用户名: 密码: 验证码:
转Bt基因抗虫玉米田间试验与遗传稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,人们采用基因工程手段成功培育了一批抗虫、抗病、耐除草剂和高产优质的农作物新种质,取得了令人瞩目的成就。而一个转基因的植株获得后,通常还要对其后代进行一系列基因纯合鉴定、遗传稳定性的研究、农艺和经济性状的筛选、产业化过程中的种性保持等工作,所有这些过程都需要对目的基因进行跟踪调查,需要对大量的转基因后代进行筛选、鉴定。因此在转基因作物研究继续深入的同时,科学家们越来越重视转基因与常规育种技术的结合,并加强了对转基因作物后代性状的大田遗传表达与变异研究试验,为利用转基因技术进行作物种质创新,改良现有作物品种,最终实现作物转基因植株从实验室走向大田生产奠定坚实的基础。而基因转入宿主后的有效表达及其稳定遗传,则成为转基因植物实用化中的关键问题。
     国内关于玉米转Bt基因及Bt玉米遗传稳定性有一些报道,但多数是在转基因株系的早期世代,以转化植株的性能和基因功能的分析以及对国外Bt玉米的利用效果评价为目的,以国内具有自主知识产权的基因转化获得的Bt玉米材料为基础的鉴定工作不多,尤其是在转Bt基因抗虫玉米高代自交系的遗传稳定性的研究还未见报道。
     本研究对采用花粉管通道法转cry1Ah基因抗虫玉米高代自交系(及其后代)和采用基因枪法获得的转Bt cry1Ah和cry1Ie双价基因抗虫玉米植株,通过田间及室内玉米螟抗性鉴定,利用PCR、RT-PCR、Southern blot、Western blot、ELISA等各种分子检测手段对外源基因的遗传稳定性和遗传规律等进行了研究分析,获得的主要研究结果如下:
     1.通过PCR检测确认了阳性转化植株,用Southern杂交进一步证实了Bt基因已整合到受体植物基因组,用RT-PCR验证了Bt基因在植物细胞中的转录,用Western杂交证实了Bt基因在植物细胞中的表达。遗传分析表明,Bt基因在遗传传递过程中符合孟德尔遗传规律,是单位点显性方式遗传。外源基因cry1Ah、cry1Ie和2mG2-epsps三个外源基因在转基因玉米基因组中完全连锁,表现为共分离,就像单个基因位点一样一起传递到下一代而没有分离。
     2.Cry1Ah在同一转基因事件的不同植株间表达量有所不同,但经统计分析差异不显著;在不同转基因事件间的表达量存在显著差异;同一植株同一发育时期不同器官Cry1Ah的表达量不同,苞叶和叶片外源基因蛋白表达量比较高,花粉最低,各组织部位外源基因蛋白表达量顺序:苞叶>叶>茎>雄穗>雄穗柄>雌穗尖>籽粒>花丝>花粉。Bt杀虫蛋白在玉米中的表达具有时空特异性,不同生育时期,CryAh在叶片和茎中的表达量不同,呈动态下降趋势。
     3.不同的转基因事件与不同常规玉米自交系进行杂交,杂交后代的外源基因表达量不同,这与亲本外源基因表达量高低及另一亲本的基因型有很大关系。要想得到高表达量的杂交后代,则需要选择外源基因表达量高的转基因自交系做亲本;通过玉米螟抗性鉴定和外源基因表达量的测定,表明外源Bt基因通过雌配子的传递频率高于通过雄配子的传递频率,因此尽量选择抗性亲本正向方式进行杂交,这样获得表达量高的杂交后代的几率会高一些。
     4.无论是转cry1Ah单价基因抗虫玉米自交系及其杂交、回交后代,还是转cry1Ah和cry1Ie双价基因抗虫玉米经连续四代的田间、室内玉米螟抗性检测,结果对亚洲玉米螟均表现出很好的抗性,并且这种抗性可以逐代稳定遗传,说明外源Bt基因的导入对防治亚洲玉米螟的危害是有效的。通过ELISA对Cry1Ah蛋白表达量的检测,其变化规律与虫测结果基本一致,说明田间、室内鉴定与分子鉴定相结合能更准确地说明Bt杀虫蛋白对亚洲玉米螟的抗性强弱,进行相关分析,结果表明抗虫玉米Cry1Ah蛋白表达量与雄穗柄倒折率和室内生测7天幼虫死亡率具有显著的相关性,与食叶级别、百株隧道长度具有极显著的相关性。说明玉米中Bt蛋白含量的高低是转基因玉米对玉米螟产生抗性强弱的内因。
     5.转cry1Ah和cry1Ie单、双价基因抗虫玉米及其后代与受体对照比较,在穗行粒数及秃尖长上有一定的差异,差异显著,秃尖变短和穗行粒数增加表现为产量的提高,而在株高、穗位高、穗长、穗粗、穗行数及千粒重上差异不大,经检验差异不显著。
     6.转cry1Ah基因抗虫玉米与受体对照比较,除了在栽培地试验时产量比受体自交系高外,在栽培地、荒地条件下,其出苗率、长势、株型、生育期、株高等方面均无显著差异;在荒地条件下,玉米出苗率均很低,撒播处理的出苗率还不到5%;杂草的覆盖度高于玉米的覆盖度,存在显著或极显著差异,说明玉米的生存竞争能力要远远小于杂草;种子发芽试验显示,转cry1Ah基因抗虫玉米后代种子发芽活力方面与对照也无显著差异。
     7.确定了“两高—阳—优良”(即抗虫性高、外源基因蛋白表达量高、PCR检测为阳性、农艺性状优良)的转基因抗虫玉米筛选原则。依据这个筛选原则从转cry1Ah单价基因抗虫玉米中筛选出5个抗性好、农艺性状优良的纯合转化事件,分别为P66、P33、P25、P26和P14。从转cry1Ah和cry1Ie双价基因抗虫玉米中也筛选出1个纯合转化事件(S8)。
In the last two decades, remarkable achievements has been made on successful cultivation of a large number of genetic engineering crops, including those with resistance to insect, disease, herbicide and those with high yield and quality. However, after obtaining one transgenic plant, much work had to do, for their offspring, on pure line identification, genetic stability analysis, agronomic and economic traits selection and germplasm conservation in commercialization, all the above work was fuscous on tracking survey to the interesting gene and selection/identification of large number of progenies. Therefore, at the time on development of genetically modified crops, more and more attention paid to combination of transgenic and conventional breeding technology, and genetic expression and variation test of GM crops offspring in the field also strengthen. As a result, crop innovation and improvement by genetic engineering would make it possible to enable transgenic plants to commercialization, and effective expression and genetic stability were the key issues on the process.
     There were some national reports on Bt-transgenic maize and their genetic stability analysis, but they were concerned about performance of transformed plants and gene function, as well as gene usage evaluation of foreign Bt-transgenic maize, mainly in the early generations. Besides, only a few articles has been reported on identification of Bt maize harboring genes with intellectual property, and it was notice that there was few story about genetic stability analysis of inbred line high generation of insect-resistant Bt maize.
     The applied plant materials were high generations of inbred insect-resistant maize harboring cry1Ah transformed by Pollen tube pathway and insect-resistant maize harboring cry1Ah and cry1Ie by gene gun. Indoor and field resistance identification on corn borer, plus a series of molecular detection including PCR、RT-PCR、Southern blot、Western blot and ELISA has been served to genetic stability and pattern analysis. Results were as follows:
     1. Positive plants were confirmed by PCR. Bt gene was proved by Southern blot that it was integrated into plant genome, further it was transcripted and expressed in plant cells detected by RT-PCR, Western blot respectively. Genetic analysis showed that Bt gene was single-locus dominant inheritance, conforming to Mendelian genetic pattern. Three foreign genes, cry1Ah, cry1Ie and 2mG2-epsps, was complete linkage and coseparation in transgenic maize genome, namely they were transferred to offspring like single gene locus.
     2. Cry1Ah expression varied among plants from the same transformed event, but statistical analysis indicated that the difference was not significant, while there was significant difference among different transformed events. And Cry1Ah expression varied among different tissues from the same stage of one plant, higher in the bract and leaf, lowest in the pollen (bract>leaf>stalk>tassel>tassel handle>ear tip>seed>filament>pollen). Bt toxic protein expression possessed temporal and special specificity, Cry1Ah expression varied in different stage of leaf and stalk, taking on dynamic downtrend.
     3. Foreign gene expression varied in progenies from different transformed events hybridized with different conventional maize, largely related to foreign gene expression of one parent and gene type of the other. Therefore, it required transgenic inbred lines with high foreign gene expression to be parent. Resistance analysis on corn borer and foreign expression detection showed that transmission frequency of mega gamete was higher than andro gamete, so that choosing resistant parent to crossbred would make it possible to obtain high expression progenies.
     4. Indoor and field resistance analysis on corn borer demonstrated that, not only maize harboring cry1Ah and their progenies, but also transgenic maize harboring cry1Ah and cry1Ie were highly resistant to corn borer, besides the very resistance was able to transfer from generation to generation. Therefore it was effective to control Asia corn borer by means of transforming foreign Bt genes. Variety pattern of Cry1Ah protein expression detected through ELISA was on the whole consistent with resistance analysis, indicated that combination of indoor/field resistance analysis and molecular detection would illuminate resistance on corn borer more precisely, and the results showed that Cry1Ah protein expression was significant relative to Fracture rate of tassel handle and indoor larva death ratio in 7 days, and extremely significant relative to leaf-feeding level and tunnel length per 100 plants. So it made clear that Bt protein content was the internal cause of resistance to corn borer.
     5. Comparing conventional maize and transgenic maize harboring single cry1Ah or harboring cry1Ah and cry1Ie and their progenies, statistical analysis indicated that there was significant difference in kernals per row and bare tip length, yet indistinct difference in plant height, height, width, line number of ear and g/1000 seeds. Shorter bald tip and increasing in grains per ear indicated the possible product raising.
     6. Comparing conventional maize and transgenic maize harboring single cry1Ah, both in experimental field and wilderness, there was indistinct difference in geminating rate, growing vigor, plant type, bearing period and plant height, except for yield. In wilderness, maize geminating rate was only 5%, and weeds coverage was higher than that of maize (significant difference or extremely significant difference), showing that survival competitiveness of maize was much weaker. Germinating test showed that there was indistinct difference between conventional maize and progenies of transgenic maize harboring cry1Ah.
     7. Five pure lines of transgenic maize harboring cry1Ah and 1 transgenic maize harboring cry1Ah and cry1Ie have been selected.
引文
安韩冰,朱祯.1997.基因枪在植物遗传转化中的应用.生物工程进展.17(1):18~26.
    白云凤,王国英.2003.玉米转基因和育种改良[J].玉米科学.11(3):9~12).
    丁群星,谢友菊,戴景瑞,等.1993.用子房注射法将Bt毒蛋白基因导入玉米的研究.中国科学(B辑).23(7):707~713.
    杜建中,孙毅,王景雪,等.2007.转基因抗丝黑穗病玉米的遗传、表达及选育研究[J].分子植物育种.5(4):467~474.
    樊龙江,周雪平.2001.转基因作物安全性争论与事实[M].北京:中国农业出版社.11~14.
    冯道荣,许新萍,邱国华,等.2000.多个抗病抗虫基因在水稻中的遗传和表达[J].科学通报.45(15):1593~1599.
    巩鹏涛,黄东杰,黄昭奋.2009.中国转基因作物,机遇与挑战[J].基因组学与应用生物学.28(2):209~215.
    关淑艳,张健华,柴晓杰,等.2005.花粉管通道法将淀粉分支酶基因反义表达载体转入玉米自交系的研究.玉米科学.13(4):13~15.
    赫福霞.2008.抗虫/耐草甘膦高效植物表达载体构建及转基因玉米的研究[D].哈尔滨:东北农业大学,博士学位论文.
    华志华,汪晓玲,薛锐,等.1999.Cecropin B转基因水稻及其后代抗白叶枯病研究初报[J].中国水稻科学.13(2):114~116.
    黄璐,卫志明.1999.农杆菌介导的玉米遗传转化.实验生物学报.32(4):381~387.
    姜志磊,刘德璞,李晓辉,等.2008.转基因抗虫玉米Bt毒蛋白的时空表达分析.吉林农业科学.33(6):35~37.
    李葱葱,刘娜,康岭生,等.2006.转基因抗虫玉米Bt蛋白表达量的研究.玉米科学.14(31):40~41.
    李桂玲,李欢庆,刘宗华,等.2007.MPCR方法检测转Bt基因玉米背景的研究河南工业大学学报(自然科学版).28(3):72~75.
    李会平,宋先锋.2007.创新打造生物—流技术[J].创科技新.4:30~31.
    李慧芬,刘翔,曲强,等.2002.转抗虫融合基因(crylAc3-cpti)玉米(Zea mays L.)植株的获得及其抗虫性分析[J].自然科学进展.12(1):37~40.
    李余良,胡建广,苏菁,等.2005.子房注射法将Bt基因导人超甜玉米.玉米科学.13(1):41~43.
    梁雪莲,郭平毅,孙毅,等.2005.玉米3种非组培转基因方法转化外源bar基因研究.作物学报.31(12):1648~1653.
    刘谦,朱鑫全.2001.生物安全[M].北京:科学出版社.25~27.
    刘欣芳,高晓蓉,苏乔,等.2008.转植酸酶基因玉米的获得及其后代的初步鉴定.玉米科学.16(1):15~19.
    刘源霞,兰进好,杜景平,等.2007.山东农业科学.(6):21~24.
    刘宗华,胡彦民,汤继华,等.2000.回交二代玉米转Bt基因材料抗虫性鉴定研究[J].作物杂志,(2):7~9.
    罗梅浩,李潮海,郭线茹,刘春元,马保罗.2006.转胁基因玉米对亚洲玉米螟的抗性及其农艺性状研究[J].玉米科学.14(4):14~16.
    罗云波.2000.关于转基因食品的安全性.食品工业科技.21(5):5~7.
    祁永红.2000.大豆DNA直接导入玉米自交系的研究.玉米科学.8(1):34~36.
    渠柏艳,于海清,韩兆雪,等.2004.可去除选择标记的转Bt基因抗虫玉米研究.分子植物育种.2(5):649~653.
    沈世华,张秀君,郭奕明,等.2001.玉米基因转化的离体子房注射及其转基因植株的鉴定.植物学报.43(10):1055~1057.
    宋福平.2003.苏云金芽孢杆菌cry1le1和cry8基因的研究[D].北京:中国农业科学院,博士后学位论文.
    唐灿明,孙敬,朱协飞,等.1999.我国现有的3类转Bt基因抗虫棉品系棉铃虫抗性的遗传分析[J].科学通报.44(19):2064~2067.
    唐启义,冯明光.2002.实用统计分析及其DPS数据处理系统[M].北京:科学出版社.121~140.
    唐柞舜,李良材,田文忠.2001.基因枪法转基因水稻后代农艺性状的表现.中国农业科学.34(6):581~586.
    王冬妍,王振营,何康来,等.2004.BT玉米杀虫蛋白含量的时空表达及对亚洲玉米螟的杀虫效果.中国农业科学.37(8):1155~1159.
    王罡,杜娟,张艳华.2002.用花粉管通道法将Bt杀虫基因导入玉米自交系的研究.玉米科学.10(1):36~37.
    王关林,方宏筠.1998.植物基因工程原理与技术[M].北京:科学出版社.
    王国英,杜天冰,张宏,等.1995.用基因枪将Bt毒蛋白基因转入玉米及转基因植株再生.中国科学(B辑).25(1):71~76.
    王守才,王国英,谢友菊,等.1999.转基因在玉米中的遗传分离与整合特性的研究.遗传学报.26(3):254~261.
    王旭静,贾士荣.2008.国内外转基因作物产业化的比较[J].生物工程学报.24(4):541~546.
    王振营,鲁新,何康来,等.2000.我国研究亚洲玉米螟历史、现状与展望.沈阳农业大学学报.31(5):402~412.
    吴刚,崔海瑞,舒庆尧,等.2000. crylAb基因在转基因“克螟稻”后代中的遗传稳定性及表达[J].农业生物技术学报.8(3):253~256.
    邢珍娟,王振营,何康来,白树雄.2008.转Bt基因玉米幼苗残体中Cry1Ab杀虫蛋白田间降解动态.中国农业科学.41(2):412~416.
    叶恭银,胡萃,舒庆尧.1998.转基因抗虫水稻的转育及其合理持续利用.见:程家安,周伟军编.跨世纪农业发展与研究.北京:中国环境科学出版社.406~414.
    袁小玲,唐灿明,张天真.2001.转Bt+CPTI双价基因抗虫棉棉铃虫抗性的遗传分析[J].棉花学报.13(6):342~345.
    袁英,李启云,孔祥梅,等.2006.转双价抗虫基因Bt-pta玉米植株的获得[J].中国农学通报.22(10):131~134.
    岳同卿.2009.转Bt cry1 Ah基因抗虫玉米的研究[D].北京:中国农业科学院,博士学位论文.
    张荣,王国英,张晓红,等.2001.根癌农杆菌介导的玉米遗传转化体系的建立.农业生物技术学报.9(1):45~48.
    张森燕,吴忠义,张秀海,等.2008.ZmPtil基因正义和RNAi表达载体的构建及其转化玉米的研究.华北农学报.23(5):1~5.
    中国农业科学院植物保护研究所.2006.对鳞翅目昆虫高毒力的Bt cry1Ah基因及其表达产物.中国,发明,200410009918.
    朱常香,宋云枝,张杰道,等.2002.抗虫、抗除草剂转基因玉米的获得及遗传研究[J].山东农业大学学报(自然科学版).33(2):120~125.
    Allman D W, Stelly D M, and Mitten D M.1991. Quantitative trait variation in phenotypically normal regenerants of cotton[J]. In Vitro Cell Dev. Boil.27(3):132-138.
    Bao P H, Granaia S, Castiglione S, et al.1996. Evidence for genomic changes in transgenic rice(Oryza sativa L. )recovered from protoplasts[J]. Transgenic Res.5(2):97-103.
    Bates S L, Zhao J Z, Roush R T, et al.2005. Insect resistance management in GM crops:past, present and future [J]. Nature Biotechnology.23:57-62.
    Beegle C C, Yamamoto T.1992. History of Bacillus thuringiensis Berliner research and development. Can. Entomol.124:587-616.
    Benedict J H, Sachs E S, Altman D W, et al.1996. Field performance of cottons expressing transgenic CrylA insecticidal proteins for resistance to Heliothis virescens and Heliocoverpa zea(Lepidoptera:Noctuidae) [J]. Econ. Entomol.89(1):230-238.
    Bergelson J, Purrington C B, Wichmann G. 1998. Promiscuity in transgenic plants[J]. Nature. 395:25-30.
    Bhalla P L, Swoboda I, Singh M B.1999. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen[J]. PNAS.96 (20):11676-11680.
    Bregitzer P, Halbert S E, and Lemaux P G. 1998. Somaclonal variation in the progeny of transgenic barley [J]. Theor. Appl. Genet.96(3-4):421-425.
    Budar F, Thia-Toong L, Van Montagr, et al.1986. Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics.114: 303-313.
    Cai W Q, Fang R X, Shang H S, et al.2003. Development of CMV-and TMV-resistant chili pepper:field perfermance and biosafety as sessment[J]. Mol. Breed.11:25-35.
    Chomczynski P, Sacchi N.1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem.162(1):156-159.
    Christou P.1995. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment.Euphytica.85:13-27.
    Crickmore N, Zeigler D R, Feitelson J, et al.1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev.62(3):807-813.
    Cooley J, Ford T and Christou P.1995. Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle acceleration. Thero. Appl. Genet.90: 97-104.
    Cooley J, Ford T, Christou P.1995. Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharg particle acceleration[J].TheroApplGenet.90:97-104.
    Crawley M J, Brown S L, Hails R S, et al.2001. Biotechnology-Transgenic crops in natural habitats[J]. Nature.409:682-683.
    Denolf P, Hendrickx K, Van D J, et al.1997. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminop eptidase N enzymes related to Bacillus thuringiensis toxinbinding proteins. Eur J Biochem.248(3):748-61.
    Deroles S C and Gardner R C.1988. Expression and inheritance of kanamycin resistance in a large number of transgenic petunias generated by Agrobacterium-mediated transformation.Plant Mol.Biol.11:355-364.
    Dillen W, Clercq J D, Goosens A, et al.1997. Agrobacterium mediated transformation of Phaseolus acutifolius A. Gray. Thero. Appl. Genet.94:151-158.
    Dorlhac de Borne F, Vincentz M, Chupeau Y, et al.1994. Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants. Mol.Gen.Genet.243:613-621.
    Ellstrand N C.2001. When transgenes wander,should we worry? [J]. Plant Physiology.125: 1543-1545.
    EPA.2000. Assessment of scientific information concerning StarLink Corn Cry9C Bt Corn Plant-pesticide[R]. Federal Register 65(31). Arlington:Environmental Protection Agency. 65246-62551.
    Fearing P L, Brown D M, lachos D, et al.1997. Quantitative analysis of Cry1A(b) expression in Bt maize plants, tissue, and silage and stability of expression over successive generations[J]. Molecular Breeding.3:169-176.
    Feitelson J S, Payne J, Kim L.1992. Bacillus thuringiensis:insects and beyond. Bio/Technology.10:271-275.
    Feitelson J S.1993. The Bacillus thuringiensis family tree. In L. Kim (ed.), Advanced engineered pesticides. New York, Marcel Dekker, Inc.63-71.
    Finnegan J, Mcelroy D.1994. Transgene inactivation:plant fight baek! Bio/Teehnology.12: 883-888.
    Flavell R B.1994. Inactivation of gene expression in plants as a consequence of novel sequence duplications.Proe.Natl.Aead.Sei.USA.91:3490-3496.
    Frankenhuyzen V, Gringorten L, Gauthier D.1997. Cry9Cal Toxin, a Bacillus thuringiensis Insecticidal Crystal Protein with High Activity against the Spruce Budworm (Choristoneura fumiferana). Appl Environ Microbiol.63 (10):4132-4134.
    Fromm M.1990. Inheritance and expression of chimeric genes in progeny of the transgenic plants. Bio/Technology.8:833-844.
    Gahakwa D, Maqbool S B, Fu X, et al.2000. Transgenic rice as a system to study the stability of transgene expression:multiple heterologous transgenes show similar behavious in diverse genetic backgrounds[J]. Theor Appl Genet.101:388-399.
    Gay P B, Gillespie S H.2005. Antibiotic resistant markers in genetically modified plants:a risk to human health[J]. Lancet Infect.5:637-646.
    Gebhard F, Smalla K.1988. Transformation of Ascinetobacter sp. Strain BD413 by transgenic sugar beet DNA[J]. Appl Environ Microbiol.64:1550-1554.
    George C, Ridley W P, Obert J C, et al.2004. Composition of grain and forage from corn rootworm-protected corn event MON 863 is equivalent to that of conventional corn (Zea mays L.). J Agric Food Chem.52(13):4149-58.
    Gordon-kamm W J, Spencer T M, Mangano M L, et al.1990. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell.2:603-618
    Gould F, Anderson A, Reynolds A, et al.1995. Selection and genetic analysis of a Heliothis virescens (Lepidoptera:Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins [J]. Journal of Economic Entomology.88:1545-1559.
    Grimsley N, Hohn T, Davis J W, et al.1987. Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature.325:177-179.
    Hanson B D, Mallory Smith C A, Price W J, et al.2005. Interspecific hybridization:potential for movement of herbicide resistance from wheat to jointed goatgrass(Aegilops cylindrica) [J]. Weed Technology.19(3):674-682.
    Hayashimoto A, Jian L, Murai N, et al.1990. Aployethylene glycol-mediated protoplast transformation system for the production of fertile transgenic rice plants. Plant Physiol.93: 857-863.
    Hiei Y, Ohta S, Komari T, et al.1994. Efficient transformation of rice(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J.6: 271-282.
    Horsch R B, Fraley R T, Rogers S G, et al.1984. Inheritance of functional foreign genes in plants[J]. Seience.223:496-498.
    Hofte H, Whitetey H R.1989. Insecticidai crystal proteins of Bacillus thuringiensis. Microbiol Rev.53(2):242-255.
    Huang D N, Li JY, XiaoH, et al.1997. Studies on the inheritance otransgenic ricewithbargene[J]. CRR News Letter.5:2-3.
    Ishida Y, Saito H, Ohta S, et al.1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnolgy.14:745-750.
    James C.2009. Global Status of Commercialized Biotech/GM Crops:2009. ISAAA Brief No. 41. ISAAA:Ithaca, NY.
    Jrgensen R B, Hauser T P, Mikkelsen T R, et al.1996. Transfer of engineered genes from crop to wild plants[J].Trends in Plant Science.1:356-358.
    Klein T M.1989. Genetic transformation of maize cell sparticle bombardment. Plant Physiol. 91:440-444.
    Koziel M. G, Beland G L, Bowman C, et al.1993. Field performance of elite transgenic maize plant expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technolgy.11: 194-200.
    Kuiper H A, Kleter G A, Natepoon H P.2001. Assessment of the food safety issues related to genetically modified foods. Plant J.27 (6):503-528.
    Kunz C, Schob H, Stam M, et al.1996. Developmentally regulated silencing and reactivation of tobacco chitinase transgene expression.The Plant Journal.10:437-450.
    Lal R, Lal S.1993. Genetic Engineering of Plants for Crop Improvement [M]. Boca Raton, FL: CRC Press.13-26.
    Lambert B, Buysse L, Decock C, et al.1996. A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae. Appl Environ Microbiol.62: 80-86.
    Leuhrsen K R and Walbot V,1990. Insertion of Mul elements in the first intron of the Adhl-s gene of maize results in novel RNA processing events. The Plant Cell. (2):1225-1238.
    Linquist S.1986. The heat shock response.Annu.Rev.Biochem.55:1151-1191.
    Liu Y J, Wang G Y.2003. The Inheritance and Expression of cry1A Gene in Transgenic Maize. Acta Botanica Sinica.45(3):253-256.
    Liu Y J, Wang G Y.2003. The Inheritance and Expression of cry1A Gene in Transgenic Maize. Acta Botanica Sinica.45(3):253-256.
    Losey J E, Carter M E, Rayor L S.1999.Transgenic pollen harms monarch larvae[J]. Nature. 399:214.
    Luehrsen K R, and Walbot V.1990. Insertion of Mul elements in the first intron of the A dh1-S gene of maize results in novel RNA processing events[J]. Plant Cell.2(12):1225-1238.
    Lynch P T, Jones J, Blackhall N W, et al.1995. The phenotypic characterization of R2 generation transgenic rice plants under field and glasshouse conditions.Euphytica.85(1-3): 395-401.
    Marvier M, McCreedy C, Regetz J, et al.2007. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates[J]. Science.316(5830):1475-1477.
    Masood E.1999. Food scientist in GMO row defends"premature"warning[J]. Nature.398:98.
    Matzke M A, Matzke A J M.1993. Genomic imprinting in plants:parental effects and trans-inactivation phenomena. Annu.Rev.Plant Physiol.44:53-76.
    Mcgaughey W H, Gould F, Gelernter W.1998. Bt resistance management[J]. Nature Biotechnology.16:144-146.
    Merce D K, Scott K P, Bruce-Johnson W A, et al.1999. Fate of free DNA and transformation of the oral bacterium Strepto-coccus gordionii DL1 by plasmid DNA in human saliva[J]. Appl Environ Microbiol.65:6-10.
    Meyer P and Heidmann I.1994. Epigenetic variants of a transgenic petunia line show hyper-methylation in transgene-DNA:An indication for specific recognition of foreign DNA in transgenic plants. Mol.Gen.Genet.243:390-399.
    Meyer P, Linn F, Heidmann I, et al.1992. Endogenous and environmental influences on the expression of the A1 gene in transgenic petunia.,Mol.Gen.Genet.231:345-352.
    Millstone E, Brunner E, Mayer S.1999. Beyond"substantial equivalence"[J]. Nature.401: 525-526.
    Narender S Nehra, Ravindra N Chibbar, Niek Leung, et al.1994. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile Bombardment with two distinct gene construets[J]. Plant J.5(2):285-297.
    Oberhauser K S, Prysby M D, Mattila H R, et al.2001. Temporal and spatial overlap between monarch larvae and corn pollen[J]. Proceedings of the National Academy of Sciences.98: 11913-11918.
    OECD.1993. Safety evaluation of foods produced by modern biotechnology:concept and principle. Paris.
    Ortiz-Garcia S, Ezcurra E, Schoel B, et al.2005. Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004) [J]. Proceedings of the National Academy of Sciences.102(35):12338-12343.
    Ohta Y.1986. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci.83:715-719.
    Payne J, Sick A J.1993. Bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins. U.S., patent for an invention,5188960.
    Peerbolte R, Loonhouts K, Hooykaas-van Slogteren G M S, et al.1986. Clone from a shooty tobacco crown gall tumor Ⅱ, irregular T-DNA structures and organization T-DNA, methylation and conditional expression of opine genes. Plant Mol.Bio.7:285-299.
    Peng J, Kononowicz H, Hodges T K.1992. Transgenic indica rice plants.Theor Appl Genet. 83:855-863.
    Peng J, Wen F, Lister RL et al.1995. Inheritance of gusA and neo genes in transgenic rice.Plant Mol.Biol.27:91-104.
    Pineyro-Nelson A, van Heerwaarden J, Perales H R, et al.2009. Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations[J]. Molecular Ecology.18(4):750-761.
    Prakash CS.2001. The genetically modified crop debate in the context of agricultural evolution[J]. Plant Physiology.126:5-8.
    Quist D, Chapela I H.2001. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico[J]. Nature.414:541-543.
    Ratcliff F G, MacFarlane S A, Baulcombe D C.1999. Gene silencing without DNA: RNA-mediated cross-protection between viruses.Plant Cell.11:1207-1215.
    Rong J, Song Z P, Su J, et al.2005. Low frequency of transgene flow from Bt/CpTI rice to its non-transgenic counterparts planted at close spacing[J]. New Phytologist.168(3):559-566.
    Sachs E S, Benedict J H, Stelly D M, et al.1998. Expression and segregation of gene encoding CryA insecticidal proteins in cotton[J].Crop Science.38:1-11.
    Sanford J C, Klein T M, Wolf E D, et al.1987. Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol.5:27-37.
    Schiermeier P.1998. German transgenic crop trails face attack[J]. Nature.394:819.
    Schluter K, Futterer J, Potrykus I.1995. "Horizontal" genetransfer from a transgenic potato line to a bacterial pathogen(Erwina chrysanthemi) occurs, if at all, at extremely low frequency[J]. Biotechnology.13:1049-1098.
    Schnepf E, Crickmore N, Van R J, et al.1998. Bacillus thuringiensis and its pesticidal crystal protein. Microbiol Mol Biol Rev.62(3):775-806.
    Sheltonl A M, Sears M K.2001. The monarch butterfly controversy:scientific interpretations of a phenomenon. Plant J.27:483-488.
    Soyle J J, Doyle J L, Hortorium B H.1996. Isolation of plant DNA from fresh tissue. Focus. 12(1):13.
    Spencer T M, O'Brien J V, Start W G, Adams T R, Gordon-Kamm W J, Lemaux P G,1992. Segregation of transgenes in maize. Plant Mol Biol,18:201-210.
    Spencer T M, O'Brein J V, Start W G, et al.1992. Segregation of transgenes in maize. Plant Mol Biol.18:201-210.
    Stam M, Mol J N M, Kooter J M.1997. The silence of genes in transgenetic plants.Annals of Botany.79(1):3-12.
    Stelly D M, Altman D W, Kohel R J, Rangan T S, and Comiskey E.1989. Cytogenetic abnormalities of cotton somaclones from callus cultures[J]. Genome.32(5):762-770.
    Temnykh S, Declerck G, Lukashova A, et al.2001. Computational and experimental analysis of microsatellites in rice(Oryza sativa L.):frequency, length variation, transposon association, and genetic marker potential[J]. Genome Research.11:1441-1452.
    Van Der K.rol A R, Mur L A, Beld M, et al.1990. Flavonoid genes in petunia:Addition of limited number of genes copies may lead to a suppression of gene expression.Plant Cell.2: 291-299.
    Van Houdt H, Ingelbrecht I, Van Montagu, et al.1997. Post-transcriptional silencing of a neomycin phosphotranferase Ⅱ transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3'flanking regions. The Plant Journal.12:379-392.
    Van Lijsebettens M, Vanderbaeghen R, and Van Montagu M.1991. Insertional mutagenesis in Arabidopsis thaliana:isolaion of a T-DNA-linked mutation that alters leaf morphology [J]. Theor. Appl. Genet.81:277-284.
    Wang J X, Sun Y, Cui G M, et al.2001. Transgenicmaize plants obtained by pollen-mediated transformation. Acta Bot Sinica.43(3):275-279.
    Watklnson A R, Freckleton R P, RobInson R A, et al.2000. Predications ofbiodiversity response to geneticallymodified herbicide-tolerant crops[J]. Science.289:1554-1557.
    Webb K J, Humphreys M O, Skot L, et al.1999. Inheritance and expression of transgenes in T2 and T3 generations of Lotus corniculatus transformed using Agrobacterium tumefaciens[J]. Euphytiea.108:169-179.
    WHO.1995. Application of the Principles of Substantial Equivalence to the Safety Evaluation of Food Components form Plants Derived by Modern Biotechnology. Report of A who Workshop [J]. Geneva.11.
    Wu K M, GuoY Y, Lv N, et al.2002. Resistance monitoring of Helicoverpa armigera (Lepidoptera:Noctuidae) to Bacillus thuringiensis insecticidal protein in China [J]. Journal of Economic Entomology.95:826-831.
    Wu K M, Lu Y H, Feng H Q, et al.2008. Suppression of cotton bollworm in multiple crops in China in Areas with Bt toxin-containing cotton[J]. Science.321:1676-1678.
    Xue J, Liang G, Crickmore N, et al.2008. Cloning and characterization of a novel CrylA toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiol Lett.280(1):95-101.
    Yoder J I, Goldsbrough A P.1994. Transformation system for generating marke free transgentc plants[J]. Bio/Technology.12:263-267.
    Zhang S, Warkentin D, Sun B, Zhong H, and Sticklen M.1996. Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.) [J]. Theor. Appl. Genet.92:752-761.
    Zhou G Y, Weng J, Zeng Y S, et al.1983. Introduction of exogenous DNA into cotton embryos. Methods Enzymol.101:433-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700