用户名: 密码: 验证码:
苏云金芽胞杆菌Cry1Ac蛋白的结构与功能及其与20-kb DNA相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)是世界上应用范围最广的杀虫微生物,其杀虫活性主要来源于芽胞形成过程中产生的杀虫晶体蛋白,研究杀虫晶体蛋白的结构与功能的关系已成为当前的一个热点。Cry1Ac蛋白是目前所知的对鳞翅目昆虫毒性最高和研究最多的Bt毒素之一。研究表明伴胞晶体中存在与原毒素相互作用的20-kb DNA片段,同时在活化毒素蛋白中仍然存在。该片段对晶体的形成及晶体蛋白在敏感昆虫体内的激活过程可能具有重要的作用,有关晶体蛋白与20-kbDNA相互作用的机制目前还不清楚。本文运用生物信息学理论和分子生物学实验技术手段研究了Cry1Ac5蛋白理论三维结构,分离和纯化了.Cry1Ac5和与之结合的20-kb DNA,研究了Cry1Ac5蛋白与20-kb DNA相互作用的分子机制,探讨了20-kb DNA对Cry1Ac5蛋白的稳定性和杀虫毒力的影响。主要创新的研究内容如下:
     构建了Cry1Ac5蛋白理论三维结构,并对模型进行了验证。通过与已经解析结构的毒素比较,探讨各结构域的生物学功能。Cry1Ac5蛋白由3个不同的结构域构成,结构域Ⅰ位于肽链的N端,为一组由7个两亲的α螺旋围绕着一个疏水的α螺旋形成的α螺旋束,主要参与细胞膜的穿孔。结构域Ⅱ位于肽链的中间,为反平行的β折叠片层,其顶端的突环参与毒素与受体蛋白的结合。位于C端的结构域Ⅲ是由两组反平行的β折叠片层组成的夹心结构,以β果酱卷(jelly roll)拓扑结构排列。其功能是防止蛋白酶对毒素分子的过度降解。
     从本实验室筛选的高毒力的Bt4.0718菌株中分离克隆了cry1Ac5全长基因,利用穿梭载体pHT315构建了表达载体pHTAc35,电转入无晶体突变株cry~-B中,高效表达了130 kDa的Cry1Ac5蛋白,采取凝胶层析和阴离子交换层析分离纯化了Cry1Ac5蛋白和20-kb DNA,同时为研究Cry1Ac5蛋白与20-kb DNA的相互作用提供了条件。
     利用荧光光谱法研究了Cry1Ac5蛋白与20-kb DNA相互作用荧光淬灭光谱。结果表明:DNA与蛋白存在特异结合,Cry1Ac5与20-kbDNA相互作用不仅与DNA序列有一定关系,而且还与晶体蛋白本身结构有关系。结合常数K=2.5×10~9,位点数n=1.72。这种结合具有很强的稳定性。
     对Cry1Ac5与20-kb DNA分子中一段20-bp DNA核苷酸结合的分子模拟研究表明Cry1Ac5蛋白有多个位点与DNA结合。位点Ser283-Ala284-Gln285、位点Ser440-Ser441-Ser442和位点Ser555-Leu556-Asn557深入位点DNA螺旋的沟中,主要通过疏水作用识别DNA的特定序列,与碱基直接接触。位点Ser555-Leu556-Asn557因为含有非极性的Leu556,相对而言具有更强的疏水作用。结构域Ⅰα6螺旋上位点Arg209和Asn212与B链磷酸骨架发生作用形成氢键,结构域Ⅱ上的Gly339也和与B链磷酸骨架发生作用形成氢键。Cry1Ac5和20-kb DNA相互作用力包括疏水作用力、范德华力。静电作用力,其中主要作用力为疏水作用力。
     研究表明20-kb DNA存在于晶体蛋白中,而不是吸附在晶体表面,它与晶体蛋白的核心片段结合。稳定性实验表明活化Cry1Ac5蛋白与20-kb DNA的体外结合能够增强Cry1Ac5蛋白对胰蛋白酶处理的稳定性和在紫外光下的稳定性。室内生测表明,体外活化Cry1Ac5蛋白和20-kb DNA结合没有明显地改变蛋白对棉铃虫的毒力。说明棉铃虫中肠道可以对含20-kb DNA的Cry1Ac5蛋白产生合理的降解。
     研究结果不仅有助于了解Bt晶体蛋白的结构与生物学功能,同时在分子水平上对20-kb DNA与晶体蛋白的相互作用机制以及20-kbDNA对晶体蛋白稳定性和杀虫毒力的影响有了新的认识。此外研究结果还对提高晶体蛋白田间应用的稳定性具有重要的实践指导意义。
Bacillus thuringiensis(Bt) is the most widely used insecticidal microorganism that produces one or more insecticidal crystal(Cry) proteins deposited in the form of an parasporal crystal during sporulation, Cry1Ac,which is one of the deeply researched Cry proteins with the strongest insecticidal activities against lepidoptera insects,was extensively used in pest control of agriculture.But the structure-function relationship of Cry1Ac protein has not been well understood and need further investigated.It was reported that the parasporal crystals contained 20-kb heterofogous DNA fragments intimately associated with protoxin, which may play a key role in the assembling and stability of parasporal crystals as well as the activation of crystal toxin in the midgut of target larvae.However,the nature of the interaction of the Bt protoxin with DNA,the sequences and origin of 20kbDN remained to be investigated.
     The theoretical model of the three-dimensional structure of Cry1Ac was predicted by homology modeling on the structures of the Cry1Aa, and its differences from Cry1Aa,Cry2Aa,Cry3Aa and Cry4Aa structures were analyzed.It is composed of three structurally conserved domains. DomainⅠconsists of seven alpha helices in which helix 5 is surrounded by the others,forming a helical bundle.DomainⅡconsists of three antiparallel b-sheets joined in a Greek key topology,arranged in a b-prism,DomainⅢis formed by two antiparallel b-sheets forming aβ-sandwich in a jelly roll topology.
     The full-length cry1Ac5 gene was isolated and cloned from Bt 4.0718 strain,and the expression plasmid pHTAc35 was generated by cloning cry1Ac5 gene to shuttle vector pHT315.Acrystalliferous Bacillus thuringiensis cry~-B was transformed with pHTAc35 and well expressed a 130-kDa Cry1Ac5 protoxin,which offered the precondition for our latter research.
     20-kbDNA and the Cry1Ac5 were purified,and their interaction was analyzed using and fluorescence titration.The binding regions were in all the three domains
     The fluorescence titration curves of the calf thymus DNA and 20-kbDNA additions to the DNA-free Cry1A toxins were different.The binding of 20-kb was almost infinitely tight that was quite different from that of calf thymus DNA.Besides the structural features common to all DNA molecules,the toxins may recognizes specific nucleotide sequences feature present in the various 20-kb DNA fragments.It was confirmed that the mechanism of the fluorescence quenching of Cry1Ac5 induced by 20-kbDNA was static qunechnig.The binding constant K was 2.5×10~9,and the binding sites was 1.72.
     Molecular simulation using Cry1Ac5 and a piece of 20-bp DNA from 20-kb DNA showed that there were several binding sites on the three domains of Cry1Ac5.The binding site Ser283-Ala284-Gln285, Ser440-Ser441-Ser442 and Ser555-Leu556-Asn557 were deep in the grooves of the DNA to form the hydrophobic contacts.There were hydrogen bond interactions between the phosphorate backbone of DNA and three amino acids(Arg209,Asn212 and Gly339) of Cry1Ac5.
     The addition of 20-kb DNA to the activated Cry1Ac 5 solution in vitro reduced the degradation of the toxins under trypsin and ultraviolet irradiation that indicated the original existence of 20-kb DNA in toxins had the role of protection.
     In this paper,the mechanism of the interaction 20-kb DNA and Cry1Ac5 was reported for the first time,which provided new biological evidences for the interaction playing important roles in maintaining the stability of the toxin.
引文
[1]中国科学院微生物研究所.伯杰氏细菌鉴定手册.北京:科学出版社,1984.
    [2]喻子牛.苏云金杆菌.北京:科学出版社,1990.
    [3]Schnepf E,Crickmore N,Van Rie J,et al.Bacillus thuringiensis and its pesticidal crystal proteins.Microbiol Mol Biol Rev,1998,62(3):775-806.
    [4]Hofte H,Whiteley HR.Insecticidal crystal proteins of Bacillus thuringiensis.Microbiol Rev,1989,53(2):242-255.
    [5]Lecadet MM,Frachon E,Dumanoir VC,et al.Updating the H-antigen classification of Bacillus thuringiensis.J Appl Microbiol,1999,86(4):660-672.
    [6]Quesada-Moraga E,Garcia-Tovar E,Valverde-Garcia P,et al.Isolation,geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain.Microbiol Res,2004,159(1):59-71.
    [7]Seleena P,Lee HL,Lecadet MM.A novel insecticidal serotype of Clostridium bifermentans.J Am Mosq Control Assoc,1997,13(4):395-397.
    [8]Seleena P,Lee HL,Lecadet MM.A new serovar of Bacillus thuringiensis possessing 28a28c flagellar antigenic structure:Bacillus thuringiensis serovar jegathesan,selectively toxic against mosquito larvae.J Am Mosq Control Assoc,1995,11(4):471-473.
    [9]Ackermann HW,Azizbekyan RR,Bernier RL,et al.Phage typing of Bacillus subtilis and Bacillus thuringiensis.Res Microbiol,1995,146(8):643-657.
    [10]Murakami T,Hiraoka K,Mikami T,et al.Analysis of common antigen of flagella in Bacillus cereus and Bacillus thuringiensis.FEMS Microbiol Lett,1993,107(2-3):179-183.
    [11]Orduz S,Rojas W,Correa MM,et al.A new serotype of Bacillus thuringiensis from Colombia toxic to mosquito larvae.J Invertebr Pathol,1992,59(1):99-103.
    [12]Kati H,Sezen K,Nalcacioglu R,et al.A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests.J Microbiol,2007,45(6):553-557.
    [13]Sanchis V,Lereclus D.Bacillus thuringiensis:a biotechnology model.J Soc Biol,1999,193(6):523-530.
    [14]Wei JZ,Hale K,Carta L,et al.Bacillus thuringiensis crystal proteins that target nematodes.Proc Natl Acad Sci U S A,2003,100(5):2760-2765.
    [15]Roh JY,Choi JY,Li MS,et al.Bacillus thuringiensis as a specific,safe,and effective tool for insect pest control.J Microbiol Biotechnol,2007,17(4):547-559.
    [16]Prieto-Samsonov DL,Vazquez-Padron RI,Ayra-Pardo C,et al.Bacillus thuringiensis:from biodiversity to biotechnology.J Ind Microbiol Biotechnol,1997,19(3):202-219.
    [17]Lecadet MM,Chaufaux J,Ribier J,et al.Construction of Novel Bacillus thuringiensis Strains with Different Insecticidal Activities by Transduction and Transformation.Appl Environ Microbiol,1992,58(3):840-849.
    [18]Schnepf HE,Tomczak K,Ortega JP,et al.Specificity-determining regions of a lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis.J Biol Chem,1990,265(34):20923-20930.
    [19]Hajaij-Ellouze M,Fedhila S,Lereclus D,et al.The enhancin-like metalloprotease from the Bacillus cereus group is regulated by the pleiotropic transcriptional activator PIcR but is not essential for larvicidal activity.FEMS Microbiol Lett,2006,260(1):9-16.
    [20]Chen YL,Lu W,Chen YH,et al.Cloning,expression and sequence analysis of chiA,chiB in Bacillus thuringiensis subsp,colmeri 15A3.Wei Sheng Wu Xue Bao,2007,47(5):843-848.
    [21]Yu CG,Mullins MA,Warren GW,et al.The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects.Appl Environ Microbiol,1997,63(2):532-536.
    [22]Zhu C,Ruan L,Peng D,et al.Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua.Lett Appl Microbiol,2006,42(2):109-114.
    [23]Kalman S,Kiehne KL,Cooper N,et al.Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes.Appl Environ Microbiol,1995,61(8):3063-3068.
    [24]蒲蛰龙.昆虫病理学.广东:广东科学技术出版社,1992.
    [25]Carlton BZ,Gronalez J.Molecular Biology of Microbial Differentiation,American Society for Microbiology.Washington:Washington D.C,1985.
    [26]Kronstad JW,Schnepf HE,Whiteley HR.Diversity of locations for Bacillus thuringiensis crystal protein genes.J Bacteriol,1983,154(1):419-428.
    [27]Sanchis V,Lereclus D,Menou G,et al.Multiplicity of delta-endotoxin genes with different insecticidal specificities in Bacillus thuringiensis aizawai 7.29.Mol Microbiol,1988,2(3): 393-404.
    [28]Carlson CR,Kolsto AB.A complete physical map of a Bacillus thuringiensis chromosome.J Bacteriol,1993,175(4):1053-1060.
    [29]Daburov KN.Hygienic basis for regulating the use of bacterial insecticides in agriculture and the permissible residues of their producer,Bacillus thuringiensis,in plant products.Gig Sanit,1979(9):27-31.
    [30]Lereclus D,Delecluse,Lecadet MM.Diversity of Bacillus thuringiensis toxin and genes.Bacillus thuringiensis,An Environmental Biopestieide:Theory and Practice.New York:John Wiley and Sons,1993.
    [31]Gruss A,Ehrlich SD.The family of highly interrelated single-stranded deoxyribonucleic acid plasmids.Microbiol Rev,1989,53(2):231-241.
    [32]Bourgouin C,Delecluse A,Ribier J,et al.A Bacillus thuringiensis subsp,israelensis gene encoding a 125-kilodalton larvicidal polypeptide is associated with inverted repeat sequences.J Bacteriol,1988,170(8):3575-3583.
    [33]Kronstad JW,Whiteley HR.Inverted repeat sequences flank a Bacillus thuringiensis crystal protein gene.J Bacteriol,1984,160(1):95-102.
    [34]Stately DP,Dingman DW,Bulla LA,et al.Possible origin and function of the parasporal crystals in Bacillus thuringiensis.Biochemical and Biophysical Research Communications,1978,84:581-588.
    [35]Schnepf HE,Wong HC,Whiteley HR.Expression of a cloned Bacillus thuringiensis crystal protein gene in Escherichia coli.J Bacteriol,1987,169(9):4110-4118.
    [36]Barton KA,Whiteley HR,Yang NS.Bacillus thuringiensis section sign-Endotoxin Expressed in Transgenic Nicotiana tabacum Provides Resistance to Lepidopteran Insects.Plant Physiol,1987,85(4):1103-1109.
    [37]Crickmore N,Zeigler DR,Feitelson J,et al.Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins.Microbiol Mol Biol Rev,1998,62(3):807-813.
    [38]王津红,吴卫辉,陈月华.中国苏云金杆菌的分布及cry基因多样性.中国病毒学,2000,15(s1):241.
    [39]侯丙凯,党本元,章银梅,等.苏云金芽孢杆菌cry1Aa10杀虫晶体蛋白基因的克隆序列分析以及在大肠杆菌中的表达.农业生物技术学报,2000,8(3):289-293.
    [40]Bravo A,Gill SS,Soberon M.Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.Toxicon,2007,49(4):423-435.
    [41]de Maagd RA,Bravo A,Crickmore N.How Bacillus thuringiensis has evolved specific toxins to colonize the insect world.Trends Genet,2001,17(4):193-199.
    [42]Li JD,Carroll J,Ellar DJ.Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution.Nature,1991,353(6347):815-821.
    [43]Grochulski P,Masson L,Borisova S,et al.Bacillus thuringiensis CryIA(a) insecticidal toxin:crystal structure and channel formation.J Mol Biol,1995,254(3):447-464.
    [44]Morse RJ,Yamamoto T,Stroud RM.Structure of Cry2Aa suggests an unexpected receptor binding epitope.Structure,2001,9(5):409-17.
    [45]Galitsky N,Cody V,Wojtczak A,et al.Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis.Acta Crystallogr D Biol Crystallogr,2001,57(Pt 8):1101-1109.
    [46]Boonserm P,Davis P,Ellar DJ,et al.Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications.J Mol Biol,2005,348(2):363-382.
    [47]Boonserm P,Mo M,Angsuthanasombat C,et al.Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution.J Bacteriol,2006,188(9):3391-3401.
    [48]Li J,Derbyshire DJ,Promdonkoy B,et al.Structural implications for the transformation of the Bacillus thuringiensis delta-endotoxins from water-soluble to membrane-inserted forms.Biochem Soc Trans,2001,29(Pt 4):571-577.
    [49]Walters FS,Slatin SL,Kulesza CA,et al.Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin.Biochem Biophys Res Commun,1993,196(2):921-926.
    [50]Lee MK,Rajamohan F,Jenkins JL,et al.Role of two arginine residues in domain Ⅱ,loop 2of Cry1Ab and Cry1Ac Bacillus thuringiensis delta-endotoxin in toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N.Mol Microbiol,2000,38(2):289-298.
    [51]Nishimoto T,Yoshisue H,Ihara K,et al.Functional analysis of block 5,one of the highly conserved amino acid sequences in the 130-kDa CryⅣA protein produced by Bacillus thuringiensis subsp.israelensis.FEBS Lett,1994,348(3):249-454.
    [52]Chen XJ,Lee MK,Dean DH.Site-directed mutations in a highly conserved region of Bacillus thuringiensis delta-endotoxin affect inhibition of short circuit current across Bombyx mori midguts.Proc Nail Acad Sci U S A,1993,90(19):9041-9045.
    [53]Lee MK,You TH,Gould FL,et al.Identification of residues in domain Ⅲ of Bacillus thuringiensis Cry1Ac toxin that affect binding and toxicity.Appl Environ Microbiol,1999,65(10):4513-4520.
    [54]Lee MK,Young BA,Dean DH.Domain Ⅲ exchanges of Bacillus thuringiensis CryⅠA toxins affect binding to different gypsy moth midgut receptors.Biochem Biophys Res Commun,1995,216(1):306-312.
    [55]Butko P,Huang F,Pusztai-Carey M,Surewicz WK.Interaction of the delta-endotoxin CytA from Bacillus thuringiensis vat.israelensis with lipid membranes.Biochemistry,1997,36(42):12862-12868.
    [56]Ibarra JE,Federici BA.Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp,israelensis.J Bacteriol,1986,165(2):527-533.
    [57]Gill SS,Cowles EA,Pietrantonio PV.The mode of action of Bacillus thuringiensis endotoxins.Annu R ev Entomol,1992,37:615-636.
    [58]Dean DH,Rajamohan F,Lee MK,et al.Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis-a minireview.Gene,1996,179(1):111-117.
    [59]Carroll J,Li J,Ellar DJ.Proteolytic processing of a coleopteran-specific delta-endotoxin produced by Bacillus thuringiensis var.tenebrionis.Biochem J,1989,261(1):99-105.
    [60]Reddy ST,Kumar NS,Venkateswerlu G.Identification and purification of the 69-kDa intracellular protease involved in the proteolytic processing of the crystal delta-endotoxin of Bacillus thuringiensis subsp,tenebrionis.FEMS Microbiol Lett,2000,183(1):63-66.
    [61]Haider MZ,Knowles BH,Ellar DJ.Specificity of Bacillus thuringiensis var.colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases.Eur J Biochem,1986,156(3):531-540.
    [62]Haider MZ,Ellar DJ.Functional mapping of an entomocidal delta-endotoxin.Single amino acid changes produced by site-directed mutagenesis influence toxicity and specificity of the protein.J Mol Biol,1989,208(1):183-194.
    [63]Masson L,Mazza A,Brousseau R,et al.Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella.J Biol Chem,1995,270(20):11887-11896.
    [64]Rajamohan F,Alzate O,Cotrill JA,et al.Protein engineering of Bacillus thuringiensis delta-endotoxin:mutations at domain Ⅱ of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae.Proc Natl Acad Sci U S A,1996,93(25):14338-14343.
    [65]Rajamohan F,Lee MK,Dean DH.Bacillus thuringiensis insecticidal proteins:molecular mode of action.Prog Nucleic Acid Res Mol Biol,1998,60:1-27.
    [66]Mohammed SI,Johnson DE,Aronson AI.Altered binding of the Cry1Ac toxin to larval membranes but not to the toxin-binding protein in Plodia interpunctella selected for resistance to different Bacillus thuringiensis isolates.Appl Environ Microbiol,1996,62(11):4168-4173.
    [67]Liang Y,Patel SS,Dean DH.Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity.J Biol Chem,1995,270(42):24719-24724.
    [68]Carroll J,Wolfersberger MG,Ellar DJ.The Bacillus thuringiensis Cry1Ac toxin-induced permeability change in Manduca sexta midgut brush border membrane vesicles proceeds by more than one mechanism.J Cell Sci,1997,110(Pt 24):3099-3104.
    [69]Yamamoto T,Powell GK.Bacillus thuringiensis crystal proteins:recent advances in understanding its insecticidal activity.In L.Kim(ed.),Advanced engineered pesticides.New York:Marcel Dekker,Inc,1993.
    [70]Valaitis AP,Lee MK,Rajamohan F,et al.Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) delta-endotoxin of Bacillus thuringiensis.Insect Biochem Mol Biol,1995,25(10):1143-1151.
    [71]Knight PJ,Crickmore N,Ellar DJ.The receptor for Bacillus thuringiensis Cry1A(c)delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N.Mol Microbiol,1994,11(3):429-436.
    [72]Knight PJ,Knowles BH,Ellar DJ.Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin.J Biol Chem,1995,270(30):17765-17770.
    [73]Vadlamudi RK,Ji TH,Bulla LA Jr.A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp.berliner.J Biol Chem,1993,268(17):12334-12340.
    [74]Martinez-Ramirez AC,Gonzalez-Nebauer S,Escriche B,et al.Ligand blot identification of a Manduca sexta midgut binding protein specific to three Bacillus thuringiensis CryⅠA-type ICPs.Biochem Biophys Res Commun,1994,201(2):782-787.
    [75]Griffitts JS,Haslam SM,Yang T,et al.Glycolipids as receptors for Bacillus thuringiensis crystal toxin.Science,2005,307(571 1):922-925.
    [76]Knowles BH,Knight PJ,Ellar DJ.N-aeetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis.Proc Biol Sci,1991,245(1312):31-35.
    [77]Cooper MA,Carroll J,Travis ER,et al.Bacillus thuringiensis Cry1Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment.Biochem J,1998,333(Pt 3):677-683.
    [78]Knowles B H,Ellar D J.Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity.Biochimica et biophysica acta,1987,924:509-518.
    [79]Hodgman TC,Ellar DJ.Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by eompilational analysis.DNA Seq,1990,1(2):97-106.
    [80]Gazit E,La Rocea P,Sansom MS,et al.The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an "umbrella-like" structure of the pore.Proc Natl Acad Sci USA,1998,95(21):12289-12294.
    [81]Masson L,Tabashnik BE,Liu YB,et al.Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel.J Biol Chem,1999,274(45):31996-2000.
    [82]Schwartz JL,Juteau M,Groehulski P,et al.Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering.FEBS Lett,1997,410(2-3):397-402.
    [83]Gazit E,Bach D,Kerr ID,et al.The alpha-5 segment of Bacillus thuringiensis delta-endotoxin:in vitro activity,ion channel formation and molecular modelling.Biochem J,1994,304(Pt 3):895-902.
    [84]Rajamohan F,Hussain SR,Cotrill JA,et al.Mutations at domain Ⅱ,loop 3,of Bacillus thuringiensis CryⅠAa and CryⅠAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts.J Biol Chem,1996,271(41):25220-25226.
    [85]Rajamohan F,Cotrill JA,Gould F,et at Role of domain Ⅱ,loop 2 residues of Bacillus thuringiensis CryⅠAb delta-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens,J Biol Chem,1996,271(5):2390-2396.
    [86]de Maagd RA,Bakker PL,Masson L,et al.Domain Ⅲ of the Bacillus thuringiensis delta-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N.Mol Microbiol,1999,31(2):463-471.
    [87]Masson L,Tabashnik BE,Mazza A,et al.Mutagenie analysis of a conserved region of domain Ⅲ in the Cry1Ac toxin of Bacillus thuringiensis.Appl Environ Microbiol,2002,68(1):194-200.
    [88]Allured VS,Collier R J,Carroll SF,et al.Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution.Proc Natl Acad Sci USA,1986,83(5):1320-1324.
    [89]Choe S,Bennett MJ,Fujii G,et al.The crystal structure of diphtheria toxin.Nature,1992,357(6375):216-222.
    [90]Ojcius DM,Young JD.Cytolytic pore-forming proteins and peptides:is there a common structural motif.Trends Biochem Sci,1991,16(6):225-229.
    [91]Yool AJ.Block of the inactivating potassium channel by clofilium and hydroxylamine depends on the sequence of the pore region.Mol Pharmacol,1994,46(5):970-976.
    [92]MacKinnon R,Yellen G.Mutations affecting TEA blockade and ion permeation in voltage-activated K~+ channels.Science,1990,250(4978):276-279.
    [93]MacKinnon R,Miller C.Mutant potassium channels with altered binding of charybdotoxin,a pore-blocking peptide inhibitor.Science,1989,245(4924):1382-1385.
    [94]Bietlot HP,Schernthaner JP,Milne RE,et al.Evidence that the CryⅠA crystal protein from Bacillus thuringiensis is associated with DNA.J Biol Chem,1993,268:8240-8245.
    [95]Clairmont FR,Milne RE,Pham VT,et al.Role of DNA in the activation of the Cry1A insecticidal crystal protein from Bacillus thuringiensis.J Biol Chem,1998,273:9292-9296.
    [96]Chaturvedi R,Bhakuni V,Tuli R.The delta-endotoxin proteins accumulate in Eschcriehia coli as a protein-DNA complex that can be dissociated by hydrophobic interaction chromatography.Protein Expr Purif,2000,20(1):21-26.
    [97]Xia L,Sun Y,Ding X,et al.Identification of cry-type genes on 20kb DNA associated with Cry1 crystal proteins from Bacillus thuringiensis.Curr Microbiol,2005,51:53-58.
    [98]Schernthaner JP,Milne RE,Kaplan H.Characterization of a novel insect digestive DNase with a highly alkaline pH optimun.Insect Biochem Mol Biol,2002,32:255-263.
    [99]Coux F,Vachon V,Rang C,et al.Role of interdomain salt bridges in the pore-forming ability of the Bacillus thuringiensis toxins Cry1Aa and Cry1Ac.The Journal of biological chemistry,2001,276(38):35546-35551.
    [100]Ginalski,K.Comparative modeling for protein structure prediction.Curt Opin Struct Biol,2006,16:172-177.
    [101]Al-Lazikani B,Jung J,Xiang Z,et al.Protein structure prediction.Curr Opin in Chem Biol,2001,5:51-56.
    [102]Tramontano A.Homology modeling with low sequence identity.Methods,1998,14(3):293-300.
    [103]Du L,Li MY,You Q,et al.A novel structure-based virtual screening model for the hERG channel blockers.Biochem Biophys Res Commun.2007,355(4):889-894.
    [104]Bystroff C,Baker D.Prediction of local structure in Proteins using a library of sequence-structure motisf.J Mol Biol,1998,281:565-577.
    [105]Li MY,Lu JF,Xia L.Receptor-based molecular modeling study on antagonist-bound human α1A,α1B and α1D-adrenoceptors.Acta Chimica Sinica,2005,63(20):1875-1883.
    [106]Carugo O.A normalized root-mean-square distance of comparing protein three-dimensional sturetures.Protein Science,2001,10(7):1470 -1473.
    [107]Gutierrez P,Alzate O,Orduz S.A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp.medellin Cry 11Bb toxin deduced by homology modelling.Mere Inst Oswaldo Cruz,2001,96(3):357-64.
    [108]Zhao XM,Xia LQ,Wang FX,et al.The theoretical 3D structure of Bacillus thringiensis Cry5Ba.J Mol Model,2008,14:843-848.
    [109]许金钩,王尊本.荧光分析方法.北京:科学出版社,2006:64-85.
    [110]徐家宁,朱万春,张亿华,等.基础化学实验.北京:高等教育出版社,2006:250-258.
    [111]杨培慧,苏章益,陈晓翔.EB荧光探针表征阿霉素及其转铁蛋白复合物与DNA的相互作用.药物分析杂志,2006,26(8):254-258.
    [112]Spieer EK,Williams KR,Konigsberg WH.T4 gene 32 protein trypsin-generated fragments.Fluorescence measurement of DNA-binding parameters.JBC,1979,254(14):6433-6436.
    [113]Permyakov,EA.Luminescent Spectroscopy of Proteins,CRC Press,1993.
    [114]Bi S,Ding L,Tian Y,et al.Investigation of the interaction between flavonoids and human serum albumin.Journal of Molecular Structure,2004,703(1-3):37-45.
    [115]刘忠渊,徐涛,郑树涛,等.新疆家蚕抗菌肽Cecropin-XJ与细菌DNA相互作用的光谱研究.光谱学与光谱分析,2008,3:118-121.
    [116]Morris GM,Goodsell,DS,Halliday RS.Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function.J Comput Chem,1998,19:1639-1662.
    [117]Moss T.Protein Interactions:Principles and Protocols.Humana Press,2001:310-312.
    [118]van Dijk ADJ,de Vries SJ,Dominguez C,et al.Data-driven docking:HADDOCKs adventures in CAPRI.Proteins:Struc Funct & Bioinformatics,2005,60:232-238.
    [119]de Vries SJ,van Dijk ADJ,Krzeminski M,et al.HADDOCK versus HADDOCK:New features and performance of HADDOCK2.0 on the CAPRI targets.Proteins:Struc Funct &Bioinformatic,2007,69(4):726-733.
    [120]Iwahara J,Iwahara M,Daughdrill GW.The structure of the Dead ringer-DNA complex reveals how AT-rich interaction domains(ARIDs) recognize DNA.EMBO J,2002,21(5):1197-1209.
    [121]Slijper M,Bonvin AM,Boelens R,et al.Refined structure of lac repressor headpiece(1-56)determined by relaxation matrix calculations from 2D and 3D NOE data:change of tertiary structure upon binding to the lac operator.J Mol Biol,1996,259(4):761-773.
    [122]Thompson JD,Higgins DG,Gibson TJ.Using CLUSTAL for multiple sequence alignments.Methods Enzymol,1996,266:383-402.
    [123]Guex N,Peitsch MC.SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling.Electrophoresis,1997,18(15):2714-23.
    [124]DeLano,WL.The PyMOL Molecular Graphics System(2002) DeLano Scientific,San Carlos,CA,USA.
    [125]Ilyin VA,Abyzov A,Leslin CM.Structural alignment of proteins by a novel TOPOFIT method,as a superimposition of common volumes at a topomax point.Protein Science,2004,13:1865-1874.
    [126]Pedretti A,Villa L,Vistoli G.VEGA:a versatile program to convert,handle and viusualize molecular structure on windows-based PCs,J Mol Graph,2002,21:47-49.
    [127]Altschul SF,Gish W,Miller W,et al.Basic local alignment search tool.J Mol Biol,1990,215:403-410.
    [128]Liu XS,Dean DH.Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin.Protein Eng Des Sel,2006,19(3):107-11.
    [129]Schwede T,Kopp J,Guex N,et al.SWISS-MODEL:An automated protein homology-modeling server.Nucleic Acids Res,2003,31(13):3381-3385.
    [130]Arnold K,Bordoli L,Kopp J,et al.The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling.Bioinformatics,2006,22(2):195-201.
    [131]Hypercube.HyperChem Release 7.0 for windows Reference Mannual[M].Hypercube lnc Publication,2002.
    [132]Kawabata T.MATRAS:A program for protein 3D structure comparison.Nucleic Acids Res,2003,31(13):3367-3369.
    [133]Morse RJ.Yamamoto T,Stroud RM.Structure of Cry2Aa suggests an unexpected receptor binding epitope.Structure,2001,9:17-21.
    [134]Rajamohan F,Alzate O,Cotrill JA,et al.Protein engineering of Bacillus thuringiensis d-endotoxin:mutations at domain Ⅱ of Cry1Ab enhance receptor affinity and toxicity towards gypsy moth larvae.Proc Natl Acad Sci USA.1996;93:14338-14343.
    [135]Wu SJ,Koller CN,Miller DL,et al.Enhanced toxicity of Bacillus thuringiensis Cry3A delta-endotoxin in coleopterans by mutagenesis in a receptor binding loop.FEBS Lett,2000,473(2):227-232.
    [136]de Maagd R.A,Weemen-Hendriks M,Stiekema W,et al.Bacillus thuringiensis Delta-Endotoxin Cry1 Hybrid Proteins with Increased Activity against the Colorado Potato Beetle.Appl Environ Microbiol,2001,67(11):5328-5330.
    [137]赵新民,夏立秋,王发祥.苏云金芽孢杆菌毒素Cry1Aa,Cry2Aa,Cry3Aa和Cry4Aa结构的计算机对比分析.化学学报,2008,66(1):325-329
    [138]Ramachandran GN,Ramakrishnan C,Sasisekharan V.Stereochemistry of polypeptide chain configurations,J Mol Biol,1963,7:95-99.
    [139]Eisenberg D,L(u|¨)thy R,Bowie JU.VERIFY3D:assessment of protein models with three-dimensional profiles.Methods Enzymol,1997,277:396-404.
    [140]Nachimuthu S.Protein engineering of δ-endotoxins of Bacillus thuringiensis.Electronic Journal of Biotechnology,2004,7(5):178-188.
    [141]Vachon V,Prefontaine G,Rang C,et al.Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1Aa display altered pore-forming abilities.Appl Environ Microbiol,2004,70(10):6123-6130.
    [142]Nunez V.M,Sanchez J,Lina L,et al.Structural and functional studies of K-helix 5 region from Bacillus thuringiensis Cry1Ab δ-endotoxin.Biochimica et Biophysica Acta,2001,1546:122-131.
    [143]Wu D,Aronson AL Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity.J Biol Chem,1992,267(4):2311-2317.
    [144]Chandra A,Ghosh P,Mandaokar AD,et al.Amino acid substitution in alpha-helix 7 of Cry1Ac delta-cndotoxin of Bacillus thuringiensis leads to enhanced toxicity to Helicoverpa armigera Hubner.FEBS Lett,1999,458(2):175-179.
    [145]Alcantara EP,Alzate O,Lee MK,et al.Role of alpha-helix seven of Bacillus thuringiensis Cry1Ab delta-endotoxin in membrane insertion,structural stability,and ion channel activity.Biochemistry,2001,40(8):2540-2547.
    [146]Lee MK,Jenkins JL,You TH,et al.Mutations at the arginine residues in alpha8 loop of Bacillus thuringiensis delta-endotoxin Cry1Ac affect toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N.FEBS Lett,2001,497(2-3):108-112.
    [147]Liu XS,Dean DH.Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin.Protein Eng Des Sel,2006,19:107-111.
    [148]de Maagd RA,Kwa MS,van der Kiei H,et al.Domain Ⅲ substitution in Bacillus thuringiensis delta-cndotoxin CryⅠA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition.Appl Environ Microbiol,1996,62(5):1537-1543.
    [149]Wolfersberger MG,Chen XJ,Dean DH.Site-directed mutations in the third domain of Bacillus thuringiensis delta-endotoxin CryⅠAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles.Appl Environ Microbiol,1996,62(1):279-282.
    [150]Xia LQ,Wang FX,Ding XZ,et al.The Role of β18-β19 Loop Structure in Insecticidal Activity of Cry1Ac Toxin from Bacillus thuringiensis.Chinese Science Bulletin,2008,53(20):3178-3184.
    [151]Sarvjeet K.Molecular approaches towards development of novel Bacillus thuringiensis biopcsticides.World Journal of Microbiology & Biotechnology,2000,16:781-793.
    [152]Arantes O,Lereclus D.Construction of cloning vectors for Bacillus thuringiensis.Gene, 1991,108(1):115-119.
    [153]Arvidson H,Dunn PE,Stmad S,et al.Specificity of Bacillus thuringiensis for lepidopteran larvae:factors involved in vivo and in the structure of a purified protoxin.Mol Microbiol,1989,3(11):1533-43.
    [154]Sambrook,Russell J,David W.Molecular Cloning(the third edition).New York:Cold Spring Harbor Laboratory Press,2001.
    [155]Song F,Zhang J,Gu A,et al.Identification of cry1Ⅰ-type genes from Bacillus thuringiensis strains and characterization of a novel cry1Ⅰ-type gene.Appl Environ Microbiol,2003,69(9):5207-11.
    [156]王瑛,白成,温洁.苏云金杆菌晶体与芽饱分离的研究.微生物学报,1980,20(3):285-288.
    [157]Adkins S,Burmeister M.Visualization of DNA in agarose gels and educational demonstrations,Anal Biochem,1996,240(1):17-23.
    [158]Xia L,Sun Y,Ding X,et al.Identification of cry-type genes on 20-kb DNA associated with Cryl crystal proteins from Bacillus thuringiensis.Curr Microbiol,2005,51(1):53-58.
    [159]Yamamoto T,MeLaughlin RE.Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var.kurstaki toxic to the mosquito larva Aedes taeniorhynchus),Biochem BioPhys Res Conunun,1981,103:414-421.
    [160]吴乃虎.基因工程原理(第二版).北京:科学出版,2006.
    [161]Hunter RJ.Zeta Potential in Colloid Science:Principles and Applications.London:Academic Press,1981.
    [162]曾晓慧,张宏宇,喻子牛,等.苏云金芽孢杆菌对甜菜夜蛾幼虫毒力的生物测定方法.中国生物防治,1998,14(4):172-175.
    [163]邵宗泽,喻子牛.昆虫中肠液性质对苏云金芽孢杆菌伴孢晶体毒力的影响.昆虫学报,2002,45(3):384-390.
    [164]Padilla C,Pardo-Lopez L,de la Riva G,et al.Role of tryptophan residues in toxicity of Cry1Ab toxin from Bacillus thuringiensis.Appl Environ Microbiol,2006,72(1):901-907.
    [165]Pusztai M,Fast P,Gringorten L,et al.The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals.Biochem J,1991,273:43-47.
    [166]孙运军,袁志明,夏立秋,等.苏云金芽孢杆菌伴孢晶体中20-kb DNAs上染色体点基因的鉴定.湖南师范大学自然科学学报,2007,30(4):114-118.
    [167]吴秋华,王春,王志,等.应用荧光猝灭法研究尼莫地平与牛血清白蛋白的相互作用.光 谱学与光谱分析,2007,27(11):2317-2320.
    [168]Bradford MM,A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding.Anal Biochem,1976,72:248-254.
    [169]McGhee JD,von Hippel PH.Theoretical aspects of DNA-protein interactions:Cooperative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice.J Mol Biol,1974,86:469-489.
    [170]Xie MX,Long M,Liu Y,et al.Characterization of the interaction between human serum albumin and morin.Biochimica Biophysica Acta,General Subjects,2006,1760:1184-1191.
    [171]LePecq JB,Paoletti C.A fluorescent complex between ethidium bromide and nucleic acids.Physical-chemical characterization.J Mol Biol,1967,27(1):87-106.
    [172]Kelly RC,Jensen DE,von Hippel.DNA melting proteins.The Journal of Biological Chemistry,1976,251(22):7240-7250.
    [173]江崇球,贺吉香,王金山.EB荧光探针法研究多粘菌素B与DNA的作用方式.光谱学与光谱分析,2002,22(1):103-106.
    [174]Morris MG,Goodsell DS,Halliday RS,et al.Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function.J Comput Chem,1998,19:1639-1662.
    [175]Lu XJ,Olson WK.3DNA:a software package for the analysis,rebuilding and visualization of three-dimensional nucleic acid structures Nucleic Acids Research,2003,31(17):5108-5121.
    [176]Tsuchiya Y,Kinoshita K,Nakamura H.PreDs:a server for predicting dsDNA-bmding site on protein molecular surfaces.Bioinformatics,2005,21:1721-1723.
    [177]Wang CX,Shi YY,Zhou F,et al.Thermodynamic Integration Calculations of Binding Free-Energy Difference for Gly-169 Mutation in Subtilisin BPN.Proteins,1993,15:5-9.
    [178]Fraczkiewicz R,Braun W.Exact and Efficient Analytical Calculation of the Accessible Surface Areas and Their Gradients for Macromolecules.J Comp Chem,1998,19:319-333.
    [179]Dominguez C,Boelens R,Bonvin AM.HADDOCK:a protein-protein docking approach based on biochemical or biophysical information.J Am Chem Soc,2003,125(7):1731-1737.
    [180]Anderson WF,Ohlendorf DH,Takeda Y,et al.Structure of the cro repressor from bacteriophage larnbda and its interaction with DNA.Nature.1981,290(5809):754-758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700