用户名: 密码: 验证码:
转基因水稻、大豆对根际微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
14年来,全球转基因作物的种植带来了巨大的经济、生态和社会效益。但是,转基因作物给人类带来巨大的利益的同时也存在潜在的环境安全风险。水稻和大豆是世界上最为重要的粮食作物和经济作物,我国较早开展了抗病虫转基因大豆和水稻的研究,全面准确地评价转基因水稻和大豆的环境安全性是进行商业化种植的前提保证。本文针对转基因抗虫水稻和抗真菌病害大豆对根际微生物的影响,通过常规培养计数、DGGE分析及荧光蛋白标记等手段,研究了转基因植株对土壤微生物、转基因微生物对作物及环境微生物之间的影响,并建立了以不动杆菌为指示菌的外源基因水平转移体系,主要结果如下:
     1、转基因抗病大豆和转基因抗虫水稻对根际微生物群落的影响:
     结合传统的平板计数法和变性梯度凝胶电泳分析连续两年对田间种植的转chi + rip抗病大豆G0431、G0433及其各自的亲本非转基因大豆黑农35、吉林30和温室内种植的转cry1Ac+ sck水稻MF86及其亲本非转基因水稻明恢86的根际土壤可培养细菌(包括芽胞杆菌、荧光假单胞菌)、真菌、放线菌进行平板计数和群落结构分析。结果显示,时间变化是造成根际可培养微生物数量及土壤细菌和真菌群落结构变化的主要因素,而同一时间内转基因大豆、转基因水稻和其各自亲本对照非转基因大豆和水稻根际土壤的的可培养微生物数量以及细菌和真菌群落结构之间并无显著不同。2008年,大豆根际土壤细菌群落多样性指数为5.32-5.37,群落分布均匀度指数为0.91-0.95;大豆根际土壤真菌群落多样性指数为4.78-4.91,群落分布均匀度指数为0.81-0.89;水稻根际土壤细菌群落多样性指数为5.11-5.16,群落分布均匀度指数为0.93-0.99;水稻根际土壤真菌群落多样性指数为4.78-5.14,群落分布均匀度指数为0.66-0.95;2009年,大豆根际土壤细菌群落多样性指数为5.40-5.45,群落分布均匀度指数为0.93-0.97;大豆根际土壤真菌群落多样性指数为5.21-5.26,群落分布均匀度指数为0.96-1.00;水稻根际土壤细菌群落多样性指数为5.28-5.35,群落分布均匀度指数为0.88-0.95;水稻根际土壤真菌群落多样性指数为4.99-5.39,群落分布均匀度指数为0.67-0.98。以上结果说明几丁质酶和核糖体失活蛋白双价基因导入到大豆中以及Bt杀虫蛋白基因cry1Ac和sck双价基因导入到水稻中并没有对大豆和水稻根际可培养细菌、真菌和放线菌的数量以及细菌和真菌的群落结构产生显著影响。
     2、转基因水稻外源基因水平转移检测体系的建立
     为了明确转基因水稻中外源基因是否会向土壤微生物发生转移,建立了以目前已知自然状态下接受外源DNA能力最强的不动杆菌Acinetobacter baylyi ADP1为指示菌的外源基因水平转移检测体系。Acinetobacter baylyi ADP1能够以较强的能力将外源DNA整合到自己的基因组上,以超声波破碎处理的转基因水稻MF86的基因组片段转化Acinetobacter baylyi ADP1,对5.0×106个转化子进行PCR检测,未发现含有Bt cry基因的转化子。由此推测,转基因水稻中的外源基因不会或者只可能以低于10-6的频率能够转移到土壤微生物中去。
     3、苏云金芽胞杆菌工程菌发酵上清液中重组质粒的水平转移检测:
     Bt工程菌发酵后期,细胞裂解,重组质粒随着发酵液进入环境,这些携带外源基因的质粒能否水平转移至常见的微生物体内,对环境微生物产生不良影响是Bt工程菌环境安全评价的重要方面。经PCR和大肠杆菌热激转化检测证实重组的质粒DNA随着菌体的裂解进入到发酵上清液中。以提取自静置不同时间处理的苏云金芽胞杆菌工程菌HD73(pSTK)发酵上清液中的DNA以及相应的过滤除菌的发酵上清液分别转化不动杆菌Acinetobacter baylyi ADP1、苏云金芽胞杆菌HD73、枯草芽胞杆菌Bs168以及蜡样芽胞杆菌Bc14579的感受态细胞,未得到阳性转化子。研究结果表明:即使在人为的高浓度条件下,这些残留的重组质粒和外源基因也不会或只可能以低于10-8的频率转移到其他的环境微生物中去,从这个角度再次证明Bt工程菌对环境微生物是安全的。
     4、HD73(pSTK-gfp)进入水稻体内研究:
     为了检测Bt工程菌能否从根际进入植物体内,本文用绿色荧光蛋白标记苏云金芽胞杆菌HD73,得到了gfp标记的HD73(pSTK-gfp);在激光共聚焦显微镜下观察,在细菌生长的任何时期都产生绿色荧光。接种HD73(pSTK-gfp)于水稻幼苗根际后,结合平板计数法和激光共聚焦显微镜技术,在常规水稻植株体内没有检测到经过gfp基因标记的苏云金芽胞杆菌工程菌,说明Bt工程菌在环境中的扩散能力是有限的,从这个层面证实了它在田间的使用是安全可靠的。
The consistent and substantial, economic, environmental and welfare benefits were generated from biotech crops over the last fourteen years. However, at the same time, potential risk to environment originated from transgenic crops is existed. Rice and soybean are two important food and economics crops. Study of insect-resistant rice and disease-resistant soybean was developed earlier in domestic. Comprehensive and exactly environmental safety assessment of transgenic soybean and rice was important guarantee of commercial plantantion. Classical counting, DGGE and fluorescence labeling were used to investigate the effect of both transgenic crops and genetically engineered Bacillus thuringiensis strain on native microbes in the soil. Furthermore, a detection system of horizontal transfer of foreign gene was established by Acinetobacter baylyi ADP1 as indicator.
     1. Effects of the community structure of microbes in rhizosphere soils of transgenic soybean and rice:
     G0431 and G0433 were genetically modified soybean by transformation of two anti-fungus genes,“chi”(chitinase gene from bean) and“rip”(barley ribosome-inactivating protein gene) into Heinong 35 and Jilin30 natural strain, respectively, and MF86 was genetically modified rice by transformation of two insecticidal genes, cry1Ac (from Bacillus thuringiensis) and sck (modified Cowpea Trypsin Inhibitor gene) into Minghui 86 natural strain. Classical plate counting and denaturing gradient gel electrophoresis were executed to analyze the numbers of culturable microbes in rhizosphere soil and the community structure of bacteria and fungi. The results showed that there was no significant difference between transgenic crops and their host plant in the number of the culturable soil microorganism. Moreover, the results of cluster analysis of DGGE profile of bacteria and fungus indicated that the time was the main factor which affected the community structure in rhizosphere soil microbes. In the year of 2008, the Shannon’s index of the bacterial community of the soybean rhizosphere was 5.32-5.37 and the evenness index was 0.91-0.95; the Shannon’s index of the fungi community of the soybean rhizosphere was 4.78-4.91and the evenness index was 0.81-0.89; the Shannon’s index of the bacterial community of the rice rhizosphere soil was 5.11-5.16 and the evenness index was 0.93-0.99; the Shannon’s index of the fungi community of the rice rhizosphere was 4.78-5.14, and the evenness index was 0.66-0.95. In the year of 2009, the Shannon’s index of the bacterial community of the soybean rhizosphere was 5.40-5.45 and the evenness index was 0.93-0.97; the Shannon’s index of the fungi community of the soybean rhizosphere was 5.21-5.26 and the evenness index was 0.96-1.00; the Shannon’s index and evenness index of the bacteria community of the rice rhizosphere soil were 5.28-5.35 and 0.88-0.95, respectively; while the Shannon’s index and evenness index of the fungi community of the rice rhizosphere soil were 4.99-5.39 and 0.67-0.98. In conclusion, there was no remarkable difference in the rhizosphere soil between the transgenic and non-transgenic crops in the numbers of culturable bacteria (including Bacillus and fluorescent Pseudomonas), fungi and actinomycetes. All the results demonstrated that both transgenic soybean and rice tested were no significant effect to native microorganisim in the field.
     2. Detection system of horizontal transfer for foreign gene using Acinetobacter baylyi ADP1 as indicator.
     An analytical method was established using Acinetobacter baylyi ADP1 as indicator to investigate whether the foreign gene from rice could be transferred into native microbes in soil. Acinetobacter baylyi ADP1 integrates foreign DNA into the chromosome with a high effficiency. PCR identification of 5.0×10~6 transformants obtained by transforming Acinetobacter baylyi ADP1 with sonicated genomic DNA of transgenic rice MF86, no positive transformant containing Bt cry gene fragment was found. This result indicated that Bt cry gene, one of foreign gene from transgenic rice could not be transferred into Acinetobacter baylyi ADP1 or the transformation frequency was only lower than 10-6 possibly.
     3. Dectection of the horizontal transfer of recombinant plasmid in fermentation supernatant of engineered Bacillus thuringiensis strain:
     In the anaphase on the fermentation, after cell lysis, the recombinant plasmid DNA in engineered Bacillus thuringiensis strain entered supernatant, and was confirmed by both PCR and transformation. It was an important aspect to evaluate the environmental safety of engineered Bt, whether the plasmid haboring foreign gene could transfer into familiar microbes to lead to adverse influence. There was no positive transformant after the different strains were transformed with DNA prepared from fermentation supernatant and sterile fermentation supernatant that treated with different placement time. The results indicated that the recombined plasmid harboring foreign gene from B. thuringiensis engineered strain couldn’t transfer into other environmental microbes or the transformation frequency was only lower than 10-8 possibly, and this conclusion demonstrated again that B. thuringiensis engineered strain is safe.
     4. Monitoring of spread of B. thuringiensis engineered strain into rice plant:
     In order to detect if engineered Bacillus thuringiensis can enter the interior rice through root, a gfp-labeled B. thuringiensis strain HD73 (pSTK-gfp) was constructed. Green fluorescence was observed all through the life cycle of HD73 (pSTK-gfp) under the laser scanning confocal microscope (LSCM). Classical plate counting and LSCM were used to analyze the HD73 (pSTK-gfp) after inoculating into the root of the rice (Nipponbare). There were no positive strain (HD73-pSTK-gfp) detected from inner of the rice. The results showed that the spread ability of engineered Bt was very limited. So, we could conclude that B. thuringiensis engineered strain was safe in this level.
引文
1.白耀宇,蒋明星,程家安,王敦. (2006).转Bt cry1Ab基因水稻对稻田弹尾虫种群数量的影响.应用生态学报, 17 (5), 903-906.
    2.白耀宇,蒋明星,程家安. (2005a).转Bt基因水稻对两种弹尾虫及尖钩宽黾蝽捕食作用的影响.昆虫学报, 48 (1) , 42-47.
    3.白耀宇,蒋明星,程家安(2005b).转Bt cry1Ab基因水稻花粉对中华草蛉成虫产卵和寿命的影响.植物保护学报, 32 (3), 1-6.
    4.冯道荣,许新萍,卫剑文,李宝健,杨祁云,朱小源. (1999).使用双抗真菌蛋白基因提高水稻抗病性的研究.植物学报, 41 (11), 1187-1191.
    5.郭玉双,张艳菊,朱延明,李杰,柏锡,张淑珍,等.(2006).转几丁质酶和核糖体失活蛋白双价基因大豆的获得与抗病性鉴定.作物学报, 32 (2), 841-1847.
    6.贾乾涛,石尚柏,杨长举,彭于发.(2005).转Bt基因水稻生长期几种重要成分含量的变化研究.中国农业科学, 38 (10), 2002-2006.
    7.姜永厚,傅强,程家安,叶恭银,白耀羽,张志涛.转Bt基因水稻对二化螟绒茧蜂生物学特性的影响.昆虫学报, 2004, 47 (1), 124-129.
    8.焦晓国,崔旭红,张国安. (2006). Bt水稻对田间非靶标害虫种群动态的影响.昆虫知识, 43(6), 774-777.
    9.刘琦,李希臣,刘昭军,李铁,雷勃钧. (2008).抗草甘膦转基因大豆基因漂移的研究Ι大豆风媒介传粉的基因漂移研究.黑龙江农业科学, 1, 14-16.
    10.刘雨芳,贺玲,汪琼,胡斯琴,刘文海,陈康贵,等. (2006).转cry1Ac/sck基因抗虫水稻对稻田寄生蜂群落影响的评价.昆虫学报, 49 (6) , 955-962.
    11.刘雨芳,苏军,尤民生,汪琼,胡斯琴,刘文海,等. (2005).转基因抗虫水稻对水稻害虫群落的影响.昆虫学报, 48 (4) , 544-553.
    12.刘志诚,叶恭银,胡萃, Swapan K.D. (2003a).转cry1Ab/cry1Ac基因籼稻对稻田节肢动物群落影响.昆虫学报, 46 (4) , 454-465.
    13.刘志诚,叶恭银,傅强,张志涛,胡萃. (2003b).转cry1Ab基因水稻对拟水狼蛛捕食作用间接影响的评价.中国水稻科学, 17 (2), 175-178.
    14.吕晓波,王宏燕,刘琦,赵光,李希臣,徐广惠,等. (2009).抗草甘膦转基因大豆(RRS)在黑土生态系统种植的安全性研究.大豆科学, 28 (2), 260-265.
    15.戎俊,宋志平,苏军,夏辉,王锋,卢宝荣. (2006). Bt/CpTI转基因稻及其非转基因亲本对照在间隔种植条件下的转基因漂移.生物多样性, 14 (4), 309-314.
    16.舒庆尧,叶恭银,崔海瑞,项友斌,高明尉. (1998).转基因水稻“克螟稻”选育.浙江农业大学学报, 24 (6), 579-580.
    17.苏宁,万向元,翟虎渠,万建民. (2007).功能型水稻研究现状和发展趋向.中国农业科学, 40 (3), 433-439.
    18.苏军,胡昌泉,翟红利,颜静宛,陈在杰,王锋. (2003).农杆菌介导籼稻明恢高效稳定转化体系的建立.福建农业学报,,18 (4) ,209-213.
    19.孙彩霞,陈利军,武志杰,张玉兰,张丽莉. (2003).种植转Bt基因水稻对土壤酶活性的影响.应用生态学报, 14 (12) , 2261-2264.
    20.王广君. (2005).高效广谱苏云金芽孢杆菌工程菌的构建及杀虫晶体蛋白的研究.博士学位论文.中国农业科学院.
    21.王洪兴,陈欣,唐建军,叶庆富,王忠华. (2004).转Bt基因水稻秸秆降解对土壤微生物可培养类群的影响.生态学报, 24 (1), 89-94.
    22.王岫芳.(2006).转基因大豆的应用与安全性的思考.大豆通报. 2: 9-10.
    23.王忠华,倪新强,徐孟奎,舒庆尧,夏英武. (2001). Bt水稻“克螟稻”花粉对家蚕生长发育的影响.遗传, 23 (5) , 463-466.
    24.王忠华,舒庆尧,崔海瑞,徐孟奎,谢小波,夏英武. (2002). Bt转基因水稻米粉对家蚕生长发育及中肠亚显微结构的影响.中国农业科学, 35 (6), 714-718.
    25.吴奇,彭德良,彭于发. (2008).抗草甘膦转基因大豆对非靶标节肢动物群落多样性的影响.生态学报, 28 (6), 2622-2628.
    26.吴建峰,林先贵. (2003).土壤微生物在促进植物生长方面的作用.土壤, 1, 18-21.
    27.吴伟祥,叶庆富,闵航,陈华儿. (2003).克螟稻秸秆cry1Ab基因表达产物对土壤生物学活性的影响.土壤学报, 40 (4), 606-612.
    28.武长剑,范云六.水稻广亲和品种“02428”抗除草剂转基因植株的获得. (1994).农业生物技术学报, 2 (2), 32-38.
    29.肖能文,戈峰,刘向辉. (2005). Bt毒蛋白Cry1Ac在人造土壤中对赤子爱胜蚓毒理及生化影响.应用生态学报, 16 (8), 1523-1526.
    30.徐晓宇,叶庆富,吴伟祥,闵航. (2004).转Bt基因“克螟稻”秸秆还田对稻田厌氧微生物种群和酶活性的影响.植物营养与肥料学报, 10 (1) , 63-67.
    31.闫贵欣. (2009).对金龟甲科、叶甲科害虫高毒力苏云金芽胞杆菌杀虫基因及工程菌的研究.博士学位论文,中国农业科学院.
    32.杨庆文. (2003).转基因水稻的生物安全性问题及其对策.植物遗传资源学报, 4 (3) , 261-264.
    33.袁志东,姚洪渭,叶恭银,胡萃. (2006).转Bt基因水稻花粉对家蚕不同品种幼虫的生存分析.蚕桑通报, 37 (3), 23-27.
    34.赵志辉,杨立桃,艾晓杰,张大兵,邹思湘. (2006).转基因抗草苷膦大豆对大鼠生理代谢的影响及外源基因水平转移研究.南京农业大学学报, 29 (1) , 77-80.
    35.周思军,李希臣,刘昭军,刘丽艳,杨庆凯. (2001).通过农杆菌介导法将Bt (cryIA)基因导入大豆.大豆科学, 20 (3), 157-162.
    36. Abd El-Haleem D. (2003). Acinetobacter : Environmental and biotechnological applications. African Journal of Biotechnology, 2, 71-74.
    37. Abud S., de Souza P.I., Vianna G.R., Leonardecz E., Moreira C.T., Faleiro F.G., et al. (2007). Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil. Genetics andMolecular Research, 6 (2), 445-452.
    38. Amann R.I., Ludwig W., & Schleifer K.H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143-169.
    39. Appenzeller L.M., Munley S.M., Hoban D., Sykes G.P., Malley L.A., & Delaney B. (2008). Subchronic feeding study of herbicide–tolerant soybean DP-356φ43-5 in Sprague–Dawley rats. Food and Chemical Toxicology, 46, 2201-2213
    40. Barbe V., Vallenet D., Fonknechten N., Kreimeyer A., Oztas S, Labarre L., et al. (2004). Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Research, 32(19):5766-5779.
    41. Barloy F., Lecadet M.M., & Delecluse A. (1998). Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Gene, 211, 293-299.
    42. Brake D.G., & Evenson D.P. (2004). A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development. Food and Chemical Toxicology, 42(1), 29-36
    43. Cao J., Duan X.L., McElroy & Wu R. (1992). Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Reports, 11, 586-591
    44. Carr E.L., K?mpfer P., Patel B.K., Gürtler V., & Seviour R.J. (2003). Seven novel species of Acinetobacter isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 53(Pt 4), 953-963.
    45. Chakravorty S., Helb D., Burday M., Connell N., & Alland D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69(2), 330–339.
    46. Huang W.E., Wang H., Zheng H., Huang L., Singer A.C., Thompson I., et al. (2005). Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection Of salicylate. Environmental Microbiology, 7, 1339–1348.
    47. Crickmore N.D., Zeigler R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., et al. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 807–813.
    48. Da Mota F.F., Gomes E.A., Marriel I.E., Paiva E., & Seldin L. (2008). Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. Journal of Microbiology and Biotechnology, 18(5), 805-814.
    49. Dams E., Hendriks L., Van de Peer Y., Neefs J.M., Smits G., Vandenbempt I., et al. (1988). Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Research , 16 Suppl, r87-173.
    50. Datta S.K., Peterhans A., Datta K., Potrykus I., & Potrykus I. (1990). Genetically engineered fertileindica-rice recovered from protoplasts. Nature Biotechnology , 8, 736 -740.
    51. Datta S.K., Datta K., Soltanifar N., Donn G., & Potrykus I. (1992). Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Molecular Biology, 20, 619-629.
    52. De Block M., De Brouwer D., & Tenning P. (1989). Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants. Plant Physiology, 91(2), 694-701.
    53. de Souza F.A., Kowalchuk G.A., Leeflang P., van Veen J.A., & Smit E. (2004). PCR-denaturing gradient gel electrophoresis profiling of inter- and intraspecies 18S rRNA gene sequence heterogeneity is an accurate and sensitive method to assess species diversity of arbuscular mycorrhizal fungi of the genus Gigaspora. Applied Environmental Microbiology, 70(3), 1413-1424.
    54. Delannay X., Bauman T.T., Beighley D.H., Buettner M.J., Coble H.D, DeFelice M.S., et al. (1995) Yield evaluation of a glyphosate-tolerant soybean line after treatmentwith gyphosate. Crop Science, 35, 1461-1467.
    55. Deni J., Message B., Chioccioli M., & Tepfer D. (2005). Unsuccessful search for DNA transfer from transgenic plants to bacteria in the intestine of the tobacco horn worm, Manduca sexta. Transgenic Research, 14(2), 207-215.
    56. Dhir S.K., Dhir S., Savka M.A., Belanger F., Kriz A.L., Farrand S.K., et al. (1992). Regeneration of transgenic soybean (Glycine max) plants from electroporated protoplasts. Plant Physiology, 99(1), 81-88.
    57. Domon E., Takagi H., Hirose S., Sugita K., Kasahara S., Ebinuma H., et al. (2009). 26-Week oral safety study in macaques for transgenic rice containing major human T-cell epitope peptides from Japanese cedar pollen allergens. Journal of agricultural and food chemistry, 57(12), 5633-5638.
    58. Donegan K.K., Palm C.J., Fieland V.J., Porteous L.A, Ganio L.M., Schaller D.L., et al. (1995). Changes in levels, species, and DNA finger prints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis subp. kurstaki endotoxin. Applied Soil Ecology, 2(2), 111-124.
    59. Donegan K.K., Schaller D.L., Stone J.K., Ganio L.M., Reed G., Hamm P.B. (1996). Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionis endotoxin. Transgenic Research, 5(1), 25-35.
    60. Dowling D.N. O'Gara F. (1994). Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends in Biotechnology, 12(4), 133-141.
    61. Dufourmantel N., Tissot G., Goutorbe F., Gar?on F., Muhr C., Jansens S., et al. (2005). Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Molecular Biology , 58, 659-668.
    62. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., et al. (2005). Diversity of the human intestinal microbial flora. Science,308: 5728.
    63. Edwards D.L., Payne J., Soares G. (1988). Novel isolates of Bacillus thuringiensis having Activity against Nematodes. European Patent Application, 303-426.
    64. van Elsas J. D., Duarte G. F., Rosado A. S., Smalla K. (1998). Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. Journal of Microbiological Methods, 32 , 133-154.
    65. Fischhoff D.A., Bowdisch K.S., Perlak F.J., Marrone P.G., Mc-Cormick S.H., Niedermeyer J. G., et al. (1987). Insect tolerant transgenic tomato plants. Biotechnology, 5, 807-813.
    66. Fisher S.G., Lerman L.S. (1983). DNA fragments differing by single base-pair substitutions areseparated in denaturing gradient gels electrophoresis:correspondence with melting theory. Proceedings of the National Academy of Sciences of the United States of America,80, 1579-1583.
    67. Friedrich A., Hartsch T., Averhoff B. (2001). Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Applied Environmental Microbiology, 67(7), 3140-3148.
    68. Fujimoto H., Itoh K., Yamamoto M., Kyozuka J., & Shimamoto K. (1993). Insect resistant generated by introduction of a modified -endotoxin gene of Bacillus thuringiensis. Biotechnology, 11(10), 1151-1155.
    69. Gao P., Bai X., Yang L., Lv D., Li Y., Cai H., et al. (2010). Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta, 231(5), 991-1001.
    70. Gebhard F., & Smalla K. (1998). Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Applied Environmental Microbiology, 64(4), 1550-1554.
    71. Gill S.S., Cowles E.A., & Pietrantonio P.V. (1992). The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology, 37, 615–636.
    72. Gomes N.C., Fagbola O., Costa R., Rumjanek N.G., Buchner A., Mendona-Hagler L., et al. (2003). Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Applied Environmental Microbiology, 69(7), 3758-3766.
    73. Hammond B.G., Vicini J.L., Hartnell G.F., Naylor M.W., Knight C.D., Robinson E.H., et al. (1996). The feeding value of soybeans fed to rats, chickens, catfish and dairy cattle is not altered by genetic incorporation of glyphosate tolerance. The Journal of Nutrition, 126(3), 717-727.
    74. Hinchee M.A.W., Connor-Ward D.V., Newell C.A., McDonnell R.E., Sato S.J., Gasser C.S., et al. (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology, 6, 915-922.
    75. Horton T.R., & Bruns T.D. (2001). The molecular revolution in ectomycorrhizal ecology : Peeking into the black-box. Molecular Ecology, 10, 1855-1871.
    76. Howell C.R., & Stipanovic R.D. (1979). Control of Rhizoctonia solani on cotton seedlings withPseudomonas fluorescens and with an antibiotic produced by the bacteria. Phytopathology, 69(5), 480-482.
    77. Huang W.E., Huang L., Preston G.M., Naylor M., Carr J.P., Li Y., et al. (2006). Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp. ADP1. The Plant Journal, 46, 1073-1083.
    78. Juni E. (1972). Interspecies Transformation of Acinetobacter: genetic evidence for a ubiquitousgenus. Journal of Bacteriology,112(2), 917-931.
    79. Juni E., & Heym G. A. (1964). Pathways for biosynthesis of a bacterial capsular polysaccharide. IV. Capsule resynthesis by decapsulated resting-cell suspensions. Journal of Bacteriology, 87, 461-467.
    80. Juni E., & Janik A. (1969). Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). Journal of Bacteriology, 98, 281-288.
    81. Kaiser J. (1996). Agribiotechnology: Pests Overwhelm Bt Cotton Crop. Science , 273, 423.
    82. Kay E., Vogel T.M., Bertolla F., Nalin R., & Simonet P. (2002). In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Applied Environmental Microbiology, 68(7), 3345-3351.
    83. Kim M.C., Ahn J.H., Shin H.C., Kim T., Ryu T.H., Kim D.H., et al. (2008). Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. Journal of Microbiology and Biotechnology, 18(2), 207-218.
    84. Kim S.E., Moon J.S., Kim J.K., Choi W.S., Lee S.H., & Kim S.U. (2010). Investigation of possible horizontal gene transfer from transgenic rice to soil microorganisms in paddy rice field. Journal of Microbiology and Biotechnology, 20(1), 187-192.
    85. Kim T.W., Lee J.H., Kim S.E., Park M.H., Chang H.C., & Kim H.Y. (2009). Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. International Journal of Food Microbiology, 131(2-3), 265-271.
    86. Klier A., Bourgouin C., & Rapoport G. (1983). Mating between Bacillus subtilis and Bacillus thuringiensis and transfer of cloned crystal genes. Molecular and General Genetics , 191: 256-262.
    87. Knowles B.H. (1994). Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. Advances in Insect Physiology, 24, 275–308.
    88. Kok R.G., Young D.M., & Ornston L.N. (1999). Phenotypic expression of PCR-generated random mutations in a Pseudomonas putida gene after its introduction into an Acinetobacter chromosome by natural transformation. Applied Environmental Microbiology, 65(4), 1675-1680.
    89. Kowalchuk G.A., Gerards S., & Woldendrop W. (1997). Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA. Applied Environmental Microbiology, 63(10), 3858-3865.
    90. Lee D.H., Zo Y.G., & Kim S.J. (1996). Nonradioactive method to study genetic profiles of naturalbacterial-communities by PCR-single strand conformation polymorphism. Applied Environment Microbiology, 62, 3112-3120.
    91. Lereclus D., Arantes O., Chaufaux J., & Lecadet M.M. (1989).Transformation and expression of a cloned ?-endotoxin gene in Bacillus thuringiensis. FEMS Microbiology Letters, 60, 211-218.
    92. Li C., Wang H., Zhou L., Zhang Y., Song F., & Zhang J. (2009). Quantitative measurement of pH influence on SalR regulated gene expression in Acinetobacter baylyi ADP1. Journal of Microbiological Methods, 79(1), 8-12.
    93. Li F.D. (1993). Prosperous Areas of Current Soil Microbiology. Acta Pedologica Sinica , 30(3) , 229-236.
    94. Li F.F., Ye G.Y., Wu Q., Peng Y.F., & Chen X.X. (2007). Arthropod abundance and diversity in Bt and non-Bt rice fields. Environmental entomology, 36(3), 646-654.
    95. Li X., Huang K., He X., Zhu B., Liang Z., Li H., et al. (2007). Comparison of Nutritional Quality between Chinese Indica Rice with sck and cry1Ac Genes and Its Nontransgenic Counterpart. Journal of Food Science, 72(6), 420-424.
    96. Liu J., Yan G., Shu C., Zhao C., Liu C., Song F., et al. (2010). Construction of a Bacillus thuringiensis engineered strain with high toxicity and broad pesticidal spectrum against coleopteran insects. Applied Microbiology and Biotechnology, In press.
    97. Liu W.T., Marsh T.L., Cheng H., & Forney L.J. (1997). Characterization of microbial diversity by determinin terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied Environmental Microbiology, 63, 4516-4522.
    98. Liu X.S., & Dean D.H. (2006). Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin. Protein Engineering Design and Selection, 19(3), 107-111.
    99. Lorenz M.G., Reipschlager K., & Wackernagel W. (1992). Plasmid transformation of naturally competent Acinetobacter calcoaceticus in non-sterile soil extract and groundwater. Archives of Microbiology,157, 355-360.
    100. Lydmark P., Almstrand R., Samuelsson K., Mattsson A., S?rensson F., Lindgren P.E., et al. (2007). Effects of environmental conditions on the nitrifying population dynamics in a pilot wastewater treatment plant. Environmental Microbiology, 2007, 9(9), 2220-2233.
    101. Macura J. (1974). Trends and advances in soil microbiology from 1924 to 1974. Geoderma, 1974, 12: 311-329.
    102. Malin C., & Illmer P. (2008). Ability of DNA content and DGGE analysis to reflect the performance condition of an anaerobic biowaste fermenter. Microbiological Research, 163(5), 503-511.
    103. Means N.E., Kremer R.J., & Ramsier C. (2007). Effects of glyphosate and foliar amendments on activity of microorganisms in the soybean rhizosphere. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 42(2), 125-132.
    104. Miller K.M., Ming T.J., Schulze A.D., Withler R.E. (1999). Denaturing gradient gelelectrophoresis (DGGE):a rapid and sensitive technique to screen nucleotide sequence variation in populations. Biotechniques, 27, 1016-1030.
    105. Momma K., Hashimoto W., Ozawa S., Kawai S., Katsube T., Takaiwa F., et al. (1999). Quality and Safety Evaluation of Genetically Engineered Rice with Soybean Glycinin:Analysesof the Grain Composition and Digestibility of Glycinin in Transgenic Rice. Bioscience Biotechnology Biochemistry, 63(2), 314-318.
    106. Muyzer G., & Smalla K. (1998). Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis in microbial ecology. Antonie van Leeuwenhock, 73, 127-141.
    107. Muyzer G., Waal E.C.D., & Uitterlinden A.G. (1993). Profiling pf complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNN. Applied Environmental Microbiology, 59, 695-700.
    108. Muyzer G. (1999). DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2, 317-322.
    109. Nielsen K.M., van Elsas J.D., & Smalla K. (2000). Transformation of Acinetobacter sp. strain BD413 (pFG4-nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Applied Environmental Microbiology, 66, 1237-1242.
    110. Pace N.R. (1996). New perspective on the natural microbial world: molecular microbial ecology. American Society for Microbiology News, 62, 463-470.
    111. Padgette S.R., Kolacz K.H, Delannay X., Re D.B., LaVallee B.J., Tinius C.N., et al. (1995) Development, identification and characterizationof a glyphosate-tolerant soybean line. Crop Science, 35, 1451-1461.
    112. Padgette S.R., Re D.B., Barry G.F., Eichholtz D.E., Delannay X., Fuchs R.L., et al. (1996). New weed control opportunities: development of soybeans with a Roundup Ready gene. Boca Raton: CRC Press.
    113. Padgette S.R., Taylor N.B., Nida D.L., Bailey M.R., MacDonald J., Holden L.R., et al. (1996). The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. The Journal of Nutrition , 126(3), 702-716.
    114. Palmen R., Vosman B., Kok R, van der Zee J.R., & Hellingwerf K.J. (1992). Characterization of transformation-deficient mutants of Acinetobacter calcoaceticus. Molecular Microbiology, 6(13), 1747-1754.
    115. Palmen R., Vosman B., Buijsman P., Breek C.K., & Hellingwerf K.J. (1993). Physiological characterization of natural transformation in Acinetobacter calcoaceticus. Journal of General Microbiology, 139, 295-305.
    116. Patel R.N., Mazumdar S., & Ornston L.N. (1975). Beta-ketoadipate enol-lactone hydrolases I and II from Acinetobacter calcoaceticus. The Journal of Biological Chemistry, 250(16), 6567-6577.
    117. Pontiroli A., Rizzi A., Simonet P., Daffonchio D., Vogel T.M., & Monier J.M. (2009). Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. Applied Environmental Microbiology, 75(10), 3314-3322.
    118. PotéJ., Teresa C.M., Rosselli W., Wildi W., Simonet P., & Vogel T.M. (2010). Leaching and transformability of transgenic DNA in unsaturated soil columns. Ecotoxicology and Environmental Safety, 73(1), 67-72.
    119. Powell J.R., Gulden R.H., Hart M.M., Campbell R.G.., Levy-Booth D.J., Dunfield K.E., et al. (2007). Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Applied and Environmental Microbiology, 73(13), 4365-4367.
    120. Quan R., Hu S., Zhang Z., Zhang H., Zhang Z., & Huang R. (2010). Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal, In press.
    121. Reddy M.S., Ghabrial S.A., Redmond C.T., Dinkins R.D., & Collins G.B. (2001). Resistance to bean pod mottle virus in transgenic soybean lines expressing the capsid polyprotein. Virology, 9(91), 831-838.
    122. Reed G.L., Jensen A.S., Riebe J., Head G., & Duan J.J. (2001). Transgenic Bt potato and conventional insecticidesfor Colorado potato beetle management: comparative efficacy and non-target effects. Entomologia Experimentalis et Applicata, 100, 89-100.
    123. Richter B., & Smalla K. (2007). Screening of rhizosphere and soil bacteria for transformability. Environmental Biosafety Research, 6(1-2), 91-99.
    124. Rong J., Song Z., Su J., Xia H., Lu B.R., & Wang F. (2005). Low frequency of transgene flow from Bt/CpTI rice to its non-transgenic counterparts planted at close spacing. The New Phytologist, 168(3), 559-566.
    125. Rossau R., Valandschoot A., Gillis M., & De Ley J. (1991). Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accomodate the genera Moraxella, Acinetobacter and Psychrobacter and related organisms. International Journal of Systematic Bacteriology, 41, 310-319.
    126. Salehi A., Mohammadi M., Okhovvat S.M., & Omidi M. (2005). Chitinase gene transformation through Agrobacterium and its explanation in soybean in order to induce resistance to root rot caused by Rhizoctonia solani. Communications in agricultural and applied biological sciences, 70(3), 399-406
    127. Sambrook J., Fritsch E.F., & Maniatis T. (1989) . Molecular Cloning: A Laboratory Manual. NewYork: Cold Spring Harbor Laboratory Press.
    128. Schmalenberger A., & Tebbe C.C. (2002). Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbioogyl Ecology, 2002, 40(1), 29-37.
    129. Schr?der M., Poulsen M., Wilcks A., Kroghsbo S., Miller A., Frenzel T., et al. (2007). A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food and Chemical Toxicology, 45, 339-349.
    130. Shimamoto K., Terada R., Izawa T., & Fujimoto H. (1989). Fertile transgenic rice plants regenerated from transformed protoplasts. Nature, 338, 274-276.
    131. Simpson D.J., Fry J.C., Rogers H.J., & Day M.J. (2007). Transformation of Acinetobacter baylyi in non-sterile soil using recombinant plant nuclear DNA. Environmental Biosafety Research, 6(1-2), 101-112.
    132. Siqueira J.F.Jr., R??as I.N., Debelian G.J., Carmo F.L., Paiva S.S., Alves F.R., et al. (2008). Profiling of root canal bacterial communities associated with chronic apical periodontitis from Brazilian and Norwegian subjects. Journals of Endodontics, 2008, 34(12), 1457-1461.
    133. Song X., Liu L., Wang Z., & Qiang S. (2009). Potential gene flow from transgenic rice (Oryza sativa L.) to different weedy rice (Oryza sativa f. spontanea) accessions based on reproductive compatibility. Pest Management Science, 65(8), 862-869.
    134. Stewart C.N. Jr., Halfhill M.D., & Warwick S.I. (2003). Transgene introgression from genetically modified crops to their wild relatives. Natature Reviews Genetics, 4(10), 806-817.
    135. Str?tz M., Mau M., Timmis K.N. (1996). System to study horizontal gene exchange among microorganisms without cultivation of recipients. Molecular Microbiology, 22(2), 207-215.
    136. Taylor W.H., & Juni E. (1961a). Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Characterization of the organism and polysaccharide. Journal of Bacteriology, 81,688-693.
    137. Taylor W.H., & Juni. E. (1961b). Pathways for biosynthesis of a bacterial capsular polysaccharide. II. Carbohydrate metabolism and terminal oxidation mechanisms of a capsule-producing coccus. Journal of Bacteriology, 81, 694-703.
    138. Taylor W.H., & Juni E. (1961c). Pathways for biosynthesis of a bacterial capsular polysaccharide. III. Synthesis from radioactive substrates. The Journal of Biological Chemistry, 236, 1231-1234.
    139. Torsvik V.L., Goksoyr J., & Daae F.L. (1990). High diversity in DNA of soil bacteria. Applied Environmental Microbiology, 56, 782-787.
    140. Torsvik V. L. (1980). Isolation of bacterial DNA from soil. Soil Biology & Biochemistry, 12, 15-21.
    141. Tougou M., Furutani N., Yamagishi N., Shizukawa Y., Takahata Y., & Hidaka S. (2006). Development of resistant transgenic soybeans with inverted repeat-coat protein genes of soybean dwarf virus. Plant Cell Reports, 25, 1213-1218.
    142. Tu J., Ona I., Zang G.Q., Mew T.W., Khush G. S., & Datta S. K. (1998). Transgenic rice variety′IR72′with Xa21 is resistant to bacterial blight . Theoretical and Applied Genetics , 97 (1-2) , 31-36.
    143. Uchimiya H., Fushimi T., Hashimoto H., Harada H., Syono K., & Sugawara Y. (1986). Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice ( Oryza sativa L.) . Molecular and General Genetics, 204, 204-207.
    144. Usuda K., Wada Y., Ishimaru Y., Kobayashi T., Takahashi M., Nakanishi H., et al. (2009). Genetically engineered rice containing larger amounts of nicotianamine to enhance theantihypertensive effect. Plant Biotechnology Journal, 7, 87-95.
    145. Vaneechoutte M., Young D.M., Ornston L.N., De Baere T., Nemec A., Van Der Reijden T., et al. (2006). Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Applied Environmental Microbiology, 72(1), 932-936.
    146. Wang G., Zhang J., Song F., Gu A., Uwais A., Shao T., & Huang D. (2008). Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field. Journal of Applied Microbiology, 105(5), 1536-1543.
    147. Wang G., Zhang J., Song F., Wu J., Feng S., & Huang D. (2006). Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests. Applied Microbiology and Biotechnology, 72(5), 924-930.
    148. Wang Q.M., Bai F.Y., Fungsin B., Boekhout T., & Nakase T. (2010). Proposal of Mingxiaea gen. nov. for the anamorphic basidiomycetous yeast species in the Bulleribasidium clade (Tremellales) based on molecular phylogenetic analysis and description of four novel Mingxiaea species. International Journal of Systematic and Evolutionary Microbiology, In press.
    149. Wang Y., Deng H., Zhang X., Xiao H., Jiang Y., Song Y., et al. (2009). Generation and immunogenicity of Japanese encephalitis virus envelope protein expressed in transgenic rice. Biochemical and Biophysical Research Communications, 380, 292-297.
    150. Williams J.G., Kubelik A.R., Livak K.J. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531-6535.
    151. Woese, C.R. (1987). Bacterial Evolution. Microbiological Reviews, 51(2), 221-271.
    152. Wu W.X., Liu W., Lu H.H., Chen Y.X., Medha D., & Janice T. (2009). Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. Federation of European Microbiological Societies Microbiology Ecology, 67, 93-102.
    153. Xu G.H., & Li Z.G. (1991). Microbial Ecology. Nanjing : Southeast University Press.
    154. Yuk I.H.Y., Wildt S., Jolicoeur M., Wang D.I., Stephanopoulos G. (2002). A GFP - based screen for growth - arrested , recombinant protein - producing cells . Biotechnology Bioengineering , 79, 74 - 82.
    155. Yukui R., Wenya W., Hongxing Z., Fusuo Z., Yinhua J., & Jing G. (2008). Composition and safety analysis of Chinese traditional fermented soybean paste made by transgenic soybean. International Journal of Food Sciences and Nutrition, 12, 1-4.
    156. Zelles L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil:a review. Biology and Fertility of Soils, 29, 111-129.
    157. Zhou J., Ma C., Xu H., Yuan K., Lu X., Zhu Z., et al. (2009). Metabolic profiling of transgenic rice with cryIAc and sck genes: An evaluation of unintended effects at metabolic level by usingGC-FID and GC–MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences,877, 725-732.
    158. Zhou W., Li Y., Zhao B.C., Ge R.C., Shen Y.Z., Wang G., et al. (2009). Overexpressionof TaSTRG gene improves salt and drought tolerance in rice. Journal of plant physiology, 166(15), 1660-1671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700