resistance to targetinsects, but showed no toxic effects towards non-target insects.741lines withdouble Bt transgenes had double insect-resistance ability, and individual linesshowed resistance ranging from high, medium to low. pCCA~(-1)、2、5、6、9showed high resistance to P. versicolora and pCCA-3、4、7showed mediumresistance. The five high resistance lines showed higher toxicity than threesingle Cry3Aa gene lines with high resistance (pCC~(-1)1,53,84). The mortalityof adults feeded on these five lines was above60%at the third day andreached85%~100%at the fifth day, while the mortality feeded on three pCCseries was below50%at the third day and only60%~70%at the fifth day. In regards of H. cunea, seven lines (pCCA2pCCA7and pCCA9) exhibitedsimilar effectiveness as the single Bt line (pB29). The mortality of L4larvaereached100%at the7th~9th day. Only one line (pCCA1) showed anextremely low level of resistance. The mortality of L4larvae was7%and23%at the seventh day and the nineth day separately. pCC series showed notoxicity to H. cunea without Bt cry1Aa gene.
     6. Feeding tests also showed either P. versicolora or H. cunea, L1larvaehad low tolerance to Bt toxic protein and died within2~3days. As for adult P.versicolora and L4larvae of H. cunea, tolerance increased obviously byextending the feed time to7~11days. From the demaged leaf area recordedby photos we can see that, even transgenic lines with midium and lowresistance level, all could perform a good protection of their leaves comparingto the control741plant.
     7. The investigation of total frass and body lenghth of L4H. cunea larvaeshowed that the total frass of pCCA1was7~23times the weight of highinsect-resistance lines. Compared with that of the control741, only occupied25%of the contrast. About the body length, H. cunea larva feeded bynon-transgenic741poplar reached19mm; body length feeded by pCCA2-7,pCCA9and pB29was10~12mm, and that of low insect-resistance pCCA1 was only13mm. From the analysis of frass and body length illustrated thatthe transgenic lines had inhibited of growth and development of the larvea.
     8. By Agrobacterium-mediated method and hygromycin (Hyg) asselectable marker, the genetic transformation of JuBa poplar with double Bt(Cry3Aa+Cry1Ac) genes was studied. The suitable differentiation mediumand the suitable Hyg concentration were deeply investigated as two keyfactors influencing the transformation efficiency. The best differentiationmedium was established as: MS+6BA0.25mg·L~(-1)+IBA0.1mg·L~(-1). The effectof different Hyg concentration (0mg·L~(-1)~15mg·L~(-1)) on leaves and shootswere investigated. Hyg5mg·L~(-1)was determined for the critical concentration.Through several successive transfer and selection in the medium containingHyg,4lines with stable Hyg resistance were obtained and named JB1, JB2,JB3and JB4.
     9. The presence of the Cry1Ac gene and the Cry3Aa gene in these fourJuBa plants were detected by PCR analyses with special primers. The resultshowed that the target electrophoretic749bp bands of Cry1Ac gene and612bp bands of Cry3Aa gene in JB1, JB2, JB3and JB4appeared as the plasmidpositive template, while there was no target band in the control plant, preliminary indicating that the double Bt genes had been integrated into thegenome of JuBa poplar.
引文
[1] FAO. Global forest resources assessment. FAO Forestry Paper, Rome.Italy.2010.
    [2] Jouanin L, Bonade-Bottino M, Girard C, et al. Transgenic plants forinsect-resistance [J]. Plant Science,1998,131(1):1-11.
    [3] Bradshaw-Jr HD, Stettler RF. Molecular genetics of growth anddevelopment in Populus. IV. Mapping QTLs with large effects on growth,form, and phenology traits in a forest tree [J]. Genetics,1995,139(2):963-973.
    [4]苏晓华,张绮纹,郑先武,等.美洲黑杨(Populus deltoids Marsh)×青杨(P. cathayana Rehd.)分子连锁图谱的构建[J].林业科学,1998,34(6):29-37.
    [5] Devey ME, Bell JC, Smith DN, et al. A genetic Linkage map for Pinusradiata based on RFLP, RAPD and microsatellite markers [J]. Theor ApplGenet,1996,92(6):673-679.
    [6] Ishiwata S. On a new type of severe flacherie (sotto disease)[J]. DainihonSansi Kaiho,1901,114:1-5.
    [7] Vicki M, Peter H, Andrews S. Approved lists of bacterial names(Amended Edition)[M]. ASM Press CP1897.com,1879.
    [8] Berliner, E. über die schlaffsucht der mehlmottenraupe (Ephestiakuhniella, Zell.) und ihren erreger Bacillus thuringiensis, n.sp [J].Zeitschrift für Angewandtes Entomologie,1915,2:29-56.
    [9] Angus TA. Association of toxicity with protein crystalline inclusions ofBacillus sotto Ishiwata [J]. Canadian Journal of Microbiology,1956a,2:122.
    [10] Angus TA. Extraction, purification and properties of Bacillus sotto toxin[J]. Canadian Journal of Microbiology,1956b,2:416.
    [11]张洪瑞,朱其松,高苓昌,等. Bt基因及其在转基因抗虫植物中的研究进展[J].河北农业科学,2008,12(6):87-89.
    [12]袁胜亮,李明,周国娜,等.浅析抗虫基因种类及抗虫原理[J].安徽农业科学,2007,35(31):9963-9964.
    [13]于德花,刘玉新,张明兴.利用转基因技术进行作物遗传改良的研究进展[J].安徽农业科学,2007,35(11):3167-3171.
    [14]林琳.苏云金芽孢杆菌的分离和鉴定研究[D].黑龙江大学,2009.
    [15]喻子牛.苏云金杆菌[M].北京:科学出版社,1990.
    [16] Beegle CC, Yamamoto T. History of Bacillus thuringiensis Berlinerresearch and development [J]. Can Entomol,1992,124:587-616.
    [17] Feitelson JS, Payne J, Kim L. Bacillus thuringiensis: Insects and beyond[J]. Bio/Technology,1992,10:271-275.
    [18] Crickmore N, Zeigler DR, Feitelson J, et al. Revision of thenomenclature for the Bacillus thuringiensis pesticidal crystal proteins [J].Microbiology and Molecular Biology Reviews,1998,62(3):807-813.
    [19]李海涛,王洪成,刘志洋,等. Bt杀虫晶体蛋白的研究概述[J].黑龙江农业科学,2004,5:37-39.
    [20] Kumar PA, Sharma RP, Malik VS. The insecticidal Proteins of Bacillusthuringiensis [J]. Advances in Applied Microbiology,1997,42:1-43.
    [21]李荣森,陈涛.几种苏芸金杆菌晶体的毒力及形态结构[J].微生物学报,1981,21(3):311-317.
    [22]李海燕,朱延明,马凤鸣.植物抗虫基因工程的研究进展[J].东北农业大学学报,2000,31(4):399-405.
    [23]白耀宇,蒋明星,程家安,等.转Bt基因水稻Cry1Ab杀虫蛋白在水稻土中的降解[J].中国水稻科学,2004,18(3):255-261.
    [24]林良斌,官春云. Bt毒蛋白基因与植物抗虫基因工程[J].生物工程进展,1997,17(2):51-55.
    [25]胡华刚,王慧,张凤清.几种植物抗虫基因研究进展[J].热带农业科技,2006,29(4):18-21.
    [26]卢晓风,夏玉先,裴炎.植物蛋白酶抑制剂在植物抗虫与抗病中的作用[J].生物化学与生物物理进展,1998,25(4):328-333.
    [27] Abe M, Kondo H, Arai S. Purification and characterization of a ricecysteine proteinase inhibitor [J]. Agric. Biol. Chem.,1987a,51:2763-2768.
    [28] Abe M, Abe K, Kudora M, et al. Corn Kernel cysteine proteinaseinhibitor as novel cystatin superfamily member of plant origin [J]. Eur. J.Biochem.,1992,209:933-937.
    [29]李雪雁,杨勇,许维岸.植物蛋白酶抑制剂及其在抗虫植物基因工程中的应用[J].生命的化学,2002,2(3):270-272.
    [30] Abe M, Arai S. Some properties of a cysteine proteinase inhibitor fromcorn endosperm [J], Agric. Biol. Chem.,1991,55(9):2417-2418.
    [31] Joanitti GA, Freitas SM, Silva LP. Proteinaceous protease inhibitors:structural features and multiple functional faces [J]. Current EnzymeInhibition,2006,2(3):199-217.
    [32]王琛柱,钦俊德.植物蛋白酶抑制素抗虫作用研究进展[J].昆虫学报,1997,40(2):212-218.
    [33] Gatehouse JA. Biotechnological prospects for engineering insectresistant plants [J]. Plant Physiology,2008,146(3):881-887.
    [34] Mickel CE. Susceptibility of processed soy flour and soy grits in storageto attack by Tribolium castaneum (Herbst)/Clarence E. Mickel and JohnStandish [M]. University of Minnesota, Agricultural Experiment Station,1947.
    [35] Lipke H, Fraenkel GS, Leiner I. Effect soybean inhibitor on the growthof Tribolium confusum [J]. A Food Chem,1954,2:410-414.
    [36]刘会香,张星耀.植物蛋白酶抑制剂及其在林木抗虫基因工程中的应用[J].林业科学,2005,41(3):148-156.
    [37]李海燕,朱延明,马凤鸣.植物抗虫基因工程的研究进展[J].东北农业大学学报,2000,31(4):399-405.
    [38]张苗,张耀洲,金勇丰.蛋白酶抑制剂的应用进展[J].农机化研究,2005,2:208-210.
    [39] Christeller JT. Evolutionary mechanisms acting on proteinase inhibitorvariability [J]. FEBS J,2005,272:5710-5722.
    [40] Ryan CA. Protease inhibitors in plants: Genes for improving defensesagainst insects and pathogens [J]. Annu. Rev. Phytopathol,1990,28:425-449.
    [41]程仲毅,薛庆中.植物蛋白酶抑制剂基因结构、调控及其控制害虫的策略[J].遗传学报,2003,30:790-796.
    [42] Wege L, Qing ZX. Proteinase inhibitors and their application ininsect-resistance gene engineering [J]. Biotechnology Information,2000,1:20-25.
    [43]陈红梅,李昆志,陈丽梅.植物来源抗虫基因的研究进展[J].中国生物工程杂志,2008,28(11):116-121.
    [44] Fukao Y. Protein-protein interactions in plants [J]. Plant Cell Physiol,2012,53(4):617-25.
    [45] Ritonja A, Krizaj I, Mesko P, et al. The amino acid sequence of a novelinhibitor of cathepsin D from potato [J]. FEBS. L,1990,267:1-15.
    [46] Huma H, Khalid MF. Plant protease inhibitors: a defense strategy inplants [J]. Biotechnology and Molecular Biology Review,2007,2(3):068-085.
    [47] Abe K, Emori Y, Kondo H, et al. Molecular cloning of a cysteineproteinase inhibitor of rice (oryzacystatin)-Homology with animalcystatins and transient expression in the ripening process of rice seeds [J].J. Biol. Chem.,1987b,262(35):16793-16797.
    [48] Hines ME, Osuala CI, Nielsen SS. Isolation and partial characterizationof a soybean cystatin cysteine proteinase inhibitor of Coleopterandigestive proteolytic activity [J]. J. Agric. Food. Chem.,1991,39:1515-1520.
    [49] Botella MA, Xu Y, Prabha TN, et al. Differential expression of soybeancysteine proteinase inhibitor genes during development and in responseto wounding and methyl jasmonate [J]. Plant Physiol.,1996,112:1201-1210.
    [50] Ryan SN, Liang WA, McManus MT. A cysteine proteinase inhibitorpurified from apple fruit [J]. Phytochemistry,1998,49:957-63.
    [51] Brown WM, Dziegielewska KM. Friends and relations of the cystatinsuper family-new members and their evolution [J]. Protein Sci.,1997,6:5-12.
    [52] Pernas M, Sanchez MR, Gomez L, et al. A chestnut seed cystatindifferentially effective against cysteine proteinases from closely relatedpests [J]. Plant Mol. Biol.,1998,38:1235-1242.
    [53] Sakuta C, Konishi A, Yamakawa S, et al. Cysteine proteinase geneexpression in the endosperm of germinating carrot seeds [J]. Biosci.Biotechnol. Biochem.,2001,65:2243-2248.
    [54] Strukelj B, Pungercar J, Mesko P, et al. Characterization of asparticproteinase inhibitors from potato at the gene, cDNA and protein levels[J]. Biological Chemistry Hoppe-Seyler,1992,373(7):477-482.
    [55] Ryan CA. Proteinase inhibitor gene families: strategies fortransformation to plant defenses against herbivores [J]. Boil.Essay,1990,10(1):20-24.
    [56] Peumans WJ, van Damme EJM. Plant lectins: versatile proteins withimportant perspectives in biotechnology [J]. Biotech Gen Eng Rev,1998,15:199-228.
    [57] Chengsheng Z, Duochuan L and Fanyu K. Study and developmentonisolation, purification, gene clone and functions of lections [J]. ShandongScience,2003,16(2):11-17.
    [58]陈达嵩,郑月琼.植物凝集素在植物保护中的研究进展[J].湖北植保,2010,6:7-9.
    [59]赵修南,贾启燕,单俊杰. α-淀粉酶抑制剂筛选方法的优化[J].国际药学研究杂志,2008,35(5):321-324.
    [60]高必达.转几丁质酶基因防植物病害研究:进展、问题与展望[J].生物工程进展,1999,19(2):21-28.
    [61]侯丙凯,陈正华.植物抗虫基因工程研究进展[J].植物学通报,2000,17(5):385-393.
    [62] Gelvin, SB. Agrobacterium-mediated plant transformation: the biologybehind the ‘‘gene-jockeying’’ tool [J]. Microbiology and MolecularBiology Reviews,2003,67(1):16-37.
    [63]杨继芳,刘明,安利佳. T-DNA整合的研究进展[J].遗传,2004,26(6):991-996.
    [64]杨永智. T-DNA标签技术及其在植物功能基因组研究中的应用[J].青海大学学报(自然科学版),2006,6:34-39.
    [65] Block MC, Herrera-Estrella L, Montagu MV, et al. Expression of foreigngenes in regenerated plants and in their progeny [J]. The EMBO Journal,1984,3(8):1681-1689.
    [66] Broothaerts W, Mitchell HJ, Weir, B, et al. Gene transfer to plants bydiverse species of bacteria [J]. Nature,2005,433(7026):629-633.
    [67] T.A. Brown著,魏群译. Gene Cloning and DNA Analysis-AnIntroduction(5th edition)[M].北京高等教育出版社,2006.
    [68]谭伟.农杆菌介导BT基因转化大葱的研究[D].山东农业大学,2009.
    [69] Clive James.2011年全球生物技术/转基因作物商业化发展态势(上)[J].中国生物工程杂志,2012,32(1):1-14.
    [70] Clive Jame.2009年全球生物技术转基因作物商业化发展态势[J].中国生物工程杂志,2010,30(2):1-22.
    [71]黎跃进.生物技术玉米中的基因叠加与害虫抗性治理[J].生物技术进展,2012,2(2):87-91.
    [72]谭茂玲,李晨,闫晓红,等.植物基因叠加技术的研究进展[J].河南农业科学,2011,40(4):17-21.
    [73]陆晓春,薛庆中.转基因植物中标记基因的消除[J].生命科学,2001,2:78-81.
    [74] Halpin C, Barakate A, Askari BM, et al. Enablingt echnologies formanipulating multiple genes on complex pathways [J]. Plant MolecularBiology,2001,47:295-310.
    [75] Boulter D, Edwards GA, Gatehouse AMR, et al. Additive protectiveeffects of different plant derived insect resistantce genes intransgenictobacco plants [J]. Crop Prot.,1990,9:351-354.
    [76]燕丽,崔继哲,张亮.共转化法及其在植物基因工程中的应用[J].生物技术通报,2008,1:91-94.
    [77] Chen LL, Marmey P, Taylor NJ, et a1. Expression and inheritance ofmultiple transgenes in rice plants [J]. Nature Biotechnology,1998,16(11):1060-1064.
    [78]冯道荣,许新萍,邱国华,等.多个抗病抗虫基因在水稻中的遗传和表达[J].科学通报,2000,45(15):1593-l599.
    [79]李宝健,朱华晨.论应用多基因转化策略综合改良生物体遗传性研究方向的前景[J].中山大学学报(自然科学版),2004,43(6):11-15.
    [80] Poirier Y, Ventre G, Nawrath C. High-frequency linkage ofco-expressing T-DNA in transgenic Arabidopsis thaliana transformed byvacuum-infiltration of Agrobacterium tumefaciens [J]. Theoretical andApplied Genetics,2000,100:487-493.
    [81] Lin L, Liu YG, Xu XP, et al. Efficient linking and transfer of multiplegenes by a multigene assembly and transformation vector system [J].Proceedings of the National Academy of Sciences of the USA,2003,100:5962-5967.
    [82] Gidoni D, Bond-Nutter D, Brosio P, et al. Coordinated expressionbetween2photosynthetic petunia genes intransgenic plants [J].Molecular General Geneicst,1988,211:507-514.
    [83] Marcos JF, Beachy RN. Transgenic accumulation of two plant virus coatproteins on a single self processing polypeptide [J]. Journal of GeneralVirology,1997,78:1771-1778.
    [84] Ceriani MF, Marcos JF, Hopp HE, et al. Simultaneous accumulation ofmultiple viral coat proteins froma TEV-NI a based expression vector [J].Plant Molecular Biology,1998,36:239-248.
    [85] Dasgupta S, Collins GB, Hunt AG.. Co-ordinated expression of multipleenzymes in different subcellular compartments in plants [J]. The PlantJournal,1998,16:107-116.
    [86]马三梅,王永飞.标记基因和报告基因的辨析[J].农业与技术,2005,25(3):79-80.
    [87]侯学文,姜悦,郭勇.转基因植物中的标记基因[J].生物学通报,1997,32(1):19-21.
    [88]潘继承,汪劲松.植物基因工程中常用选择标记基因[J].自然杂志,1993, Z2:27-28.
    [89]程英豪.基因工程中使用的报道基因[J].生物学通报,1997,32(1):10-34.
    [90]李强.植物基因工程中常用的报告基因[J].生物学杂志,1995,1:12-13,10.
    [91]金万枚,巩振辉,李桂荣,等.植物遗传转化方法和转基因植株的鉴定[J].陕西农业科学,2000,(1):24-29.
    [92]宫雪超,于丽杰,高金秋.转基因植物的检测与鉴定[J].牡丹江师范学院学报(自然科学版),2007,57(1):19-21.
    [93]贺熙勇,陈善春,彭爱红.转基因植物的分子检测与鉴定方法及进展[J].热带农业科技,2008,31(1):39-44.
    [94]黄留玉. PCR最新技术原理、方法及应用[M].北京:化学工业出版社.2005.
    [95]蒋春燕.实时荧光定量PCR技术[J].动物医学进展,2005,26(12):97-101.
    [96]刘建强,孙仲序,赵春芝.转基因植物鉴定方法的研究概况[J].山东林业科技,2002,142(5):39-43.
    [97] Fillati JJ, Sellmer J, McCown B, et al. Agrobaterium mediatedtransformation and regeneration of poplar [J]. Mol. Gen. Genet,1987,206(2):192-199.
    [98] McNabb HS. Genetic transformation and it’s application to future forests[J]. Trends Biotechnol,1987,5(4):155-159
    [99] McCown BH, McCabe DE, Russell DR, et al. Stable transformation ofPopulus and incorporation of pest resistance by electric dischargeparticle acceleration [J]. Plant Cell Reports,1991,9(10):590-594.
    [100]田颖川,李太元,莽克强,等.抗虫转基因欧州黑杨的培育[J].生物工程学报,1993,9(4):291-297.
    [101陈颖,韩一凡,李玲,等.苏云金杆菌杀虫晶体蛋白基因转化美洲黑杨的研究[J].林业科学,1995,31(2):97-103.
    [102]郑均宝,张玉满,杨文芝,等.741杨离体叶片再生及抗虫基因转化[J].河北农业大学学报,1995,18(3):20-25.
    [103]郑均宝,梁海永,孙克南,等.雄性毛白杨离体叶片再生及抗虫基因转化[J].河北林果研究,1996,11(2):97-101.
    [104]王学聘,韩一凡,戴莲韵,等.抗虫转基因欧美杨的培育[J].林业科学,1997,33(1):69-74.
    [105] Génissel A, LepléJC, Millet N, et al. High tolerance against Chrysomelatremulae of transgenic poplar plants expressing a synthetic cry3Aa genefrom Bacillus thuringiensis ssp tenebrionis [J]. Molecular Breeding,2003,11:103-110.
    [106]张冰玉,苏晓华,李义良,等.转抗鞘翅目害虫基因银腺杨的获得及其抗虫性的初步研究[J].北京林业大学学报,2006,28(2):102-105.
    [107]甄志先,李静,梁海永,等.转BtCry3A基因杨树毒蛋白表达及对桑天牛抗性的研究[J].蚕业科学,2007,33(4):538-542.
    [108]牛小云,黄大庄,杨敏生,等.转BtCry3A基因杨树6个株系体内毒蛋白表达及对桑天牛的抗性鉴定[J].蚕业科学,2011,37(4):9-15.
    [109] Hilder VA, Gatehouse AMR, Sheerman SE, et al. A novel mechnism ofinsect resistance engineered into tobacco [J]. Nature,1987,300:160-163.
    [110] Hilder VA, Barker RF, Samour RA, et al. Protein and cDNA sequencesof Bowma-Birk protease inhibitors from the cowpea [J]. Plant MolecularBiology,1989,13:701.
    [111]梁一池.种子革命与林业现代化[J].三明学院学报,2005,22(2):121-126.
    [112] Klopfentein NB, Shi NQ, Kernan A, et al. Transgenic populus hybridexpresses a wound-induced potato proteinase inhibitor II-CAT genefusion [J]. Canadian Journal of Forest Research,1991,21(9):1321-1328.
    [113] Klopfenstein NB, McNabb-Jr HS, Hart ER, et al. Transformation ofPopulus hybrids to study and improve pest resistance [J]. SilvaeGenetica,1993,42:86-90.
    [114] Klopfenstein NB, Allen KK, Avila FJ, et al. Proteinase inhibitor II genein transgenic poplar: Chemical and biological assays [J]. Biomass andBioenergy,1997,12(4):299-311.
    [115] Jean CL, Michel BB, Sylvie A, et al. Toxicity to Chrysomela tremulae(Coleoptera: Chrysomelidae) of transgenic poplars expressing acysteine proteinase inhibitor [J]. Molecular Breeding,1995,1(4):319-328.
    [116] Delledonne M, Allegro G, Belenshi B, et al. Transformation of whitepoplar (populus alba L.)with a novel Arabidopsis thaliana cysteineproteinase inhibitor and analysis of insect pest resistance [J]. MolecularBreeding,2001,7:35-42.
    [117]郝贵霞,朱祯,朱之悌.豇豆蛋白酶抑制剂基因转化毛白杨的研究[J].植物学报,1999,41(12):1276-1282.
    [118]诸葛强,王婕琛,陈英,等.豇豆胰蛋白酶抑制剂(CpTI)抗虫转基因新疆杨的获得[J].分子植物育种,2003, l(4):491-496.
    [119]赵强,赵志文,张廷婷,等.豇豆胰蛋白酶抑制剂(CpTI)基因转化欧美杨的研究[J].生物技术通报,2005,4:54-58.
    [120]伍宁丰,孙芹,姚斌,等.抗虫的转AalT基因杨树的获得[J].生物工程学报,2000,16(2):129-133.
    [121]孟亮,李红双,金德敏,等.转几丁质酶基因黑杨的获得[J].生物技术通报,2004,15(3):420-422.
    [122] Pe a L, Séguin A. Recent advances in the genetic transformation oftrees [J]. Trends in Biotechnology,2001,19(12):500-506.
    [123]王继磊,刘迪秋,丁元明,等. Bt转基因抗虫植物研究进展[J].生物学杂志,2010,27(4):75-78.
    [124] Bates S, Zhao JZ, Roush R, et al. Insect-resistance management in GMcrops: past, present and future [J]. Nature Biotechnology,2005,23(1):57-62.
    [125] Li GP, Wu KM, Gould F, et al. Increasing tolerance to Cry1Ac cottonfrom cotton bollworm, Helicoverpa armigera, was confirmed in Btcotton farming area of China [J]. Ecological Entomology,2007,32(4):366-375.
    [126] Liu B,Wang L, Zeng Q, et al. Assessing effects of transgenic Cry1Accotton on the earthworm Eisenia fetida [J]. Soil Biology&Biochemistry,2009,41(9):1841-1846.
    [127] Christou P, Capell T, Kohli A, et al. Recent developments and futureprospects in insect pest control in transgenic crops [J]. Trends in PlantScience,2006,11(6):302-308.
    [128] Gatehouse J. Biotechnological prospects for engineering insect resistantplants [J]. Plant Physiology,2008,146(3):881-887.
    [129] Lawrence PK, Koundal KR. Plant protease inhibitors in control ofphytophagous insects [J]. EJB Electronic Journal of Biotechnology,2002,5(1):93-109.
    [130]田颖川,郑均宝,虞红梅,等.转双抗虫基因杂种741毛白杨的研究[J].植物学报,2000,42(3):263-268.
    [131]王永芳,高宝嘉,郑均宝,等.青杨双价抗虫基因转化系统研究[J].河北农业大学学报,2003,26(2):56-59.
    [132]杨敏生,李志兰,王颖,等.双抗虫基因对三倍体毛白杨的转化和抗虫性表达[J].林业科学,2006,42(9):61-68.
    [133]李科友,樊军锋,赵忠,等.转双价抗虫基因毛白杨无性系85号抗虫性研究[J].西北植物学报,2007,27(8):1537-1543.
    [134]杨艳丽,刘兴菊,刘桂林,等.双抗虫基因转化欧美杨107的研究[J].北方园艺,2012,7:120-122.
    [135]徐鸿林,翟红利,王锋,等.豇豆胰蛋白酶抑制剂基因(cpti)及其在抗虫转基因作物中的应用[J].中国农业科技导报,2008,10(1):18-27.
    [136]饶红宇.双价抗虫基因转化杨树的研究[D].南京林业大学,2000.
    [137]李永春,张宪银,薛庆中.农杆菌介导法获得大量转双价抗虫基因水稻植株[J].农业生物技术学报,2002,10(1):60-63.
    [138]吴颖,王萍,季静,等.农杆菌转化法将抗虫基因导入大豆获转基因植株[J].吉林农业大学学报,2003,25(4):371-373,37.
    [139]郭东全,杨向东,包绍君,等. CryIA和CpTI双价抗虫基因大豆的获得与稳定表达[J].中国农业科学,2008,41(10):2957-2962.
    [140]李茫雪,张赫然,于晶.花粉管通道法将Bt-CPTI双价抗虫基因转入玉米自交系的研究[J].玉米科学,2010,18(1):29-33,41.
    [141]郭金英,朱协飞,郭旺珍,等.转Bt+Sck基因双价抗虫棉的抗虫性及遗传分析[J].棉花学报,2007,19(2):88-92.
    [142]彭海英.农杆菌介导的无选择标记转双价抗虫基因灿稻的获得[D].华中农业大学,2003.
    [143]邬震坤,卢翠华,丛培琳.马铃薯抗虫基因工程研究进展[J].中国马铃薯,2006,20(1):35-38.
    [144] Cornu D, Leplé JC, Bonadé-Bottino M, et al. Expression of proteinaseinhibitor and a Bacillus thuringiensis d-endotoxin in transgenic poplars
    [M]. In Proceedings IUFRO Meeting on Somatic Cell Genetics andMolecular Genetic of Trees. Kluwer Academic Publisher, Dordrecht,The Netherlands.1996,131-136.
    [145]孟昆,苏宁,沈桂芳.水稻巯基蛋白酶抑制剂研究进展[J].生物技术通报,2000,2:5-7.
    [146]张冰玉,苏晓华,李义良,等.转双价抗蛀干害虫基因杨树的获得及其抗虫性鉴定[J].林业科学研究,2005,18(3):364-368.
    [147] Johnson R, Narvaez J, An G and Ryan CA. Expression of proteinaseinhibitors I and II in transgenic tobacco plants; Effects of naturaldefense against M. sexta larvae [J]; Proc. Natl. Acad. Sci. USA,1989,86:9871-9875.
    [148]郝贵霞,朱祯,朱之悌.豇豆胰蛋白酶抑制剂基因转化毛白杨的研究[J].植物学报,1999,41(12):1276-1282.
    [148]马员春,林志珊,徐惠君,等.半夏凝集素基因的克隆及其抗虫小麦新种质的创制[C].2009年中国作物学会学术年会论文摘要集,2009.
    [150]张正英.半夏凝集素pta抗虫基因转化马铃薯的研究[D].甘肃农业大学,2007.
    [151]袁英,李启云,孔祥梅,等.转双价抗虫基因Bt-pta玉米植株的获得[J].中国农学通报,2006,22(10):131-131.
    [152]熊恒硕,康俊梅,杨青川,等.双价抗虫植物表达载体p3300-bt-pta转化苜蓿的初步研究[J].中国草地学报,2008,30(1):21-26.
    [153]杨俊杰.农杆菌介导的双价抗虫基因Pta-CrylAc番茄的遗传转化研究[D].吉林农业大学,2006.
    [154]王凯.双抗虫基因共转化四倍体菘蓝的研究[D].第二军医大学,2005.
    [155] Xiao Y, Wang K, Ding RX, et al. Transgenic tetraploid Isatis indigoticaexpressing Bt Cry1Ac and Pinellia ternata agglutinin showed enhancedresistance to moths and aphids [J]. Molecular Biology Reports,2012,39(1):485-491.
    [156]范媛媛,庞永珍,吴为胜,等.双价抗虫植物表达载体p3300-bt-pta的构建及转基因烟草的初步检测[J].上海交通大学学报(农业科学版),2004,22(1):1-6.
    [157]常玉广,刘桂丰,姜静,等.小黑杨抗虫基因的遗传转化[J].东北林业大学学报,2004,32(6):20-21.
    [158]姜静,常玉广,董京祥,等.小黑杨转双价抗虫基因的研究[J].植物生理学通讯,2004,40(6):669-672.
    [159]范海娟,胡春祥,王志英,等.转蜘蛛杀虫肽与Bt毒蛋白C肽基因小黑杨对杨扇舟蛾的抗性[J].昆虫学报,2006,49(5):780-785.
    [160]邹传山,遇文婧,王志英.转蜘蛛杀虫肽+Bt毒蛋白基因欧美杨108号对舞毒蛾的抗性[J].东北林业大学学报,2010,38(5):.80-82.
    [161]左丽丽,王志英,梁臣,等.山新杨转Bt+蜘蛛杀虫肽基因的分析[J].东北林业大学学报,2009,37(7);112-114.
    [162]李巍娜.山杨转双价抗虫基因的研究[D].东北林业大学,2008.
    [163]霍雪梅.抗虫基因植物表达载体构建、遗传转化及表达研究[D].河北农业大学,2009.
    [164] Sachs ES, Benedict JH, Stelly DM, et al. Expression and segregation ofgene encoding cry1A insecticidal protein in cotton [J]. Crop Sciences,1998,38(1):1-11.
    [165] Tu JM, Zhang GA, Datta K, et al. Field performance of transgenic elitecommercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin[J]. Nature Biotechnology,2000,18(10):1101-1104.
    [166]杨召军,郎志宏,张杰,等.转Bt cry1Ah/cry1Ie双价基因抗虫玉米的研究[J].中国农业科技导报,2012,14(4):39-4.
    [167] Que QD, Chilton MM, de Fontes CM, et al. Trait stacking in transgeniccrops Challenges and opportunities [J]. GM Crops,2010,(1)4:220-229.
    [168] Stewart SD, Adamczyk JJ, Knighten KS, et al. Impact of Bt cottonsexpressing one or two insecticidal proteins of Bacillus thuringiensisBerliner on growth and survival of noctuid (Lepidoptera) larvae [J]. JEcon Entomol,2001,94:752-760.
    [169] Christou P, Capell T, Kohli A, et al. Recent developments and futureprospects in insect pest control in transgenic crops [J]. Trends Plant Sci,2006,11:302–308.
    [170]李明亮,张辉,胡建军,等.转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究[J].林业科学,2000,36(2):93-97.
    [171] Zhao JZ, Cao J, Li Y, et al. Transgenic plants expressing two Bacillusthuringiensis toxins delay insect-resistance evolution [J]. Naturebiotechnology,2003,21(12):1493-1497.
    [172]练云,贾志伟,何康来,等.人工改造的Cry1Ac和Cry1Ie基因在烟草中共表达对棉铃虫有更好的杀虫活性[J].科学通报,2008,53(6)658-663.
    [173] Meenakshi M, Aditya KS, Indraneel S. Pyramiding of modified cry1Aband cry1Ac genes of Bacillus thuringiensis in transgenic chickpea(Cicer arietinum L.) for improved resistance to pod borer insectHelicoverpa armigera [J]. Euphytica,2011,182:87-102.
    [174]许农,黄敏仁,陈道明.杨树基因工程研究进展[J].南京林业大学学报,1993,17(4):78-82.
    [175]李志兰,杨敏生,王进茂,等.杨树基因工程育种研究进展[J].河北农业大学学报,2002,25(增刊):145-148.
    [176] Betz FS, Hammond BG, Fuchs RL. Safety and advantages of Bacillusthuringiensis protected plants to control insect pests [J]. Regul ToxicolPharmacol,2000,32(2):156-173.
    [177] Hails RS. Genetically modified plants—the debate continues [J].Trends in Ecology and Evolution,2000,15(1):14-18.
    [178] Kulman HM. Effects of insect defoliation on growth and mortality oftrees [J]. Ann. Rev. Entomol,1971,16:289-324.
    [179]刘柳,向钱,李宁,张立实.复合性状转基因植物安全性评价[J].中国食品卫生杂志,2011,23(2):177-180.
    [180]王永芳,高宝嘉,郑均宝,等.转基因741杨对桑天牛的抗性鉴定[J].河北农业大学学报,2002,25(2):53-56.
    [181]甄志先,李静,梁海永,等.转Btcry3A基因杨树毒蛋白表达及对桑天牛抗性的研究[J].蚕业科学,2007,33(4):538-542.
    [182] Leple JC, Pilate G, Jouanin L. XVI Transgenic poplar trees (Populusspecies). In Y.P.S. Bajaj (ed.), Biotechnology in Agriculture andForestry [M], Vol. Transgenic Trees,1999,44:221-244.Springer-Verlag, Berlin/Heidleberg.
    [183] Rishi AS, Nelson ND, Goyal A. Improvement of populus throughgenetic engineering [J]. Indian J. Plant Physiol.,2001,6(2):119-126.
    [184] Baron C, Zambryski PC. Plant transformation: a pilus in AgrobacteriumT-DNA transfer [J]. Curr Biol,1996,6:1567-1569.
    [185] Hiei Y, Komari T, Kubo T. Transformation of rice mediated byAgrobacterium tumefaciens [J]. Plant Mol. Biol,1997,35:205-218.
    [186] Gouka RJ, Gerk C, Hooykaas, PJ, et al. Transformation of Aspergillusawamori by Agrobacterium tumefaciens-mediated homologousrecombination [J]. Nature Biotechnol,1999,17:598-601.
    [187] DeCleene M, DeLey J. The host range of crown gall [J]. Botanical Rev,1976,42:389-466.
    [188]杨振德,朱麟,赵博光,等.柳蓝叶甲的生物学特性室内观察[J].昆虫知识,2005,42(6):647-650.
    [189]田成连.柳蓝叶甲形态特征和生物学特性观察[J].黄山学院学报,2011,13(3):53-55
    [190] Isik M, Yanilmaz AF. Studies on the natural enemies and controlmeasure of the Fall Webworm (Hyphantria cunea Drury). Lepidoptera:Arctiidae in the hazelnut plantation in Samsun [J]. Zirai MucadeleArastirma Yilligi,1992,22:55-58
    [191] Kim OS. Study on the artificial and biological control of the FallWebworm, Hyphantria cunea [J]. Korean Journal of Entomology,1982,12(2):29-40
    [192]于长义.美国白蛾防治工作回顾及今后防治对策[J].森林病虫通讯,1993,(4):35-37.
    [193] Allegro G. The fall webworm after20years [J]. Sherwood Foreste EdAlberi Oggi,1997,3(5):31-36.
    [194]邱方,陈子祥,杨清玉,等.不同方法提取血清总RNA的性能评价[J].国际检验医学杂志,2012,33(4):457-458.
    [195]王恒波,陈如凯,陈平华.抗除草剂转基因作物实时荧光定量PCR检测[J].应用与环境生物学报,2009,15(6):866-870.
    [196] Zhang LG, Zhang J. Introduced the quantitative real-time PCRtechnology [J]. Biotechnology,2003,13(2):39-40.
    [197] Guo HN, Wu JH, Chen XY, et al. Cotton plants transformed with theactivated chimeric Cry1Ac and API-B genes [J]. Acta Botanica Sinica,2003,45(1):108-113.
    [198]王颖,甄志先,杨敏生,等.转双抗虫基因三倍体毛白杨外源基因表达及性状相关性分析[J].昆虫学报,2007,50(9):907-913.
    [199] Andow DA, Zwahlen C. Assessing environmental risks of transgenicplants [J]. Ecology Letters,2006,9(2):196-214.
    [200]胡建军,杨敏生,卢孟柱.我国抗虫转基因杨树生态安全性研究进展[J].生物多样性,2010,18(4):336-345.
    [201] Stam M, Mol JNM, Kooter JM. The silence of genes in transgenicplants [J]. Annals of Bot,1997,79(1):3-12.
    [202] Kilby NJ, Leyser HMO, Furner IJ. Promoter methylation andprogressive transgene inactivation in Arabidopsis [J]. Plant MolecularBiology,1992,20(1):103-112.
    [203] Wu G, Cui HR, Shu QY, et al. Transcriptional silencing anddevelopmental reactiva-tion of cry1Ab gene in transgenic rice [J].Science in China,2002,45(1):68-78.
    [204] Wang HH, Wu SJ, Li FF, et al. Transgene silencing caused by35Spromoter methylation in upland cotton (Gossypium hirsutum)[J].Cotton Science,2008,20(4):274-280.
    [205] Meyer P, Heidmann L. Epigenetic variants of a transgenic petunia lineshow hyper-methylation in transgene-DNA: An indication for specificrecognition of foreign DNA in transgenic plants [J]. Mol Gen Genet,1994,243(4):390-399.
    [206]万小荣,莫爱琼,杨妙贤,等.植物基因沉默机制研究进展[J].安徽农业科学,2011,39(17):10188-10189,10347.
    [207]颜美仙,黄大年,钱前.外源基因转水稻的途径、遗传行为和表达[J].中国稻米,2008,14(1):8-11.
    [208]刘石泉,余沛涛.农杆菌介导高等植物基因转化的影响因素[J].自然杂志,2003,25(1):16-21.
    [209]代容春.农杆菌介导的植物转基因研究中抑菌剂的应用现状[J].福建轻纺,2009,5:36-38.
    [210] Perl A, Lotan O, Abu-Abied M, et al. Establishment of an Agrobacteriumtumefaciens mediated transformation system for grape(Vitis vinifera L.):
    The role of antioxidants during grap-Agrobacterium interactions [J].
    Nature Biotechnol,1996,14:624-628.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700