用户名: 密码: 验证码:
基于Cu/15°YX-LiNbO_3的声表面波滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,多模多频射频前端体积庞大的问题特别突出。小型化宽频带可调声表面波滤波器(SurfaceAcoustic Wave, SAW),由于体积小性能优良等特点,为解决上述问题提供了可能性。
     小型化宽频带可调声表面波滤波器实现的关键在于声表面波技术在高机电耦合系数的压电基片上的应用。本论文将Cu/15oYX-LiNbO3压电基片与声表面波技术相结合,研究声表面波在其上的传播特性,探讨可以实现滤波器的性能,解决其实用化过程中可能遇到的问题。论文的主要内容和创新点如下:
     1.利用标量势场法对横向模进行了理论分析。首先,确定了声波导中存在两种类型的声表面波模态,发现假指电极长度在某些特定值时,两种模态发生耦合。当总线电极宽度可视为半无限大平面,假指电极较短的情况下,高次模态发生能量泄露现象。其次,利用Coupling of Mode (COM)理论分析了横向模的传播特性,定性分析了两种模态的声表面波及漏波之间的耦合规律,通过设置边界条件将集中在孔径区域的能量转移到假指区域,实现了横向漏模的抑制。最后,改变了假指电极长度以及进行图形加权,制作多组谐振器,用实验的方法验证了标量势场分析横向模的有效性。
     2.提出了一种贝塞尔型声表面波滤波器。以Bessel函数为基础设计了通带内具有恒定时延的集中参数滤波器,用声表面波谐振器取代电路中的谐振单元,分析了有限电容比(γ)对滤波器通带及时延的影响,归纳到具有恒定时延通带的宽度取决于基片的机电耦合系数,即基片机电耦合系数越大,可实现的恒时延带宽越宽;进一步利用SimulatedAnnealing的优化法对SAWR的谐振频率及静态电容进行优化,设计出群时延波动小于4纳秒通带为1000±20MHz的滤波器。在上述电路中插入两个理想的Norton变压器,解决了SAWR静态电容比大难以制作的缺点。最后,采用电子束曝光+lift-off+电子束蒸发(Cu电极)在15oYX-LiNbO3制作出中心频率为980MHz的滤波器,其在通带15MHz内,群时延迟波动小于3纳秒的滤波器,证明了该设计方法的有效性。
     3.以椭圆滤波器为基础,设计了任意带宽的声表面波滤波器,克服了一般梯形滤波器在基片确定的情况下滤波器通带固定的缺点,并有效地提高了滤波器的矩形系数。在15oYX-LiNbO3基片上,设计出了相对带宽分别为2%、5%和10%等几组滤波器,并通过半导体加工技术,实现了中心频率为1000MHz、相对带宽为5%以及插入损耗5.3dB的器件。其次基于Cu-/15oYX-LiNbO3超宽带声表面波谐振器,设计了两种可调声表面波滤波器,探讨了滤波器的可调范围,并分析了可变电容对整体滤波器的非线性的影响。
     4.在Cu/15oYX-LiNbO3基片上,借助于COM理论与P矩阵模型建立DMS滤波器设计软件,采用SimulatingAnnealing对DMS的各个结构参数进行优化,设计出了中心频率为850MHz、-3dB带宽高达12%的滤波器。将IDT分成四种不同的周期,以增加谐振模的个数,解决了孔径过长的问题;利用电路并联的拓扑结构,降低了电极的欧姆损耗。最后根据理论优化的结构参数,在Cu/15oYX-LiNbO3基片上制作出了中心频率为860MHz、-3dB相对带宽高达14.2%的器件,证实了滤波器设计模型的有效性。
Surface and bulk acoustic wave (SAW/BAW) filters are now widely used in themobile communication systems for their excellent characteristics, small size and lowinsert loss. Recently, SAW/BAW resonators in combination with variable capacitors(VCs) are applied in tunable RF-filters to relax the complex design of the radiofrequency (RF) front-end of current mobile terminals, which have to support multi-bandand multi-mode operations.
     One of the key techniques to realize tunable SAW filter is piezoelectric materialswith extremely large electromechanical coupling factor applied for SAW resonators.Cu-grating/15oYX-LiNbO3structure brings extremely large piezoelectricity. Based onthe material, we study the character of SAW propagation, how the performance of filtercan be got and the tunable range and nonlinearity character of tunable SAW filter. Someimportant and valuable results which bring forth some new ideas are accomplished andlisted as followings,
     1. Cu/LiNbO3structure has so strong confinement effect in the aperture that thedominant mode decays under the apodizing aperture for the suppression of transversalmodes. By applying scalar potential theory to the IDT expressed as waveguide modelwhich has multiple tracks, characteristic of the transversal modes can be derived. Theresult revealed that setting proper length of dummy electrode makes two transversalmodes coupled or higher transversal modes leaky. Suppression mechanism of transversemodes is assumed that the modes trapped into aperture are coupled with ones intodummy electrodes and they become leaky. Based on these assumptions, these couplingand leaking of transversal modes can be theoretically modeled using coupling-of-model(COM) theory. This model allows simulating energy transfer of each transversal mode.By fabrication of resonators in which shape of its dummy electrodes is changed, thisanalytical method shows efficacy.
     2. A new SAW filter structure with constant group delay in passband is proposed.The bandpass Bessel LC filter is designed, and LC resonators in the filter were replacedby SAW/BAW resonators. It is shown ripples in the group delay could be suppressed by optimal design of SAW/BAW resonators. Norton s first transform was also applied toreduce variation of resonator shunt capacitances. It is shown that flat group delay withthe deviation of3ns is realizable over the frequency range of98015MHz.
     3. A new design technology to flexibly control the passband is proposed with highpiezoelectric materials. A bandpass LC filter is designed based on the traditional ellipticfilter design. We replace the LC resonators with SAW/BAW resonators in this filter andoptimize the design of the resonators to suppress passband ripples generated by finitecapacitance ratio γ. It revealed that filters with different relative bandwidth are easy tobe designed using one piezoelectric substrate. A SAW filter with relative bandwidth of5%is realizable at the center frequency of about1GHz on Cu/15oYX-LiNbO3substrate.The tunable range and IMD2characteristic of two types of tunable filters usingSAW/BAW Resonators and VCs are discussed.
     4. A wide band DMS SAW filter is designed and farbricated withCu/15oYX-LiNbO3substrate. The design-simulator that is supposed the using ofCu-grating/15YX-LiNbO3-substrate structure was built. For the accuracy enhancementabout that design-simulator, parameters needed in that are determined by probativelyfabricated one-port SAW resonators on the Cu-grating/15YXLiNbO3-substratestructure. DMS filters were optimally-designed by using that simulator. As a result, it isshown that the relative-3dB bandwidth more than12%is achievable. However, toolong aperture is needed in that design. In this case, because electrical resistance andresistance loss at interdigital transducer (IDT) become extremely large, that is notsuitable for fabrication. Therefore, the pitch modulation technique was applied for thedesign of IDTs. The pitch modulation technique allows us increasing the number ofdesign variables, and much shorter aperture is achieved by using this technique. Finally,the designed DMS filter was fabricated on Cu-grating/15YX-LiNbO3-substratestructure. The measured result agrees well with the design, and the passband width of14.2%and the minimum insertion loss of1.3dB were obtained at900MHz range.
引文
[1]武以立,邓盛刚,王永德.声表面波原理及其在电子技术中的应用[M].北京:国防工业出版社,1983,44-49.
    [2] M. Buchner, W. Ruile, A. Dietz, et al. FEM analysis of the reflection coeffcient of SAWs in aninfinite periodic array[C]. IEEE Proceeding of Ultrasonic Symposiumuism,1991,371-375.
    [3] U. R osler, D. Cohrs, A. Dietz, et al. Determination of leaky SAW propagation, reflection andcoupling on LiTaO3[C]. IEEE Proceeding of Ultrasonic Symposium,1995,247-250.
    [4] T. Sato and H. Abe. Propagation of longitudinal leaky surface acoustic waves under periodicmetal grating structure on lithium tetraborate[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1998,45(2):394-408.
    [5] P. Ventura, J. Desbois, and L. Boyer. A mixed FEM/analytical model of the electrodemechanical perturbation for SAW and PSAW propagation[C]. IEEE Proceeding of UltrasonicSymposium,1993,205-208.
    [6] P. Ventura, J. M. Hode, and M. Solal. A new efficient combined FEM and periodic Green'sfunction formalism for the analysis of periodic SAW structures[C]. IEEE Proceeding ofUltrasonic Symposium,1995,263-268.
    [7] P. Ventura, J. M. Hodle. A new accurate analysis of periodic IDTs[C]. Built on unconventionalorientation on quart. IEEE Proceeding of Ultrasonic Symposium,1997,139-142.
    [8] K. Hashimoto and M. Yamaguchi. Precise simulation of surface transverse wave devices bydiscrete Green function theory[C]. IEEE Proceeding of Ultrasonic Symposium,1994,253-258.
    [9] K. Hashimoto, G. Endoh and M. Yamaguchi. Coupling-of-modes modelling for fast and precisesimulation of leaky surface acoustic wave devices[C]. IEEE Proceeding of UltrasonicSymposium,1995,251-256.
    [10] K. Hashimoto and M. Yamaguchi. General-purpose simulator for leaky surface acoustic wavedevices based on coupling-of-modes theory[C]. IEEE Proceeding of Ultrasonic Symposium,1996,117-122.
    [11] R. C. Peach. A general Green function analysis for SAW devices[C]. IEEE Proceeding ofUltrasonic Symposium,1995,221-225.
    [12] V. P. Plessky and T. Thorvaldsson. Periodic Green's function analysis of SAW and leaky SAWpropagation in a periodic system of electrodes on a piezoelectric crystal[J]. IEEE Transactionson Ultrasonics, Ferroelectrics and Frequency Control,1995,42(2):280-293.
    [13] J. Koskela, V. P. Plessky, and M. S. Salomaa. Suppression of the leaky SAW attenuation withheavy mechanical loading[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,1998,45(2):439-449.
    [14] A. Isobe, M. Hikita, K. Asai. Propagation characteristics of longitudinal leaky SAW inAl-grating structure[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,1999,46(4):849-855.
    [15] C. C. W. Ruppel, W. Ruile, G. Scholl, et al. Review of models for low-Loss filter design andapplications[C]. IEEE Proceeding of Ultrasonic Symposium,1994,313-324.
    [16] B. A. Auld and D. F. Thompson. Temperature compensation of surface transverse waves forstable oscillator applications[C]. IEEE Proceeding of Ultrasonic Symposium,1987.305-312.
    [17] E. Gavignet, S. Ballandras, and E. Bigler. Theoretical analysis of surface transverse wavespropagating on a piezoelectric substrate under shallow groove or thin metal strip gratings[J].,Journal of Apply Physics,1995,77(12):6228-6233.
    [18] E. J. Danicki. Propagation of transverse surface acoustic waves in rotated Y-cut quartzsubstrates under heavy periodic metal electrodes[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1983,30(5):304-312.
    [19] Odagawa Hiroyuki and Yamanouchi Kazuhiko.10GHz range extremely low-loss ladder typesurface acoustic wave filter[C]. IEEE Proceeding of Ultrasonic Symposium,1998,103-106.
    [20] O. Ikata, Y. Kaneda, S. Ono, et al. Miniaturized SAW package with hermetic performance[C].Proceedings of Third international symposium On Acoustic Wave Devices for Future MobileCommunication Systems,2007,163-166.
    [21] P. Hagan, A. Przadka, C.C.W. Ruppel. Acoustic frontend modules[C]. IEEE InternationalMicrowave symposium,2004,921-922.
    [22] N. K. Yanduru, D. Griffith, S. Bhagavatheeswaran. A WCDMA, GSM/GPRSIEDGE receiverfront-end without interstage SAW filters[C]. IEEE Radio frequency IC symposium,2006,78-82.
    [23] K. Bhattacharjee, A. Shvetsov, S. Zhgoon. Cavityless Wafer Level Packaging of SAWDevices[C]. IEEE Proceeding of Ultrasonic Symposium,2007,1886-1889.
    [24] B. Wilkins, Wafer level packaging of SAWs enables low cost2.5G and3G radio modules[C].Proceedings of Third international symposium On Acoustic Wave Devices for Future MobileCommunication Systems,2007,179-184.
    [25] Robert Aigner. RF Filters for Converged Frontend Architectures in Multi-standard Phones[C].Fourth International Symposium on Acoustic Wave Devices for Future Mobile CommunicationSystems,2010,89-94.
    [26]曹蕾,王小旭,石美宪. LTE引入后多模多频段终端实现面临的挑战与思考[OL].http://tech.c114.net/164/a668472.html,2012.
    [27] Kevin Walsh and Jackie Johnson,3G/4G Multimode Cellular Front End Challenges[OL].http://www.rfmd.com/cs/documents/3G-4G%20Multimode%20HandsetChallengesPart3ImpactonPowerAmplifierDesign.pdf.
    [28] Scott Moffit. RF PA Options for2.3-2.7GHz LTE Bands[OL]. www.rfmd.com/cs/documents/CommSMoffitIWPC_LTE12.pdf.
    [29] LTE Frequency Bands&Spectrum Allocations[OL]. http://www.radio-electronics.com/info/cellulartelecomms/lte-long-term-evolution/lte-frequency-spectrum.php
    [30] P. Bradley, R. Ruby, A. Barfknecht, et al. A5mm×5mm×1.37mm hermetic FBAR duplexerfor PCS handsets with wafer-scale packaging[C]. IEEE Proceeding of Ultrasonic Symposium,2002,925-929.
    [31] R. Aigner. Bulk-acoustic-wave filters for cell phone applications[C]. IEEE InternationalMicrowave Symposium, Workshop Note&Short Courses,2004, WMB-14.
    [32] K. Nakamura and H. Kanbara. Theoretical analysis of a piezoelectric thin film resonator withacoustic quarter-wave multilayers[C]. IEEE Proceeding of Frequency Control Symposium,1998,876-881.
    [33] K. M. Lakin. Thin film resonators and filters[C]. IEEE Proceeding of IEEE UltrasonicSymposium,1999,895-906.
    [34] Y. Satoh, T. Nishihara, T. Yokoyama, et al. Development of piezoelectric thin film resonatorand its impact on future wireless communication systems [J]. Japanese Journal of AppliedPhysics,2005,44:2883-2894.
    [35] T. Nishihara, T. Yokoyama, T. Miyashita, and Y. Satoh. High performance and miniature thinfilm bulk acoustic wave filters for5GHz[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,2002,969-972.
    [36] T. Yokoyama, T. Nishihara, S. Taniguchi, et al. New electrode material for lowloss lowloss andhigh-Q FBAR filters[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,2004,429-432.
    [37] R. Ruby, P. Bradley, Y. Oshmyansky, and A. Chien. Thin film bulk wave acoustic resonators(FBAR) for wireless applications[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,2001,813-821.
    [38] M. Ueda, T. Nishihara, J. Tsutsumi, S. Taniguchi, T. Yokoyama, S. Inoue, T. Miyashita, and Y.Satoh. High-Q resonators with FBAR/SAW technology and their applications[C]. IEEEInternational Microwave Symposium,2005,209-212.
    [39] J. Tsutsumi, M. Iwaki, Y. Iwamoto, et al. A miniaturized FBAR duplexer with reduced acousticloss for the W-CDMA application[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,2005,93-96.
    [40] M. Ueda, T. Nishihara, J. Tsutsumi, T. Yokoyama, et al. High-Q FBAR using AlN piezoelectricthin film and its application for2GHz duplexer[C].35th EM Symposium,2006, pp.35–40.(in Japanese)
    [41] S. Taniguchi, T. Yokoyama, M. Iwaki, et al. An air-gap type FBAR filter fabricated using a thinsacrificed layer on a flat substrate[C]. Third International Symposium on Acoust Wave Devices,2007,93-96.
    [42] J.Mitola III. Software Radios-Survey, Critical Evaluation and Future Directions[C]. IEEETelesystems Conference,1992,15-23.
    [43] H.Harada. Software Defined Radio Prototype toward Cognitive Radio CommunicationSystems[C]. First IEEE International Symposium on New Frontiers in Dynamic SpectrumAccess Networks,2005,539-547.
    [44] R.Bagheri, A.Mirzaei, S.Chehrazi, et al. An800MHz-to-5GHz Software-Defined RadioReceiver in90nm CMOS[C]. IEEE International Solid-State Circuits Conference,2006,1932-1941.
    [45] A.A.Abidi. The Path to the Software-Defined Radio Receiver [J]. IEEE Joural of Solid-StateCircuits,2007,42(5):954-966.
    [46] H.Harada. A Feasibility Study on Software Defined Cognitive Radio Equipment[C]. ThirdIEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2008,1-12.
    [47] J.F.Lu, T.Mueller, T.Mack et al. Configurable RF Receiver Architecture [J]. IEEE MicrowaveMagazine,2004,4(2):75-82.
    [48] L.Maurer, T.Burger, T.Dellsperger, R.Stuhlberger, et al. On the Architectural Design ofFrequency-Agile Multi-Standard Wireless Receivers. Frequenz[C]. The14th IST Mobile andWireless Communications Summit,2005.
    [49] L.Maurer, R.Stuhlberger, C.Wicpalek, G.Haberpeuntner and G.Hueberet. Be Flexible-Highlyflexible digital front–end enhanced CMOS–based RF transceivers [J]. IEEE MicrowaveMagazine,2008,9(2):83-96.
    [50] Murakami Yoshikazu, Ohgihara, Takahiro. A0.5-4.0GHz Tunable Bandpass Filter Using YIGFilm Grown by LPE[J]. IEEE Transactions on Microwave Theory and Techniques,1987,35(12):1192-1198
    [51] K. Entesari and G. M. Rebeiz. RF MEMS, BST and GaAs varactor system-level response incomplex modulation systems[J]. International Journal of RF and Microwave Computer-AidedEngineering,2008,18(1):86–98.
    [52] B. Acikel, T. R. Taylor, P. J. Hansen, et al. A new high performance phase shifter usingBaSrTiO thin films[J]. IEEE Microwave Wireless Component. Letter,12(7):237–239, July2002.
    [53] J. Nath, D. Ghosh, J. P. Maria, et al. An electronically tunable microstrip bandpass filter usingthin-film barium-strontium-titanate (BST) varactors[J]. IEEE Transaction on Microwave andTheory Technology,2005,53(9): pp.2707–2712.
    [54] A. Tombak, J.P. Maria, F. T. Ayguavives, J. Zhang, G. T. Stauf, A. I. Kingon, and A.Mortazawi. Voltage-controlled RF filters employing thin-film barium-strontium-titanate tunablecapacitors[J]. IEEE Transaction on Microwave Theory and Technology,2003,51(2):462–467.
    [55] R.Weigel, D.P.Morgan, J.M.Owens, et al. Microwave Acoustic Materials, Devices andApplications[J], IEEE Transaction on Microwave and Theory Technology,2002,50(3):738-749.
    [56] K.Hashimoto, M.Yamaguchi and Y.Satoh. RF Filters Based on Surface-Acoustic-Wave andFilm-Bulk-Acoustic-Resonator Technologies[C]. Proceedings of the European MicrowaveAssociation,2005,1(1):38-44.
    [57] R.C.Ruby, P.Bradley, Y.Oshmyansky, et al. Thin Film Bulk Acoustic Resonators (FBAR) forWireless Applications[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,2001,813-821.
    [58] T.Nishihara, M.Iwaki, G.Endo, X.Mi, S.Taniguchi, M.Ueda, and Y.Satoh. BAW/SAW/IPDHybrid Type Duplexer with Rx Balanced Output for WCDMA Band I[C]. IEEE InternationalMicrowave Symposium,2008,831-834.
    [59] M.Kadota, T.Nakao, K.Nishiyama, et al. Small Surface Acoustic Wave Duplexer forWide-Band Code-Division Multiple Access Full-Band System Having Good TemperatureCharacteristics[J]. Japanese Journal of Applied Physics,2007,46(5):4714-4717.
    [60] Robert Aigner. Tunable acoustic RF-filters: discussion of requirements and potential physicalembodiments[C]. Microwave Conference (EuMC),2010,787-790.
    [61] Robert Aigner. Tunable RF Filters: Pursuing the Holy Grail of Acoustic Filter R&D[OL].http://www.microwavejournal.com/authors/1390-dr-robert-aigner-director-r-d-acoustic-technologies-triquint-semiconductor/articles,2008.
    [62] Kadota M, Ogami T, Yamamoto K, Tochishita H, et al. High-frequency Lamb wave devicecomposed of MEMS structure using LiNbO3thin film and air gap[J]. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2010,57(11):2564-71
    [63] Hashimoto, Ken-ya, Tanaka Shuji, Esashi, Masayshshi. Tunable RF SAW/BAW filters: Dreamor reality?[C]. IEEE Frequency Control and the European Frequency and Time Forum (FCS),2011,1-8.
    [64] K. Hashimoto, H. Asano, T. Omori, and M. Yamaguchi. Wideband love wave filters operatingin GHz range on Cu-grating/rotated-YX-LiNbO3-substrate structure[C]. IEEE Proceeding ofIEEE Ultrasonic Symposium,2004,1330–1334.
    [65] D. P. Chen, H. A. Haus. Analysis of metal-strip SAW grating and transducers[J]. IEEETransactions on Sonics and Ultrasonic,1985,32(3):395-408.
    [66] K. Bl tekjаеr, A. Ingebrigesen, H. Skeie. Acoustic Surface Waves in Piezoelectric Materialswith Periodic Metal Strip on the Surface[J]. IEEE transactions on Electron Devices,1973,20(12):1133-1138.
    [67] K. Hashimoto, M. Yamaguchi. Analysis of excitation and propagation of acoustic waves underperiodic metallic-grating structure for SAW device modeling[C]. IEEE Proceeding of IEEEUltrasonic Symposium,1993,143-148.
    [68] K. Hashimoto, M. Yamaguchi. Precise simulation of surface transverse wave devices bydiscrete Green function theory[C]. IEEE Ultrasonic Symposium Proceedings,1994,1:253-258.
    [69] V. Plessky, T. Thorvaldsson. Periodic Green s functions analysis of SAW and leaky SAWpropagation in a periodic system of electrodes on a piezoelectric crystal[J]. IEEE Transactionson Ultrasonics, Ferroelectrics and Frequency Control,1995,42(2):280-293.
    [70] O.Kawachi, G.Endoh, M.Ueda, et al. Optimum Cut of LiTaO3for High Performance LeakySurface Acoustic Wave Filters[C], IEEE Proceeding of IEEE Ultrasonic Symposium,1996,71-76.
    [71] Avramov, Ivan D. Microwave oscillators stabilized with surface transverse wave resonantdevices[C]. IEEE Proceeding of Frequency Control Symposium,1992,391-408.
    [72] B.P.Abbott and K.Hashimoto. A Phenomenological Coupling-of Modes Formalism for SurfaceTransverse Wave Devices[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1995,452-458.
    [73] M.lewis. Surface Skimming Bulk Wave[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1977,744-752.
    [74] V. Plessky. A two parameter coupling-of-modes model for shear horizontal type SAWpropagation in periodic gratings[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1993,195-200
    [75] E.A.Ash. Surface Wave Grating Reflectors and Resonators[C]. IEEE International MicrowaveSymposium,1970,385-386.
    [76] Ken-ya Hashimoto著,王景山刘天飞孙玮译.声表面波器件模拟与仿真[M].北京:国防工业出版社,2002,135-137.
    [77] H. Kamizuma, K. Hashimoto, T. Omori and M. Yamaguchi. Development of Fast-ScanningLaser Probe System Based on Knife-Edge Method for Diagnosis of RF Surface Acoustic WaveDevices[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2006,53(6):1186-1191.
    [78] E.J.Staples, R.C. Smythe. Surface Acoustic Wave Resonators on ST-Quartz[C]. IEEEProceeding of IEEE Ultrasonic Symposium,1975,711-721.
    [79] H. Engan, K. A. Ingebrigtsen and A. Tonning. Elastic Surface Waves in α-Quartz: Observation ofLeaky Surface Waves[J]. Apply Physics Letter,1967,10(11):311-313.
    [80] Schmidt R.V, Coldren L A. Thin Film Acoustic Surface Waveguides on Anisotropic Media[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1975,22(2):115-122.
    [81] K.Hashimoto, G.Endoh, M.Ohmaru and M.Yamaguchi. Analysis of Surface Acoustic WavesObliquely Propagating under Metallic Gratings with Finite Thickness[J]. Japanese Journal ofApplied Physics,1996,35,3006-3009.
    [82] K.Hashimoto and M.Yamaguchi. Excitation and Propagation of Shear-Horizontal-Type Surface andBulk Acoustic Waves[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2001,48(5):1181-1188.
    [83] K.Hashimoto, M.Yamaguchi, G.Kovacs, et al. Effects of Bulk Wave Radiation on IDT Admittanceon42oYX-LiTaO3[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2001,48(5):1419-1425.
    [84] R.Nakagawa, T.Yamada, T.Omori, K.Hashimoto et al. Analysis of Excitation and PropagationCharacteristics of Leaky Modes in Surface Acoustic Wave Waveguides[J]. Japanese Journal ofApplied Physics,2002,41,3460-3464.
    [85] Ken-ya Hashimoto著,王景山刘天飞孙玮译.声表面波器件模拟与仿真[M].北京:国防工业出版社,2002,302-308.
    [86] T.Omori, Y.Tanaka, K.Hashimoto and M.Yamaguchi. Synthesis of Frequency Response forWideband SAW Ladder Type Filters[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,2007,2574-2577.
    [87] K.Hashimoto, Ueda Masanori, Satoh, Yoshio. Development of ladder type SAW RF filter withhigh shape factor[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1995, pp113-116.
    [88] Miyashita T, Matsuda Takashi, Nishihara Tokihiro, et al Development of low-loss band-passfilters using SAW resonators for portable telephones[C]. IEEE Proceeding of IEEE UltrasonicSymposium,1992,111-115.
    [89] Weigel Robert, Weigenthaler E, Dill Roland, et al A900MHz ladder-type SAW filterduplexer[C]. IEEE International Microwave Symposium,1996,413-416.
    [90] Ueda Masanori, Kawachi Osamu, Hashimoto Ken-ya, et al. Low loss ladder type SAW filter inthe range of300to400MHz[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1994,pp143-146.
    [91] Novgorodov and Vossiek Martin. Modified ladder-type2.4GHz SAW filter with transmissionzero[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,2010,2083-8086.
    [92] Ikata Osarnu, Nishihara Tokihiro and Satoh Yoshio. A design of antenna duplexer using laddertype SAWfilters[C]. IEEE Proceeding of IEEE Ultrasonic Symposium1998,1-4.
    [93] Plessky Victor,Lambert C. Reduced passband ladder type SAW impedance element filters onstrong piezoelectric substrates[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1996,11-14.
    [94] Rusakov Anatoly N, Dai Jidong. Compact ladder type SAW resonator filter[C]. IEEEProceeding of IEEE Ultrasonic Symposium,2008,1592-1595.
    [95] Hollerweger Franz, Springer Andreas L and Weigel, Robert. Design and performance of aSAW ladder-type filter at3.15GHz using SAW mass production technology[C]. IEEEInternational Microwave Symposium,1999,4:1441-1444.
    [96] Ken-ya Hashimoto著,王景山刘天飞孙玮译.声表面波器件模拟与仿真[M].北京:国防工业出版社,2002,168-175.
    [97] T.Komatsu, Y.Tanaka, K.Hashimoto, et al. Design of Narrow Bandwidth Ladder-type Filterswith Sharp Transition Bands Using Mutually Connected Resonator Elements[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2009,56(7):1451-1456.
    [98] Elliptic filter[OL]. http://en.wikipedia.org/wiki/Elliptic_filter
    [99] A.I.Zverv. Handbook of Filter Synthesis[M]. Wiley,1967,107-132.
    [100] H.Yatsuda. Design Technique for Nonlinear Phase SAW filters using Slanted FingerInterdigital Transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,1998,45(1):41–47.
    [101] E.Bausk, R.Taziev, and A.Lee. Synthesis of Slanted and Quasislanted SAW Transducers[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2004,51(8):1002–1009.
    [102] C.S.Hartmann and B.P.Abbott. Overview of Design Challenges for Single PhaseUnidirectional SAW Filters[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1989,79–89.
    [103] H.L.Li, J.G.Wen, K.Hashimoto, et al. Optimal Design of an RSPUDT-Based SAW Filterwith Constant Group Delay[J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,2007,54(10):1960-1964.
    [104] Bessel filter[OL].http://en.wikipedia.org/wiki/Bessel_filter.
    [105] M. Ueda, M. Iwaki, T. Nishihara, et al. A Circuit Model for Nonlinear Simulation ofRadio-Frequency Filters Employing Bulk Acoustic Wave Resonators[J]. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2008,55(4):849-856.
    [106] K.Hashimoto. Theoretical Considerations on Influenceof Circuit Impedance to IMD2Measurement of Radio Frequency Bulk Acoustic Wave Resonators[J]. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2011,58(3):671-674.
    [107] Y.Wang, F.Thalmayr, N.Wu, and K.Hashimoto. Considerations on Measurement Setup forSecond-Order Nonlinearity in Radio-Frequency Bulk Acoustic Wave Duplexers[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2010,57(12):2844-2849.
    [108] Morita T, Watanabe Yoshitaka, Tanaka Masaki, et al. Wideband low loss double mode SAWfilters[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1992,1:95-104.
    [109] Fisscherauer G and Schropp I. Influence of fabrication tolerances and circuit variations on theperformance of SAW RF filters[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1993,1:257–261.
    [110] Ruppel Clemens C W, Ruile Werner, Scholl Gerd et al. Review of models for low-loss filterdesign and applications[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1994,1:313-324.
    [111] Loseu, Aleh S. Double-mode SAW filters with improved selectivity[C]. IEEE Proceeding ofIEEE Ultrasonic Symposium,2000,95-98.
    [112] T.Morita, Y.Watanabe, M.Tanaka and Y.Nakazawa. Wideband Low loss Double Mode SAWFilters[C]. IEEE Proceeding of IEEE Ultrasonic Symposium,1992,95-104.
    [113] S.Inoue, J.Tsutsumi, Y.Iwamoto, et al.1.9GHz range ultra-low-loss and steep cutoff doublemode SAW filter for the Rx band in the PCS antenna duplexer[C]. IEEE Proceeding of IEEEUltrasonic Symposium,2003,389-392.
    [114] K.Hashimoto, T.Omori and M.Yamaguchi. Design Concept of WidebandLongitudinally-Coupled Double-Mode SAW Filters[C]. Proceedings of Second internationalSymposium on Acoustic Wave Devices for Future Mobile Communication Systems,2004,251-259.
    [115] O.Kawachi, S.Mitobe, M.Tajima, et al. A Low-Loss and Wide-Band DMS Filter UsingPitch-Modulated IDT and Reflector Structures[C]. IEEE Proceeding of IEEE UltrasonicSymposium,2004,298-301.
    [116] K.Hashimoto, T.Omori and M.Yamaguchi. Operation Mechanism of Double-Mode SurfaceAcoustic Wave Filters with Pitch-Modulated IDTs and Reflectors[J]. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2007,54(10):2152-2158.
    [117] J.Chen, H.Wang, K.Hashimoto, et al. Theoretical Analysis of Ultrahigh ElectromechanicalCoupling Surface Acoustic Wave Propagation in PIN-PMN-PT Crystals[J]. Journal of AppliedPhysics,2011,109(054104):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700